Higgs singlet as a diphoton resonance in a vector-like quark model

Takaaki Nomura (KIAS)

Based on: Chuan-Hung Chen, T. N. arXiv:1512.06028 and work in progress

1. Introduction

2. A model \& diphoton excess
3. Checking constraint
4. VLQ production
5. Summary

1.introduction

Diphoton excess at 750 GeV

ATLAS-CONF-2015-081, CMS-PAS-EXO-15-004 Both ATLAS and CMS observed bump on diphton invariant mass distribution
3.6σ : ATLAS
2.6σ : CMS
(Local significance)

1.introduction

How we can interpret the diphoton excess?
$>$ It could be new particle : spin 0 or 2

* Let us consider scalar particle S with $\mathrm{m}_{\mathrm{S}}=750 \mathrm{GeV}$
$>$ Cross section to produce a new particle S

$$
\sigma(p p \rightarrow S) B R(S \rightarrow \gamma \gamma) \approx 3-10 \mathrm{fb}
$$

$>$ Width of S ?
Best fit value by ATLAS : $\Gamma \sim 45 \mathrm{GeV}$
CMS : Narrow width is preffered
> $\mathrm{S} \rightarrow$ other modes : not observed
BRs of S are constrained

1.introduction

Properties of the diphoton excess

final	σ at $\sqrt{s}=8 \mathrm{TeV}$			implied bound on	
state f	observed	expected	ref.	$\Gamma(S \rightarrow f) / \Gamma(S \rightarrow \gamma \gamma)_{\text {obs }}$	
$\gamma \gamma$	$<1.5 \mathrm{fb}$	$<1.1 \mathrm{fb}$	$[6,7]$	$<0.8(r / 5)$	
$e^{+} e^{-}+\mu^{+} \mu^{-}$	$<1.2 \mathrm{fb}$	$<1.2 \mathrm{fb}$	$[8]$	$<0.6(r / 5)$	
$\tau^{+} \tau^{-}$	$<12 \mathrm{fb}$	15 fb	$[9]$	$<6(r / 5)$	
$Z \gamma$	$<4.0 \mathrm{fb}$	$<3.4 \mathrm{fb}$	$[10]$	$<2(r / 5) \quad r=\sigma_{13 T e V} / \sigma_{8 \text { TeV }}$	
$Z Z$	$<12 \mathrm{fb}$	$<20 \mathrm{fb}$	$[11]$	$<6(r / 5)$	
$Z h$	$<19 \mathrm{fb}$	$<28 \mathrm{fb}$	$[12]$	$<10(r / 5) \quad \Gamma / M \approx 0.06$	
$h h$	$<39 \mathrm{fb}$	$<42 \mathrm{fb}$	$[13]$	$<20(r / 5)$	
$W^{+} W^{-}$	$<40 \mathrm{fb}$	$<70 \mathrm{fb}$	$[14,15]$	$<20(r / 5)$	
$t \bar{t}$	$<550 \mathrm{fb}$	-	$[16]$	$<300(r / 5)$	
invisible	$<0.8 \mathrm{pb}$	-	$[17]$	$<400(r / 5)$	
$b \bar{b}$	$\lesssim 1 \mathrm{pb}$	$\lesssim 1 \mathrm{pb}$	$[18]$	$<500(r / 5)$	
$j j$	$\lesssim 2.5 \mathrm{pb}$	-	$[5]$	$<1300(r / 5)$	

From Table 1 of arXiv:1512.04933 (Franceschini et. al.)
> $\mathrm{S} \rightarrow$ other modes : not observed
BRs of S are constrained
1.introduction

We consider a simple scenario to explain the excess
SM+Vector-like triplet quarks(VLTQ) + scalar singlet(S) SU(2)

Our strategy
*S does not mix with SM Higgs
$* \mathrm{gg} \rightarrow \mathrm{S}$ and $\mathrm{S} \rightarrow \mathrm{YY}$ are induced by VLTQ loop
\&VLTQs are heavy as $\mathrm{O}(1) \mathrm{TeV}$: S does not decay into them
*Sizable Yukawa coupling of S and VLTQ enhance the process
*Two triplet give \# of quark $=\mathbf{6} \rightarrow$ enhance Sgg and Syy coupling

1. Introduction

2. Model \& diphoton excess

3. Checking constraint
4. VLQ production
5. Summary
2.Model \& diphoton excess

Our Model

SM + vector-like triplet quarks ($\mathrm{F}_{1}, \mathrm{~F}_{2}$)+singlet scalar (S)

VLTQ

$\mathrm{F}_{1}:(3,3)(2 / 3), \mathrm{F}_{2}:(3,3)(-1 / 3) \quad\{(\mathrm{SU}(3), \mathrm{SU}(2))(\mathrm{U}(1) \mathrm{r})\}$
$F_{1}=\left(\begin{array}{cc}U_{1} / \sqrt{2} & X \\ D_{1} & -U_{1} / \sqrt{2}\end{array}\right), \quad F_{2}=\left(\begin{array}{cc}D_{2} / \sqrt{2} & U_{2} \\ Y & -D_{2} / \sqrt{2}\end{array}\right) \quad\binom{\mathrm{Q}_{\mathrm{X}}=5 / 3}{\mathrm{Q}_{\mathrm{Y}}=-4 / 3}$
(Y.Okada, L.Panizzi (2013))

Yukawa couplings of VLTQ
$L_{\text {vure }}^{\text {Yukava }}=Y_{1} \bar{Q}_{L} F_{1 R} \tilde{H}+Y_{2} \bar{Q}_{L} F_{2 R} H+y_{1} \operatorname{Tr}\left(\bar{F}_{1 L} F_{1 R}\right) S+y_{2} \operatorname{Tr}\left(\bar{F}_{2 L} F_{2 R}\right) S+h . c$.
2.Model \& diphoton excess

Our Model

SM + vector-like triplet quarks ($\mathrm{F}_{1}, \mathrm{~F}_{2}$)+singlet scalar (S)
VLTQ

$$
F_{1}:(3,3)(2 / 3), F_{2}:(3,3)(-1 / 3) \quad\left\{(S U(3), S U(2))\left(U(1)_{\gamma}\right)\right\}
$$

$F_{1}=\left(\begin{array}{cc}U_{1} / \sqrt{2} & X \\ D_{1} & -U_{1} / \sqrt{2}\end{array}\right), \quad F_{2}=\left(\begin{array}{cc}D_{2} / \sqrt{2} & U_{2} \\ Y & -D_{2} / \sqrt{2}\end{array}\right) \quad\binom{\mathrm{Q}_{\mathrm{X}}=5 / 3}{\mathrm{Q}_{\mathrm{Y}}=-4 / 3}$
(Y.Okada, L.Panizzi (2013))

Yukawa couplings of VLTQ
$L_{\text {vrue }}^{\text {Yukava }}=\underline{Y_{1} \bar{Q}_{L} F_{1 R} \tilde{H}+Y_{2} \bar{Q}_{L} F_{2 R} H}+\underline{y_{1} \operatorname{Tr}\left(\bar{F}_{1 L} F_{1 R}\right) S+y_{2} \operatorname{Tr}\left(\bar{F}_{2 L} F_{2 R}\right) S}+$ h.c.

$\mathrm{gg} \rightarrow \mathrm{S}$ and $\mathrm{S} \rightarrow \mathrm{YY}$

It induces decay of F_{i} \& mixing of VLQ and SM quarks
*We assume $Z_{2}: S \rightarrow-S, F_{i L} \rightarrow-F_{i L}$ to forbid S-H mixing (softly broken by F mass term)
2.Model \& diphoton excess

Gauge interactions of VLTQs

$$
\begin{aligned}
L_{V F F}= & -g\left[\left(\bar{X} \gamma^{u} U_{1}+\bar{U}_{1} \gamma^{\mu} D_{1}+\bar{D}_{2} \gamma^{u} Y+\bar{U}_{2} \gamma^{u} D_{2}\right) W_{\mu}^{+}+h . c .\right] \\
& -\left[\frac{g}{c_{W}} \bar{F}_{1} \gamma^{u}\left(T^{3}-s_{W}^{2} Q_{1}\right) F_{1}+e \bar{F}_{1} \gamma^{u} Q_{1} F_{1} A_{\mu}+\left(F_{1} \rightarrow F_{2}, Q_{1} \rightarrow Q_{2}\right)\right] \\
F_{1}^{T}= & \left(X, U_{1}, D_{1}\right) ; F_{2}^{T}=\left(U_{2}, D_{2}, Y\right)
\end{aligned}
$$

* Isospin of VLTQ is different from the SM quarks

Z-mediated FCNC is induced since CKM matrix is not unitary

$$
\begin{aligned}
& \mathcal{L}_{W u d}=-\frac{g}{\sqrt{2}} \bar{u}_{L} \gamma^{\mu} V_{\mathrm{CKM}}^{L} d_{L} W_{\mu}^{+}-\frac{g}{\sqrt{2}} \bar{u}_{R} \gamma^{\mu} V_{\mathrm{CKM}}^{R} d_{R} W_{\mu}^{+}+\text {h.c. } \\
& \mathcal{L}_{Z q q}=-\frac{g}{c_{W}} C_{i j}^{q_{L}} \bar{q}_{i L} \gamma^{\mu} q_{j L} Z_{\mu}-\frac{g}{c_{W}} C_{i j}^{q_{R}} \bar{q}_{i R} \gamma^{\mu} q_{j R} Z_{\mu}
\end{aligned}
$$

2.Model \& diphoton excess

Gluon fusion and decay modes of S

Gluon fusion and decay of S via VLTQ loop

$$
\mathrm{gg} \rightarrow \mathrm{~S} \rightarrow \mathrm{VV} \quad L_{s g g}=\frac{\alpha_{s}}{8 \pi}\left(\sum_{F_{i}} \frac{3 y_{i}}{2 m_{F_{i}}} A_{1 / 2}\left(\tau_{F_{i}}\right)\right) \phi G^{a \mu v} G_{\mu v}^{a}
$$

Decay widths
$\Gamma(S \rightarrow g g)=\frac{\alpha_{s}^{2} m_{S}^{3}}{32 \pi^{3}}\left|\sum_{i} \frac{y_{i}}{2 m_{F_{i}}} A_{1 / 2}\left(\tau_{i}\right)\right|^{2}$
$\Gamma(S \rightarrow \gamma \gamma)=\frac{\alpha^{2} m_{S}^{3}}{256 \pi^{3}}\left|\sum_{i} \frac{3 y_{i} Q_{F_{i}}^{2}}{m_{E_{i}}} A_{1 / 2}\left(\tau_{i}\right)\right|^{2}$

$$
\left.\tau_{i}=\frac{4 m_{T_{i}}^{2}}{m_{S}^{2}}\right)
$$

$\Gamma(S \rightarrow Z \gamma)=\frac{9 m_{S}^{3}}{32 \pi^{3}}\left|A_{F}\right|^{2}\left(1-\frac{m_{Z}^{2}}{m_{S}^{2}}\right)^{3} \Gamma(S \rightarrow W W)=\frac{\alpha^{2} m_{S}^{3}}{256 \pi^{3}}\left|\sum_{i} \frac{6 y_{i}}{m_{F_{i}} s_{W}^{2}} A_{1 / 2}\left(\tau_{i}\right)\right|^{2}$
$\Gamma(S \rightarrow \mathrm{ZZ})=\frac{\alpha^{2} m_{S}^{3}}{256 \pi^{3}}\left|\sum_{i} \frac{3 y_{i}\left(T_{T_{i}}^{3}-s_{W}^{2} Q_{F_{i}}\right)^{2}}{m_{F_{i}} s_{W}^{2} c_{W}^{2}} A_{1 / 2}\left(\tau_{i}\right)\right|^{2}$
2.Model \& diphoton excess

Total decay width of S and $B R$

$$
\begin{aligned}
& B R(S \rightarrow g g) \approx 0.67 \\
& B R\left(S \rightarrow W^{+} W^{-}\right) \approx 0.15 \\
& B R(S \rightarrow Z Z) \approx 0.095 \\
& B R(S \rightarrow Z \gamma) \approx 0.039 \\
& B R(S \rightarrow \gamma \gamma) \approx 0.017 \\
& \binom{B R(S \rightarrow h h) \approx 0.007}{B R(S \rightarrow t \bar{t}) \approx 0.018}
\end{aligned}
$$

* The with is mostly less than 1 GeV : narrow width

$$
\mathrm{K}_{\mathrm{s} \rightarrow \mathrm{gg}}=1.35
$$

* BRs are almost independent of VLTQ mass
2.Model \& diphoton excess

Gluon fusion production cross section at 13 TeV

* The VLTQ masses are universal for simplicity

$$
\mathrm{K}_{\mathrm{gg} \rightarrow \mathrm{~s}}=1.35
$$

* Cross section is estimated with CalcHEP (Djouadi Phys. Rep. 457, 1)
* The cross section can be O(1) pb with O(1) Yukawa
2.Model \& diphoton excess
$\sigma(\mathrm{gg} \rightarrow \mathrm{S}) \times \mathrm{BR}(\mathrm{S} \rightarrow \mathrm{yy})$

$\sim 5 \mathrm{fb}$ cross section is possible with $\mathrm{O}(1) \mathrm{TeV} \mathrm{m}_{\mathrm{F}}$ and $\mathrm{O}(1)$ Yukawa couling

1. Introduction
2. Model \& diphoton excess
3. Checking constraint
4. VLQ production
5. Summary

3.Checking constraints

Checking constraints: 8 TeV data

final	σ at $\sqrt{s}=8 \mathrm{TeV}$		
state f	observed	expected	ref.
$\gamma \gamma$	$<1.5 \mathrm{fb}$	$<1.1 \mathrm{fb}$	$[6,7]$
$e^{+} e^{-}+\mu^{+} \mu^{-}$	$<1.2 \mathrm{fb}$	$<1.2 \mathrm{fb}$	$[8]$
$\tau^{+} \tau^{-}$	$<12 \mathrm{fb}$	15 fb	$[9]$
$Z \gamma$	$<4.0 \mathrm{fb}$	$<3.4 \mathrm{fb}$	$[10]$
$Z Z$	$<12 \mathrm{fb}$	$<20 \mathrm{fb}$	$[11]$
$Z h$	$<19 \mathrm{fb}$	$<28 \mathrm{fb}$	$[12]$
$h h$	$<39 \mathrm{fb}$	$<42 \mathrm{fb}$	$[13]$
$W^{+} W^{-}$	$<40 \mathrm{fb}$	$<70 \mathrm{fb}$	$[14,15]$
$t \bar{t}$	$<550 \mathrm{fb}$	-	$[16]$
invisible	$<0.8 \mathrm{pb}$	-	$[17]$
$b \bar{b}$	$\lesssim 1 \mathrm{pb}$	$\lesssim 1 \mathrm{pb}$	$[18]$
$j j$	$\lesssim 2.5 \mathrm{pb}$	-	$[5]$

$$
\begin{gathered}
\sigma(g g \rightarrow S)_{13 T e V} B R(S \rightarrow \gamma \gamma) \approx 6 \mathrm{fb} \\
B R(S \rightarrow \gamma \gamma) \approx 0.017 \\
\Rightarrow \sigma(g g \rightarrow S)_{13 T e V} \approx 350 \mathrm{fb} \\
\left(\sigma(g g \rightarrow S)_{13 T e V} / \sigma(g g \rightarrow S)_{8 T e V} \approx 5\right) \\
\sigma(g g \rightarrow S)_{8 T e V} B R(S \rightarrow g g) \approx 49 \mathrm{fb} \\
\sigma(g g \rightarrow S)_{8 T e V} B R\left(S \rightarrow W^{+} W^{-}\right) \approx 10 \mathrm{fb} \\
\sigma(g g \rightarrow S)_{8 T e V} B R(S \rightarrow Z Z) \approx 7.0 \mathrm{fb} \\
\sigma(g g \rightarrow S)_{8 T e V} B R(S \rightarrow Z \gamma) \approx 2.8 \mathrm{fb} \\
\sigma(g g \rightarrow S)_{8 T e V} B R(S \rightarrow \gamma \gamma) \approx 1.2 \mathrm{fb}
\end{gathered}
$$

From Table 1 of arXiv:1512.04933
Our scenario can satisfy all constraints!

$$
\begin{aligned}
& B R(S \rightarrow g g) \approx 0.67 \\
& B R\left(S \rightarrow W^{+} W^{-}\right) \approx 0.15 \\
& B R(S \rightarrow Z Z) \approx 0.095 \\
& B R(S \rightarrow Z \gamma) \approx 0.039 \\
& B R(S \rightarrow \gamma \gamma) \approx 0.017
\end{aligned}
$$

3.Checking constraints

Checking constraints: FCNC

$\phi t \rightarrow c h$
$\mathcal{L}_{h Q q}=\frac{Y_{1 i}}{\sqrt{2}}(v+h)\left(\frac{1}{\sqrt{2}} \bar{u}_{L i} U_{1 R}+\bar{d}_{L i} D_{1 R}\right)+\frac{Y_{2 i}}{\sqrt{2}}(v+h)\left(\bar{u}_{L i} U_{2 R}-\frac{1}{\sqrt{2}} \bar{d}_{L i} D_{2 R}\right)$
$>$ SM Higgs mediated FCNC induces $\mathbf{t} \rightarrow(\mathbf{u}, \mathbf{c}) \mathbf{h}$
$>Y_{11}, Y_{21}$ contribute to $D-\bar{D}, K-\bar{K}, B_{d-} \bar{B}_{d}$ mixing \rightarrow we assume $Y_{11}=Y_{21}=0$
$>\mathrm{Y}_{12}, \mathrm{Y}_{13}, \mathrm{Y}_{22}, \mathrm{Y}_{23}$: constrained by $\mathrm{B}_{\mathrm{s}}-\bar{B}_{\mathrm{s}}$ mixing
\Rightarrow When we assume $Y_{12} \sim Y_{13} \sim Y_{22} \sim Y_{23}$

$$
\mathcal{L}=-C_{s b} \bar{s} P_{R} b h-\frac{m_{t}}{m_{b}} C_{s b} \bar{c} P_{R} t h+H . c . \quad\left(C_{s b}=\frac{m_{b}}{4 v}\left(2 \zeta_{12} \zeta_{13}+\zeta_{22} \zeta_{23}\right) \quad \zeta_{i j}=\frac{v Y_{i j}}{m_{F}}\right)
$$

$>$ Assuming $\Delta \mathrm{m}_{\mathrm{Bs}}=1.1688 \times 10^{-11} \mathrm{GeV}$, we get $\left|\mathrm{C}_{\text {sb }}\right|<5.2 \times 10^{-4} \rightarrow \zeta^{2}<0.036$

$$
\begin{gathered}
\Gamma(t \rightarrow c h)=\frac{m_{t}}{32 \pi}\left|\frac{m_{t}}{m_{b}} C_{b s}\right|^{2}\left(1-\frac{m_{h}^{2}}{m_{t}^{2}}\right)^{2} \Rightarrow B R(t \rightarrow c h)<1.1 \times 10^{-4} \\
\Gamma_{t}=1.41 \mathrm{GeV}
\end{gathered}
$$

3.Checking constraints

Checking constraints: $\mathrm{h} \rightarrow \mathrm{YY}$

Flavor mixing effect $\mathbf{Y}_{1 j}$ and $\mathbf{Y}_{2 j}$ contribute $\sigma(g g \rightarrow h) B R(h \rightarrow \gamma Y)$

$$
\begin{aligned}
& \mu_{\gamma \gamma}=\frac{\sigma(p p \rightarrow h)_{\mathrm{VLTQ}}}{\sigma(p p \rightarrow h)_{\mathrm{SM}}} \frac{B R(h \rightarrow \gamma \gamma)_{\mathrm{VLTQ}}}{B R(h \rightarrow \gamma \gamma)_{\mathrm{SM}}} \\
& \\
& \approx\left|1+\frac{3}{4} \zeta_{g g}\right|^{2}\left|1+\frac{N_{c} A_{1 / 2}\left(x_{F}\right) \zeta_{\gamma \gamma}}{A_{1}\left(x_{W}\right)+4 / 3 A_{1 / 2}\left(x_{t}\right)}\right|^{2} \\
& \zeta_{g g}= \\
& \zeta_{12}^{2}+\zeta_{13}^{2}+\zeta_{22}^{2}+\zeta_{23}^{2}, \\
& \zeta_{\gamma \gamma}=\frac{Q_{u}^{2}+2 Q_{d}^{2}}{4}\left(\zeta_{12}^{2}+\zeta_{13}^{2}\right)+\frac{2 Q_{u}^{2}+Q_{d}^{2}}{4}\left(\zeta_{22}^{2}+\zeta_{23}^{2}\right) \\
& \binom{(*) \quad m_{t}, m_{F} \gg m_{h}, x_{W}=4 m_{W}^{2} / m_{h}^{2}, x_{t}=4 m_{t}^{2} / m_{h}^{2}}{\quad x_{F}=4 m_{F}^{2} / m_{h}^{2}, A_{1}\left(x_{W}\right) \approx-8.3, A_{1 / 2}\left(x_{t}\right) \approx 1.38}
\end{aligned}
$$

For $\zeta^{2}<0.036 \rightarrow \mu_{y y}<1.18$
Consistent with LHC data $\left\{\begin{array}{l}\mu_{\mathrm{VY}}<1.17 \pm 0.27 \text { (ATLAS) } \\ \mu_{\mathrm{YY}}<1.13 \pm 0.24 \text { (CNS) }\end{array}\right.$

1. Introduction
2. Model \& diphoton excess
3. Checking constraint
4. VLQ production
5. Summary
4.VLQ signature

Production of VLTQs at LHC 13 TeV

Signature of our model: VLTQ production
(work in progress) VLTQ components: $\mathrm{U}_{1,2}, \mathrm{D}_{1,2}, \mathrm{X}, \mathrm{Y}$
X, Y production would be interesting

$$
\begin{gathered}
\varsigma_{11}=\varsigma_{21}=0.02 \\
\varsigma_{12}=\varsigma_{13}=\varsigma_{22}=\varsigma_{23} \equiv \varsigma=0.2
\end{gathered}
$$

$\star \mathrm{X}, \mathrm{Y}$ pair production cross section
$Q=X_{5 / 3}, Y_{-4 / 3}$.

$m_{F}[\mathrm{GeV}]$	800	900	1000	1100	1200
$\sigma(p p \rightarrow Q \bar{Q})[\mathrm{fb}]$	88	42	22	11	6

* X, Y single production cross section via QCD process

TABLE III: Production cross section for $X_{5 / 3} W^{-}$and $Y_{-4 / 3} W^{+}$with various values of m_{F}, where $\sqrt{s}=13 \mathrm{TeV}, \zeta_{11,21}=0.02$, and $\zeta=0.2$ are used.

$m_{F}[\mathrm{GeV}]$	800	900	1000	1100	1200
$\sigma\left(p p \rightarrow X_{5 / 3} W^{-}\right)[\mathrm{fb}]$	0.72	0.38	0.21	0.12	0.07
$\sigma\left(p p \rightarrow Y_{-4 / 3} W^{+}\right)[\mathrm{fb}]$	1.4	0.73	0.40	0.23	0.13

4.VLQ signature

Production of VLTQs at LHC 13 TeV

(work in progress)
$\Varangle \mathrm{X}, \mathrm{Y}$ single production through electroweak process

s, c initial states are also important
We find large cross section can be obtained
4.VLQ signature

Production of VLTQs at LHC 13 TeV

(work in progress)
$\star \mathrm{X}, \mathrm{Y}$ single production through electroweak process

s, c initial states are also important
We find large cross section can be obtained

Summary and Discussions

\diamond Diphoton excess can be explained by singlet scalar + VLTQ
\triangleleft Production and decay processes from one-loop
\diamond Specific pattern of BRs
\diamond It can be consistent with other experimental constraints
\triangleleft Width of S is narrow in our model
\diamond The model would be tested by searching for VLTQs

Loop functions in the partial decay widths

$$
\begin{aligned}
& A_{1 / 2}(\tau)=2 \tau\left[1+(1-\tau)\left(\sin ^{-1}(1 / \sqrt{\tau})\right)^{2}\right] \quad(\tau \geq 1) \\
& A_{F}=\frac{\alpha}{2 \pi S_{W} c_{W}} \sum \frac{-4 y_{F} Q_{F}}{m_{F}}\left(T_{F}^{3}-s_{W}^{2} Q_{F}\right)\left[I_{1}(\tau, \lambda)-I_{2}(\tau, \lambda)\right] \\
& \tau_{i}=\frac{4 m_{F_{i}}^{2}}{m_{S}^{2}}, \quad \lambda_{i}=\frac{4 m_{F_{i}}^{2}}{m_{Z}^{2}} \\
& I_{1}(a, b)=\frac{a b}{2(a-b)}+\frac{a^{2} b^{2}}{2(a-b)^{2}}\left[f(a)^{2}-f(b)^{2}\right]+\frac{a^{2} b}{(a-b)^{2}}[g(a)-g(b)] \\
& I_{2}(a, b)=-\frac{a b}{2(a-b)}\left[f(a)^{2}-f(b)^{2}\right], \\
& g(t)=\sqrt{t-1} \sin ^{-1}(1 / \sqrt{t}) .
\end{aligned}
$$

