COMPLEMENTARY TEST OF DARK MATTER SELF-INTEACTION BY INDIRECT AND DIRECT DARK MATTER DETECTIONS

G.-L. Lin
Based upon work done with Chian-Shu Chen and Yen-Hsun Lin, JCAP01 (2016) 013, arXiv: 1508.05263 [hep-ph]
OUTLINE:

➤ Motivation: why self-interacting dark matter (SIDM)? what are the interesting consequences of SIDM?

➤ Symmetric dark U(1) model—a realization of SIDM and ensure *indirect signature* from dark matter (DM) annihilation

➤ DM signature from the Sun—*indirect search*

➤ Constraint from LUX (*direct search*) and small search window in dark U(1) parameter space by IceCube-PINGU

➤ Summary
MOTIVATIONS

- The Sun is a good target for detecting dark matter (DM) signal through observing neutrinos—*indirect search*. DM density in the Sun is expected to be larger than the average DM density in the solar density.

- The possibility of detecting the above neutrinos correlates with DM direct detection, which so far gives bound on $\sigma_{\chi A}$.

- There is a possibility of breaking the above correlation: the combination of suppressed $\sigma_{\chi A}$ and large $\sigma_{\chi \chi} \Rightarrow$ significant neutrino flux can still be expected from the Sun.

- The above is self-interaction dominant scenario. Can such a scenario be realized in a SIDM model?
Evolution Equation

\[\frac{dN_X}{dt} = C_c - C_e N_X - C_a N_X^2 \]

C_c : Capture, C_e : evaporation, C_a : annihilation

The evaporation term is important only when DM mass is less than 4 GeV.

DARK MATTER CAPTURE, EVAPORATION AND ANNIHILATION IN THE SUN

Capture is due to the scattering between halo DM and the nuclei in the Sun

\[
C_c^{\text{SD}} \simeq 3.35 \times 10^{24} \text{ s}^{-1} \left(\frac{\rho_0}{0.3 \text{ GeV/cm}^3} \right) \left(\frac{270 \text{ km/s}}{\bar{v}} \right)^3 \left(\frac{\text{GeV}}{m_\chi} \right)^2 \left(\frac{\sigma_H^{\text{SD}}}{10^{-6} \text{ pb}} \right)
\]

\[
C_c^{\text{SI}} \simeq 1.24 \times 10^{24} \text{ s}^{-1} \left(\frac{\rho_0}{0.3 \text{ GeV/cm}^3} \right) \left(\frac{270 \text{ km/s}}{\bar{v}} \right)^3 \left(\frac{\text{GeV}}{m_\chi} \right)^2 \left(\frac{2.6\sigma_H^{\text{SI}} + 0.175\sigma_H^{\text{He}}}{10^{-6} \text{ pb}} \right)
\]

\[
C_a \simeq \frac{\langle \sigma_v \rangle V_2}{V_1^2}, \quad \text{with} \quad V_j \simeq 6.5 \times 10^{28} \text{ cm}^3 \left(\frac{10 \text{ GeV}}{jm_\chi} \right)^{3/2}
\]

Take \(m_\chi=10 \text{ GeV}, \langle \sigma_v \rangle =3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}\), then \(C_a =1.6 \times 10^{-55} \text{ s}^{-1}\)

For SD interaction, \(\tau_A =4.5 \times 10^8 \text{ years}\), while the age of the Sun is roughly \(3 \times 10^9 \text{ years}\). Equilibrium has been reached!
The consequence of equilibrium

\[N_\chi(t) = C_c \tau_A \tanh(t / \tau_A) \]

\[\tau_A = \frac{1}{\sqrt{C_c C_a}} \]

At the present day, \[N_\chi = \frac{C_c}{\sqrt{C_c C_a}} \]

The number of neutrinos produced per unit time is proportional to

\[C_a N_\chi^2 \]

It turns out the number of neutrinos produced only depends on \(C_c \)

\(C_c \) is proportional to \(\sigma_\chi A \)

Smaller cross section leads to smaller neutrino flux
DM self interaction

- Self-interaction proposed to resolve small-scale structure problem in the universe.

 D. N. Spergel and P. J. Steinhardt, PRL 84, 3760 (2000)

- Observations on various galactic structures place the constraint $0.1 < \sigma_{\chi\chi}/m_\chi < 1.0 \ (cm^2/g)$

 \[\sigma_{\chi\chi} = 1.78 \times 10^{-23} \ cm^2 \ \text{for} \ m_\chi = 10 \ GeV \]

S. W. Randall, M. Markevitch, D. Clowe, A. H. Gonzalez and M. Bradac, Astrophys. J. 679, 1173 (2008);
DM capture by self-interaction: the scattering

Zentner, Phys. Rev. D80, 063501 (2009)

$$C_s = \sqrt{\frac{3}{2}} n_\chi \sigma_{\chi\chi} v_{\text{esc}}(R_\odot) \frac{v_{\text{esc}}(R_\odot)}{\bar{u}} \left\langle \phi_\chi \right\rangle \frac{\text{erf}(\eta)}{\eta}$$

n_χ : DM number density in the halo
Dark matter evolution with self-interaction

- Modified evolution equation:

\[
\frac{dN_\chi}{dt} = C_c + C_s N_\chi - C_a N_\chi^2
\]

- The equilibrium time scale is shorter:

\[
\tau = \frac{1}{\sqrt{C_c C_a + C_s^2/4}} \quad C_a \propto <\sigma v>
\]

- \(C_s \propto n_\chi \sigma_{\chi\chi}; \quad \Phi_\nu \propto C_a N_\chi^2 \propto \frac{C_s^2}{C_a} \quad \text{(for } C_s^2 \gg 4C_c C_a\text{)}\)

Probing self interaction!
The presence of self-interaction shifts the evaporation mass scale higher. The annihilation increases with DM self-interaction cross section.
SYMMETRIC DARK U(1) MODEL

\[\mathcal{L}_{\text{DM vector}} = e D \bar{\chi} \gamma^\mu \chi \phi_\mu \]

DM as Dirac fermion

\[\mathcal{L}_{\text{mixing, U(1)}} = \frac{\varepsilon_\gamma}{2} \phi_{\mu\nu} F^{\mu\nu} + \varepsilon_Z m_Z^2 \phi_{\mu} Z^\mu \]

\[\phi - \gamma \text{ mixing and} \]
\[\phi - Z \text{ mixing} \]

The mediator couples to nucleons through mixings with photon and Z boson

\[\mathcal{L}_{\text{mixing/vector}} = \left(\varepsilon_\gamma e J_{\text{em}}^\mu + \varepsilon_Z g_2 e_Z J_{\text{NC}}^\mu \right) \phi_\mu \]

\[J_{\text{em}}^\mu = \sum_f Q_f \bar{f} \gamma^\mu f \]

\[J_{\text{NC}}^\mu = \sum_f \bar{f} \gamma^\mu \left[I_{3f} \left(\frac{1 - \gamma_5}{2} \right) - Q_f s_W^2 \right] f \]
SYMMETRIC DARK U(1) MODEL

DM-nucleon coupling

- Independent parameters: \(\alpha_\chi, m_\chi, m_\phi, \varepsilon_\gamma, \eta \)

\[
\sigma^{\text{SI}}_{\chi \phi} \approx 1.5 \times 10^{-24} \text{ cm}^2 \varepsilon_\gamma^2 \left(\frac{\alpha_\chi}{0.01} \right) \left(\frac{m_\phi}{30 \text{ MeV}} \right)^{-4}
\]

DM-nucleus scattering cross section

\[
\sigma_{\chi A} \approx \frac{16\pi\alpha_\chi\alpha_{\text{em}}}{m_\phi^4} \left[\varepsilon_p Z + \varepsilon_n (A - Z) \right]^2 \mu_{\chi A}^2
\]

\[
\varepsilon_p = \varepsilon_\gamma + \frac{\varepsilon_Z}{4s_Wc_W} (1 - 4s_W^2) \approx \varepsilon_\gamma + 0.05\varepsilon_Z,
\]

\[
\varepsilon_n = -\frac{\varepsilon_Z}{4s_Wc_W} \approx -0.6\varepsilon_Z.
\]

reduced mass

One has isospin violation in general, i.e.,

\[
\eta \equiv \frac{\varepsilon_n}{\varepsilon_p} \neq 1
\]

Related to DM capture by the Sun
DM self-interaction

vanishes in the non-relativistic limit

Dominant contribution

\[\sigma_{\chi \bar{\chi}} = 4\pi \alpha_\chi^2 \frac{m_\chi^2}{m_\phi^4} \]

For very small mediator mass, the momentum transfer \((p-p')^2\) will dominate \(m_\phi^2\). Careful treatment is needed.
Thermal relic constraint
\[\chi \bar{\chi} \rightarrow \phi \phi \]

\[< \sigma v > = 6 \times 10^{-26} \text{cm}^3 \text{s}^{-1} \quad \text{Dirac fermion} \]

then \[\alpha_\chi \approx 3.3 \times 10^{-5} (m_\chi / \text{GeV}) \]

Independent parameters:
\[\varepsilon_\gamma, \eta, m_\chi, m_\phi \]
SYMMETRIC DARK U(1) MODEL

BBN constraint

To generate large self-interaction cross section $\sigma_{\chi \bar{\chi}}$, the mediator mass should be small. For $m_\phi < 100 \, \text{MeV}$, the main decay modes of ϕ are: $\phi \rightarrow e^+e^-$, and $\phi \rightarrow \nu\bar{\nu}$. The decay time of the former should be less than 1s. Hence $\varepsilon_\gamma \geq 5 \times 10^{-11} \sqrt{10 \, \text{MeV}/m_\phi}$. Upper bound comes from electron anomalous magnetic moment, beam dump experiments and supernova cooling.

T. Lin, H.-B. Yu and K. Zurek,

The allowed range for ε_γ

$\varepsilon_\gamma \geq 5 \times 10^{-11} \sqrt{10 \text{ MeV}/m_\phi}$.

T. Lin, H.-B. Yu and K. Zurek,

We take $\varepsilon_\gamma = 10^{-9}$, and 10^{-10} for analysis

Independent parameters:
ε_γ, η, m_χ, m_ϕ

Constrained
LUX set stringent constraints on the parameter space for isospin symmetric case. Small window is left for indirect search.
DARK MATTER SIGNATURE FROM THE SUN

DM evolution equation in the Sun

\[
\frac{dN_\chi}{dt} = C_c - C_e N_\chi + C_s N_\bar{\chi} - (C_a + C_{se}) N_\chi N_\bar{\chi},
\]

\[
\frac{dN_\bar{\chi}}{dt} = C_c - C_e N_\bar{\chi} + C_s N_\chi - (C_a + C_{se}) N_\bar{\chi} N_\chi,
\]

evaporation by the scattering of \(\bar{\chi} \) and \(\chi \).

Symmetric DM: \(N_\chi = N_\bar{\chi} \)

\[\Rightarrow \quad \frac{dN_\chi}{dt} = C_c - C_e N_\chi + C_s N_\chi - (C_a + C_{se}) N_\chi^2\]

This has been derived and solved in

C.-S. Chen, F.-F. Lee, GLL, Y.-H. Lin, JCAP 10

(2014), 049
DARK MATTER SIGNATURE FROM THE SUN

\[C_c \propto \left(\frac{\rho_\chi}{0.15 \text{ GeV/cm}^3} \right) \left(\frac{\text{GeV}}{m_\chi} \right) \left(\frac{270 \text{ km/s}}{v_\chi} \right) \sum_A F_A(m_\chi, \eta) \sigma^0_{\chi A} \frac{m_\phi^4}{(m_\phi^2 + q_A^2)^2}, \]

\[C_s(q^2) \propto \left(\frac{\rho_\chi}{0.15 \text{ GeV/cm}^3} \right) \left(\frac{\text{GeV}}{m_\chi} \right) \left(\frac{270 \text{ km/s}}{v_\chi} \right) \frac{\sigma^0_{\chi \chi} \operatorname{erf}(\eta)}{\eta} \frac{m_\phi^4}{(m_\phi^2 + q^2)^2}, \]

No such problem for annihilation \(\chi \bar{\chi} \rightarrow \phi \phi \)
DARK MATTER SIGNATURE FROM THE SUN

DM accumulation in the Sun

$\sigma_{\chi p}(\varepsilon_{\gamma})$ still plays an essential role
DARK MATTER SIGNATURE FROM THE SUN

The effect of self-interaction on the number of trapped DMs

Self-interaction does not completely take over
NEUTRINO FLUX ARRIVING AT THE EARTH

Distance between Sun and Earth

Branching fraction for specific annihilation channel

\[
\frac{d\Phi_{\nu_i}}{dE_{\nu_i}} = \frac{\Gamma_A}{4\pi R_{\odot}^2} P_{\nu_j \rightarrow i}(E_{\nu}) \sum_f B_f \left(\frac{dN_{\nu_j}}{dE_{\nu_j}} \right)_f
\]

Energy distribution per annihilation

\[\chi \bar{\chi} \rightarrow \phi \bar{\phi}, \phi \rightarrow \nu \bar{\nu}\]

Note that the mediator can also decay to electron-position pair

The branching ratio for decaying to neutrinos is determined by

\[
\frac{\epsilon_Z}{\epsilon_\gamma} = -\frac{\eta}{\eta + 12}
\]

\[
\mathcal{L}_{\text{mixing/vector}} = \left(\epsilon_\gamma e J^\mu_{\text{em}} + \epsilon_Z \frac{g_2}{c_W} J^\mu_{\text{NC}} \right) \phi_\mu
\]

\[
J^\mu_{\text{em}} = \sum_f Q_f \bar{f} \gamma^\mu f
\]

\[
J^\mu_{\text{NC}} = \sum_f \bar{f} \gamma^\mu \left[I_{3f} \left(\frac{1 - \gamma_5}{2} \right) - Q_f s_{W}^2 \right] f
\]

\[
N_\nu = \int_{E_{th}}^{m_X} \frac{d\Phi_\nu}{dE_\nu} A_\nu(E_\nu) dE_\nu d\Omega
\]

\[
N_{\text{atm}} = \int_{E_{th}}^{E_{\text{max}}} \frac{d\Phi_{\nu_{\text{atm}}}}{dE_\nu} A_\nu(E_\nu) dE_\nu d\Omega
\]

- Consider neutrino events from the solid angle range $\Delta \Omega = 2\pi (1 - \cos \psi)$ surrounding the Sun
- Take $\psi = 10^\circ$ to match PINGU angular resolution
- Take the threshold energy to be 1 GeV
LUX constraints rules out almost all the parameter spaces except the tiny window. This window is in the region of negligible self-interaction.
ICECUBE-PINGU 5-YEAR SENSITIVITY (2σ) WITH TRACK EVENTS

\[\varepsilon_\gamma = 10^{-9} \]

The tiny window not reached by LUX is in the self-interaction relevant region for some values of \(\eta \).
SUMMARY

➤ We have studied the signature of DM self-interaction in a dark U(1) model with a light vector mediator which connects DM with standard model particles.

➤ We find that DM-nucleon cross section and DM self-interaction cross section are closely related to each other by the model parameters. DM self-interaction enhances the DM annihilation rate in the Sun significantly but not overwhelmingly.

➤ In such a model, we find that the chance of detecting DM signature from the Sun is still correlated to the result of direct search.

➤ It is of high interest to explore some other models in which the above scenario does not hold.