Fragmentation contributions to J/ψ production and the polarization at the Tevatron and the LHC

U-Rae Kim (Korea University) in collaboration with Geoffery T. Bodwin, Hee Sok Chung (Argonne National Laboratory), Jungil Lee (Korea University), Kuang-Ta Chao (Peking University), Yan-Qin Ma (University of Maryland)

13th LHC Physics Monthly Meeting, Nov. 29th 2014
Outline

• Nonrelativistic QCD factorization
• J/ψ polarization puzzle
• Our approach to the puzzle
• Calculation details
• Result and Conclusion
Nonrelativistic QCD factorization
According to NRQCD factorization conjecture, a heavy quarkonium H production cross section can be factorized into

short-distance coefficient (SDC, perturbative, α_s)

$$d\sigma_{ij \rightarrow H(q\bar{q})+X} = d\hat{\sigma}_{ij \rightarrow q\bar{q}(2S+1 L_J^{[\alpha]})+X}|0\rangle\langle 0| O^H (2S+1 L_J^{[\alpha]})|0\rangle$$

long-distance matrix element (LDME, nonperturbative, ν)

- $^3S_1^{[8]}$, $^3P_J^{[8]}$, $^1S_0^{[8]}$, and $^3S_1^{[1]}$ channels contribute to J/ψ production through order ν^4
J/ψ
polarization
puzzle
• Color-singlet (CS) model failed to explain the $\psi'(J/\psi)$ surplus
• The introduction of the color-octet (CO) mechanism from NRQCD has resolved the surplus problem. [Braaten, Fleming, PRL74, 3327 (1994)]
• Here, LDMEs are determined by fitting with the experimental data
• One can predict other independent physical quantities by making use of these determined LDMEs because LDME is global → Polarization
Prompt $J/\psi (\psi')$ polarization

- In 2000, the theoretical prediction to the polarization of the prompt J/ψ and ψ' has been published:

 - The dominance of the CO spin-triplet S-wave channel predicts the transverse polarization at large p_T.
 - But, the experiment disproved this theoretical prediction.

Braaten, Lee, Kneihl, PRD62,094005

- The dominance of the CO spin-triplet S-wave channel predicts the transverse polarization at large p_T.
QCD NLO correction

• Full NLO QCD corrections to the J/ψ production

[Kneihl, Buthenchoen]
PRL106, 022003 (2011)
PRL108, 172002 (2012)

[Chao, Ma, Shao, Wang]
PRL106, 042002 (2011)
PRL108, 242002 (2012)

[Gong, Wan, Wang, Zhang]
PRL110, 042002 (2013)

• All groups have failed to predict the polarization

\rightarrow we need to consider the NNLO corrections
Our approach to the puzzle
Leading-power (LP) factorization and NRQCD

- According to LP factorization, leading power terms in $1/p_T^2$ for quarkonium H production can be factorized into

$$d\sigma_{A+B\to H+X} = \sum_i \int_0^1 dz \, d\hat{\sigma}_{A+B\to i+X} \left(k^+, \mu_f \right) \times D_{i\to H} \left(z = \frac{p^+}{k^+}, \mu_f \right) \equiv \sum_i d\hat{\sigma}_{A+B\to i+X} \otimes D_{i\to H}$$

where,

$d\hat{\sigma}_{A+B\to i+X}$: single parton i production cross section

$D_{i\to H}$: single parton fragmentation function, nonperturbative

k^+: light-cone momentum of parent parton i

p^+: light-cone momentum of parent parton i

μ_f: factorization scale

- If we apply LP factorization to NRQCD factorization, we get

$$d\sigma_{A+B\to H+X} = \sum_{n,i} d\sigma_{A+B\to i+X} \otimes [D_{i\to Q\bar{Q}(n)} \langle \mathcal{O}^H(n) \rangle]$$

perturbative

- Dominant at large p_T, relatively easy to evaluate
Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equation

- Leading-log (LL) terms can be summed over all orders in α_s by solving DGLAP equation.

- LO DGLAP evolution equation is given by

$$\frac{d}{d \log \mu_f^2} \left(\frac{D_S}{D_g} \right) (z, \mu_f) = \int \frac{dx}{x} \frac{\alpha_s(\mu_f)}{2\pi} \left(\frac{P_{qq}}{P_{gq}} - \frac{2n_f P_{gq}}{P_{gg}} \right) \left(\frac{z}{x} \right) \times \left(\frac{D_S}{D_g} \right) (x, \mu_f)$$

where,

- P_{ij}: splitting function
- $D_S = \sum_f (D_{q_f \rightarrow Q\bar{Q}}(n) + D_{\bar{q}_f \rightarrow Q\bar{Q}}(n))$
- $D_g = D_{g \rightarrow Q\bar{Q}}(n)$
- n_f: active quark flavor
Our approach to the puzzle

• We ignored the CS contributions to the J/ψ production

• At large p_T, the gluon fragmentation process that is leading power in $1/p_T^2$ expansion is dominant. ($\propto 1/p_T^4$)

• With LP factorization, we evaluate the NNLO or higher-order corrections including the all-orders leading-log (LL) resummation that are not considered in NLO result.
Calculation details
Parton subprocess

- The parton subprocesses that are LO in α_s is proportional to α_s^2.

- The parton subprocesses that are NLO in α_s is proportional to α_s^3.

\[3 S_1^{[8]} \] Gluon fragmentation function

\[D[g \to Q\bar{Q}(3 S_1^{[8]})]^{\text{NLO}}(z, \mu_f) \]

\[
= \frac{\pi \alpha_s(\mu_f)}{24m^3} \left\{ \delta(1 - z) + \frac{\alpha_s(\mu_f)}{\pi} \left[A(\mu_f)\delta(1 - z) + \left(\log \frac{\mu_f}{2m} - \frac{1}{2} \right) P_{gg}(z) \right.
ight.
\]
\[
+ 6(2 - z + z^2) \log(1 - z) - \left. \frac{6}{z} \left[\frac{\log(1 - z)}{1 - z} \right]_+ + \frac{3(1 - z)}{z} \right\} \]

where,

\[A(\mu_f) = \beta_0 \left(\log \frac{\mu_f}{2m} + \frac{13}{6} \right) + \frac{2}{3} - \frac{\pi^2}{2} + 8 \log 2 \]

\[\beta_0 = \frac{1}{6} (11C_A - 4N_fT_R). \]
\[3 P_J^{[8]} 1 \ S_0^{[8]} \] Gluon fragmentation function

\[
D[g \to Q\bar{Q}(3P^{[8]})](z, \mu_f) = \frac{8\alpha_s^2(\mu_f)}{3(d-1)(N_c^2 - 1)m^5} \frac{N_c^2 - 4}{4N_c} \left\{ \frac{(5z - 8)(2z - 1)}{8} \right. \\
+ \left(\frac{1}{6} - \log \frac{\mu_A}{2m} \right) \delta(1 - z) - \frac{7z - 13}{4} \log(1 - z) + \left[\frac{1}{1 - z} \right]_+ \right. \\
D[g \to Q\bar{Q}(1S_0^{[8]})](z, \mu_f) = \frac{\alpha_s^2(\mu_f)}{8m^3} \frac{N_c^2 - 4}{4N_c} \left[3z - 2z^2 + 2(1 - z) \log(1 - z) \right]
\]

Bodwin, Kim, Lee, JHEP1211(2012)020
Other quark fragmentation functions are proportional to α_s^3 which we exclude.
LP J/ψ production process

- Order α_s^3 diagrams:

- Order α_s^4 diagrams:

- Because the previous NLO result also contains LP contributions through order α_s^4, we should eliminate these corrections to avoid the double counting.
LP J/ψ production process

• Order α_s^5 diagrams:

We cannot evaluate the following process now

NNLO parton subprocess
LP J/ψ production process

- Order α_s^5 diagrams:

<table>
<thead>
<tr>
<th>Results</th>
<th>Order</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLO</td>
<td>$\sim \alpha_s^4$</td>
<td>σ_{NLO}</td>
</tr>
<tr>
<td>Our result</td>
<td>$\sim \alpha_s^4$</td>
<td>σ_{LP} $\sigma_{\text{overlapped}}$</td>
</tr>
<tr>
<td></td>
<td>$\alpha_s^5 + \text{higher (LL resum)}$</td>
<td></td>
</tr>
</tbody>
</table>

$$\sigma_{\text{result}} = \sigma_{\text{NLO}} + \sigma_{\text{LP}} - \sigma_{\text{overlapped}}$$

[NEW] NNLO +higher(LL) LP corrections
Result
Our result fits well both the CMS data and the CDF data.

We determine CO LDMEs by fitting with Exp.

- Our result fits well both the CMS data and the CDF data.
- We determine CO LDMEs by fitting with Exp.
Large cancellation between $^3S_1^{[8]}$ and $^3P_J^{[8]}$
\(\mathcal{J}/\psi \) Polarization

- we predict the polarization parameter \(\lambda_\theta \) at the Tevatron and the LHC:

- The CDF data is quite well explained
- The CMS data is perfectly explained
Prompt \(J/\psi \) production

- Prompt \(J/\psi \) production includes the production from decays of \(\psi(2S') \) and \(\chi_{cJ} \)

- We determined \(\psi(2S') \) LDME by fitting with CMS and CDF cross section data
 CDF, PRD80, 031103 (2009)
 CMS, JHEP02, 011 (2012)
 CMS-PAS-BPH-14-001

- We determined \(\chi_{cJ} \) LDME by fitting with ATLAS cross section data
 ATLAS, JHEP1407, 154 (2014)
psi(2S) and chicj production and polarization

- Our result fits $\psi(2S)$ and χ_{cJ} cross section data
- Our result well predicts $\psi(2S)$ polarization at the CMS but fails at the CDF
- χ_{c1}, χ_{c2} and $\psi(2S)$ are slightly transverse at large p_T
Prompt J/ψ production cross section

- Our result fits well both the CMS data and the CDF data
- At large p_T, the feed down contribution is not negligible
- The cancellation between $3S_1^{[8]}$ and $3P_J^{[8]}$ still occurs

Hee Sok Chung’s talk at 10th International Workshop on Heavy Quarkonium
Prompt J/ψ polarization

- Feed down contributions are slightly transverse
 \rightarrow
 Prompt J/ψ becomes slightly transverse

- The prediction agrees with the CMS data, but fails to explain the CDF data

Hee Sok Chung's talk at 10th International Workshop on Heavy Quarkonium
Conclusion

• We evaluated the higher-order corrections by making use of LP factorization formula and DGLAP.

• Our results well predicted the prompt J/ψ polarization at the CMS (world-first successful prediction)

• Dominant channel is not $^{3}S^{[8]}_{1}$ but $^{1}S^{[8]}_{0}$
Backups
LDMEs
LDMEs

Kniehl

Chao

Wang

Our result for direct production

<table>
<thead>
<tr>
<th>$\langle O^{J/\psi (1S_0^{[8]})} \rangle$</th>
<th>$\langle O^{J/\psi (3P_0^{[8]})} \rangle$</th>
<th>$\langle O^{J/\psi (3S_1^{[8]})} \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(4.50 \pm 0.72) \times 10^{-2}$ GeV3</td>
<td>$(3.12 \pm 0.93) \times 10^{-3}$ GeV3</td>
<td>$(-1.21 \pm 0.35) \times 10^{-2}$ GeV3</td>
</tr>
<tr>
<td>10^{-2} GeV3</td>
<td>10^{-2} GeV3</td>
<td>10^{-2} GeV3</td>
</tr>
<tr>
<td>1.16</td>
<td>8.9 ± 0.98</td>
<td>0.30 ± 0.12</td>
</tr>
<tr>
<td>0.56 ± 0.21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$3 \text{ GeV} < p_T$

$7 \text{ GeV} < p_T$

$10 \text{ GeV} < p_T$
Polarization parameter
Polarization parameters

• In experiment, by observing the angular distribution of the lepton pair that are decayed from J/ψ meson, we determine the polarization of J/ψ:

$$\frac{d\Gamma(J/\psi \rightarrow l^+l^-)}{d \cos \theta \ d\phi} \propto 1 + \lambda_\theta \cos^2 \theta + \lambda_\phi \sin^2 \theta \cos 2\phi + \lambda_\theta \phi \sin 2\theta \cos \phi$$

• Here, θ is the polar angle and ϕ is the azimuthal angle of the lepton l^+ in the J/ψ rest frame.

$\lambda_\theta = 1$: Transversely polarized
$\lambda_\theta = 0$: Unpolarized
$\lambda_\theta = -1$: Longitudinally polarized.
Polarization parameters

• In theory, the polarization parameter λ_θ is determined by

$$\lambda_\theta = \frac{\sigma_T - 2\sigma_L}{\sigma_T + 2\sigma_L}$$

• Here, σ_T is the transverse components of the cross section and σ_L is the longitudinal components of the cross section respectively.
Polarization parameter \(\lambda_\theta \)

- \(^3S^8_1 \) and \(^3P^8_J \) contributions become 100% transversely polarized at high \(p_T \).
 \(\rightarrow \) assumed that \(^3S^8_1 \) and \(^3P^8_J \) are 100% transverse.

- \(^1S^8_0 \) contribution is unpolarized.
 \(\rightarrow \) 1/3 Longitudinal, 2/3 transverse.

\[
\sigma_T = \frac{d\sigma \left[^3S^8_1 \right]}{dp_T} + \frac{d\sigma \left[^3P^8_J \right]}{dp_T} + \frac{2}{3} \frac{d\sigma \left[^1S^8_0 \right]}{dp_T}
\]

\[
\sigma_L = \frac{1}{3} \frac{d\sigma \left[^1S^8_0 \right]}{dp_T}
\]

\[
\lambda_\theta = \frac{\sigma_T - 2\sigma_L}{\sigma_T + 2\sigma_L}
\]
How to solve DGLAP equation
Mellin transformation

- The Mellin transformation is defined by

\[\mathcal{M}[f](n) \equiv \tilde{f}(n) = \int_0^1 dz \ z^{n-1} f(z) \]

- And its inverse can be made by

\[f(z) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dn \ z^{-n} \tilde{f}(n) \]

or we can rewrite the inverse formula by analytic continuation as

\[f(z) = \frac{1}{\pi} \int_0^\infty dn \ \text{Im} \left[z^{-c-ne^{i\phi}} e^{i\phi} \hat{f}(c+ne^{i\phi}) \right] \]
Mellin transformation-convolution

- The Mellin transformation makes the convolution
 \[f \otimes g(z) \equiv \int_{z}^{1} \frac{dy}{y} f \left(\frac{z}{y} \right) g(y) \]
 be linear.

\[\mathcal{M}[f \otimes g(z)](s) \]
\[= \int_{0}^{1} dz \ z^{s-1} [f \otimes g](z) \]
\[= \int_{0}^{1} dz \ z^{s-1} \int_{z}^{1} \frac{dy}{y} f(\frac{z}{y}) g(y) \quad \leftrightarrow \quad z = yt, \quad 0 \leq z = yt \leq y \leq 1 \]
\[= \int_{0}^{1} dt \ t^{s-1} f(t) \int_{0}^{1} dy \ y^{s-1} g(y) \]
\[= \hat{f}(s) \hat{g}(s) \]

\[\therefore \quad \mathcal{M}[f \otimes g](n) = \tilde{f}(n) \times \tilde{g}(n) \]
Mellin transformation of DGLAP

- DGLAP equation is also the convolution form.
- DGLAP equation in the Mellin space:

$$\frac{d}{d \log \mu_f^2} \begin{pmatrix} \tilde{D}_S(n) \\ \tilde{D}_g(n) \end{pmatrix} = \frac{\alpha_s(\mu_f)}{2\pi} \begin{pmatrix} \tilde{P}_{qq}(n) & 2n_f \tilde{P}_{gq}(n) \\ \tilde{P}_{qg}(n) & \tilde{P}_{gg}(n) \end{pmatrix} \begin{pmatrix} \tilde{D}_S(n) \\ \tilde{D}_g(n) \end{pmatrix}$$

- Here, we use 1-loop α_s:

$$\alpha_s(\mu_f) = \frac{4\pi}{b_0 \log(\mu_f^2/\Lambda^2)}, \quad b_0 = \frac{11}{3} N_c - \frac{2}{3} n_f$$

- DGLAP equation becomes solvable.
Solution

• Without $q - g$ mixing, the equation become more simpler:

$$\frac{d}{d \log \mu_f^2} \tilde{D}_g(n, \mu_f) = \frac{\alpha_s(\mu_f)}{2\pi} \tilde{P}_{gg}(n) \tilde{D}_g(n, \mu_f)$$

• Because we used one-loop α_s, it is obvious that

$$\frac{d}{d \log \mu_f^2} = -\frac{b_0}{4\pi} \frac{\alpha_s^2}{\alpha_s} \frac{d}{d \alpha_s}$$

• Therefore, the solution is given by

$$\tilde{D}_g(n, \mu_f) = \left(\frac{\alpha_s(\mu_{f_0})}{\alpha_s(\mu_f)} \right)^{2\tilde{P}_{gg}(n)/b_0} \tilde{D}_g(n, \mu_{f_0})$$
Fitting NRQCD LDMEs
Fitting CO LDMEs

- We decided CO LDMEs by least χ^2 fitting where

$$
\chi^2 \equiv \sum_i \frac{(O_i - E_i)^2}{\sigma_i^2}
$$

here, at $p_T = i$,

O_i: The results of CMS and CDF

Here, we took $p_T \geq 10$ GeV data only.

E_i: Theoretical prediction.

$\langle \mathcal{O}^{J/\psi (3S_1^{[8]})} \rangle$, $\langle \mathcal{O}^{J/\psi (1S_0^{[8]})} \rangle$, and $\langle \mathcal{O}^{J/\psi (3P_0^{[8]})} \rangle$ are unknown.

σ_i^2: Total variance including systematic, statistical and theoretical errors
NRQCD LDMEs
NRQCD LDMEs for J/ψ

- ν^0: $\langle 0 | O_H^0 (3 S_1^{[1]}) | 0 \rangle = \langle 0 | \chi^\dagger \sigma^i \psi \mathcal{P}_H \psi^\dagger \sigma^i \chi | 0 \rangle$

- ν^2: $\langle 0 | O_2^H (3 S_1^{[1]}) | 0 \rangle = \frac{1}{2} \langle 0 | \chi^\dagger \sigma^i (-\frac{i}{2} \vec{D})^2 \psi \mathcal{P}_H \psi^\dagger \sigma^i \chi + \text{H. c.} | 0 \rangle$

- ν^3: $\langle 0 | O_0^H (1 S_0^{[8]}) | 0 \rangle = \langle 0 | \chi^\dagger T^a \psi \mathcal{P}_H \psi^\dagger T^a \chi | 0 \rangle$

- ν^4 (color octet):
 - $\langle 0 | O_0^H (3 S_1^{[8]}) | 0 \rangle = \langle 0 | \chi^\dagger \sigma^i T^a \psi \mathcal{P}_H \psi^\dagger \sigma^i T^a \chi | 0 \rangle$
 - $\langle 0 | O_0^H (3 P_0^{[1]}) | 0 \rangle = \frac{1}{d-1} \langle 0 | \chi^\dagger (-\frac{i}{2} \vec{D} \cdot \sigma) \psi \mathcal{P}_H \psi^\dagger (-\frac{i}{2} \vec{D} \cdot \sigma) \chi | 0 \rangle$
 - $\langle 0 | O_0^H (3 P_1^{[1]}) | 0 \rangle = \langle 0 | \chi^\dagger (-\frac{i}{2} \vec{D}^{[i, \sigma^j]} \psi \mathcal{P}_H \psi^\dagger (-\frac{i}{2} \vec{D}^{[i, \sigma^j]} \chi | 0 \rangle$
 - $\langle 0 | O_0^H (3 P_2^{[1]}) | 0 \rangle = \langle 0 | \chi^\dagger (-\frac{i}{2} \vec{D}^{(i \sigma^j)} \psi \mathcal{P}_H \psi^\dagger (-\frac{i}{2} \vec{D}^{(i \sigma^j)} \chi | 0 \rangle$
 - $\langle 0 | O_0^H (3 P^{[8]}) | 0 \rangle = \sum_{J=0,1,2} \langle 0 | O_0^H (3 P_j^{[8]}) | 0 \rangle$
NRQCD LDMEs for J/ψ

- Order-ν^4(color singlet)

\[
\begin{align*}
\langle 0 | O_{4,1}^H (^3S_{1}^{[1]}) | 0 \rangle &= \langle 0 | \chi^\dagger \sigma^i (-\frac{i}{2} \overset{\leftarrow}{D})^2 \psi \mathcal{P}_H \psi^\dagger \sigma^i (-\frac{i}{2} \vec{D})^2 \chi | 0 \rangle \\
\langle 0 | O_{4,2}^H (^3S_{1}^{[1]}) | 0 \rangle &= \frac{1}{2} \langle 0 | \chi^\dagger \sigma^i (-\frac{i}{2} \vec{D})^4 \psi \mathcal{P}_H \psi^\dagger \sigma^i \chi + \text{H. c.} | 0 \rangle \\
\langle 0 | O_{4,3}^H (^3S_{1}^{[1]}) | 0 \rangle &= \frac{1}{2} \langle 0 | \chi^\dagger \sigma^i \psi \mathcal{P}_H \psi^\dagger \sigma^i (\vec{D} \cdot gE + gE \cdot \vec{D}) \chi \\
&\quad - \chi^\dagger \sigma^i (\vec{D} \cdot gE + gE \cdot \vec{D}) \psi \mathcal{P}_H \psi^\dagger \sigma^i \chi | 0 \rangle
\end{align*}
\]

- Equation of motion eliminates $\langle 0 | O_{4,3}^H (^3S_{1}^{[1]}) | 0 \rangle$

- $\langle 0 | O_{4,1}^H (^3S_{1}^{[1]}) | 0 \rangle = \langle 0 | O_{4,2}^H (^3S_{1}^{[1]}) | 0 \rangle + \mathcal{O}(\nu^2)$
Charmonium spectroscopy

\[J^{PC} = \begin{array}{ccccccc}
0^{-+} & 1^{--} & 0^{++} & 1^{++} & 1^{--} & 2^{++} \\
\end{array} \]
Another attempt

- Relativistic corrections to CS fragmentation contribution

At large p_T, one can roughly estimate the relative size of the contribution by making use of the following approximation:

$$\frac{d\sigma_{\text{frag}}}{dp_T} = \int_0^1 dz \frac{d\sigma_{\text{parton}}}{dp_T}(p_T/z)D(z) \propto \int_0^1 dz z^\kappa D(z) \equiv I_\kappa(D)$$

By making use of the Kneihl's result, we got $\kappa = 5.2$.

<table>
<thead>
<tr>
<th>$I_\kappa(d_n) \mid d_n[g \to Q\bar{Q}(^3S_1^{[1]})]$</th>
<th>d_0</th>
<th>d_2</th>
<th>$d_{4,1} + d_{4,2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{5.2}(d_n) \mid \mu_A=m \times R_n$</td>
<td>0.743</td>
<td>2.18</td>
<td>1.35</td>
</tr>
<tr>
<td>$I_{5.2}(d_n) \mid \mu_A=2m \times R_n$</td>
<td>0.743</td>
<td>2.18</td>
<td>3.19</td>
</tr>
</tbody>
</table>