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Introduction and motivation

e We will study mirror symmetry in A/ = 4 theories in 3d.

e Let us look at the AGT correspondence for 4d N/ = 2 theories for motivation
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Introduction and motivation

We will study mirror symmetry in N' = 4 theories in 3d.

Let us look at the AGT correspondence for 4d N/ = 2 theories for motivation

/

AGT

e Using localization one can write the partition function of 4d A/ = 2 theories on S* in
terms of a complicated matrix integral. [Pestun}

e These theories have a rich structure of S-duality relating seemingly inequivalent
theories.

e This can be identified with choice of pants decomposition of a Riemann surface.
[Witten} [Gaiotto}
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Introduction and motivation

We will study mirror symmetry in N' = 4 theories in 3d.

Let us look at the AGT correspondence for 4d N/ = 2 theories for motivation

AGT

Using localization one can write the partition function of 4d N = 2 theories on S* in

terms of a complicated matrix integral.

[Pestun}

These theories have a rich structure of S-duality relating seemingly inequivalent

theories.

This can be identified with choice of pants decomposition of a Riemann surface.

[Witten} [Gaiotto}

Is there a simple relation between the matrix integrals for S-dual theories?

/

Nadav Drukker 3-b

AdS,4 localization



N

Introduction and motivation

We will study mirror symmetry in N' = 4 theories in 3d.

Let us look at the AGT correspondence for 4d N/ = 2 theories for motivation

AGT

Using localization one can write the partition function of 4d N = 2 theories on S* in

terms of a complicated matrix integral. [Pestun}

These theories have a rich structure of S-duality relating seemingly inequivalent
theories.

This can be identified with choice of pants decomposition of a Riemann surface.
[Witten} [Gaiotto}

Is there a simple relation between the matrix integrals for S-dual theories?

There are such integral identities, but they are very complicated.
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e The matrix model for theories with SU(2) factors are equivalent to certain correlation

functions in Liouville theory.

[Alday,Gaiotto}
Tachikawal

e The expressions match those for Liouville calculated in a specific bootstrap-channel.

/

Nadav Drukker

AdS,4 localization



4 N

AGT
e The matrix model for theories with SU(2) factors are equivalent to certain correlation
. . . . Alday,Gaiotto
functions in Liouville theory. [ Tachikawal }

e The expressions match those for Liouville calculated in a specific bootstrap-channel.

e S-dual theories are related to the same correlation function in Liouville calculated in
different chanels.

e Since Liouville satisfies the axioms of CFT, this proves that the matrix integrals are
equal.

N /
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AGT
e The matrix model for theories with SU(2) factors are equivalent to certain correlation
. . . . Alday,Gaiotto
functions in Liouville theory. [ Tachikawal }

~

e The expressions match those for Liouville calculated in a specific bootstrap-channel.

e S-dual theories are related to the same correlation function in Liouville calculated in

different chanels.

e Since Liouville satisfies the axioms of CFT, this proves that the matrix integrals are

equal.

e This was proven explicitly using complicated integral identities for the Moore-Seiberg

groupoid operations in Liouville. [Ponsot,Teshner}
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AGT
e The matrix model for theories with SU(2) factors are equivalent to certain correlation
. . . . Alday,Gaiotto
functions in Liouville theory. [ Tachikawal }

~

e The expressions match those for Liouville calculated in a specific bootstrap-channel.

e S-dual theories are related to the same correlation function in Liouville calculated in

different chanels.

e Since Liouville satisfies the axioms of CFT, this proves that the matrix integrals are

equal.

e This was proven explicitly using complicated integral identities for the Moore-Seiberg

groupoid operations in Liouville. [Ponsot,Teshner}

The lesson: Instead of proving the identities, find

relation to another theory, where they are known.
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Localization on S°

[Kapustin, Willett, Yaakov}
e Consider any N = 4 super Chern-Simons matter theory on S°.
e Add to the action a QQ-exact term of the form ¢t Q(VQW).
e VEV of Q-invariant observables is unmodified by this insertion.

e Take t large and look at the saddle points of (QW)2.

N /
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Localization on S°

e Consider any N = 4 super Chern-Simons matter theory on S°.

e Add to the action a QQ-exact term of the form ¢t Q(VQW).

~

[Kapustin, Willett, Yaakov}

e VEV of Q-invariant observables is unmodified by this insertion.

e Take t large and look at the saddle points of (QW)2.

Chern-Simons at level £(*) and FI parameter ¢(*) gives

N
[ TLar® =m0 00%) T (ot

i=1 i<j

Each U(N) vector multiplet will reduce an N dimensional integral where a

O A<_a>))2

{ J
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Localization on S°

[Kapustin, Willett, Yaakov}
e Consider any N = 4 super Chern-Simons matter theory on S°.
e Add to the action a QQ-exact term of the form ¢t Q(VQW).
e VEV of Q-invariant observables is unmodified by this insertion.

e Take t large and look at the saddle points of (QW)2.

Each U(N) vector multiplet will reduce an N dimensional integral where a

Chern-Simons at level £(*) and FI parameter ¢(*) gives

N
/ [[ (@ eZe (ric A2 4ink@ GE7)%) TT (2simhr (A(* - A(-a)))Z

J
i=1 i<j

e Fundamental matter gives an extra term in the integral
1
I, 2cosh7r()\§a) — (@)
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[Kapustin, Willett, Yaakov}

Localization on S°

Consider any N = 4 super Chern-Simons matter theory on S°.
Add to the action a @-exact term of the form t Q(VYQV).

VEV of Q-invariant observables is unmodified by this insertion.
Take t large and look at the saddle points of (QW)2.

Each U(N) vector multiplet will reduce an N dimensional integral where a

Chern-Simons at level £(*) and FI parameter ¢(*) gives

N
/ [[ (@ eZe (ric A2 4ink@ GE7)%) TT (2simhr (A(* - A(-“)))2

J
i=1 i<j

Fundamental matter gives an extra term in the integral
1
I, 2COSh7T()\Z(-a) — (@)

bifundamentals of mass m, contribute
1
I1; ;2 COShﬂ'()\Z(-a) — )\;b) + my)
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e In the case of ABJM theory we have a two node circular quiver with no fundamental

matter, only massless bifundamentals, so one finds
(2sinh (XA — A;))° (2sinh 7 (v; — v;))?
[T, ; (2coshm(X; — ;)

1 al ...
7 — / l ld)\z'd%' ek 3o (N —vi) 111<
12

(zn2 J 14

N /
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e In the case of ABJM theory we have a two node circular quiver with no fundamental
matter, only massless bifundamentals, so one finds

2sinh (A, — A\;))° (2sinh 7 (v; — v;))”
[1;; (2coshm(A; — Vj))2

ik 30 (A ) [lig; €

e For a more general circular quiver with massless fundamentals

f=1l 27T1'C(a)>\(a)—|—7'('zk‘(a)( (a)) )
a=11:1=1
ﬁ Hz<] Sh2 ()‘(a) )\(a))
(a ) (a (a) (a+1)
a=1 ChN ) HZ j Ch (A )\ + )
using
shx = 2sinhnx, chx = 2coshnx

N /

Nadav Drukker 6-a AdS,4 localization




N

~

Solving the matrix model

e The ABJM matrix model is very similar to that of pure Chern-Simons on a S®/Z,, a

[Aganagic,Klemm} [Halmagyi} [ Drukker

lens space and can be solved exactly. Marifio Vafa Yasnov

e Explicit expression exist for the free energy in the genus expansion (large N) to the
first few orders. At each order one finds a principle contribution and a series of
instanton corrections (both world-sheet and D-brane instantons).

Mariﬁo,Putrov}
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Solving the matrix model

e The ABJM matrix model is very similar to that of pure Chern-Simons on a S®/Z,, a

[Aganagic,Klemm} [Halmagyi} [ Drukker }

lens space and can be solved exactly. o o | i Bt
Y Y

e Explicit expression exist for the free energy in the genus expansion (large N) to the
first few orders. At each order one finds a principle contribution and a series of
instanton corrections (both world-sheet and D-brane instantons).

e The leading behavior of the free energy at large N and A = N/k can be written as

P
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Solving the matrix model

e The ABJM matrix model is very similar to that of pure Chern-Simons on a S®/Z,, a

[Aganagic,Klemm} [Halmagyi} [ Drukker }

lens space and can be solved exactly. o o | i Bt
Y Y

e Explicit expression exist for the free energy in the genus expansion (large N) to the
first few orders. At each order one finds a principle contribution and a series of
instanton corrections (both world-sheet and D-brane instantons).

e The leading behavior of the free energy at large N and A = N/k can be written as

P

e This can be done for quite general models.

e This matches the partition function of ITA on AdS,; x Xg

N /
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Universal Airy function behavior

e The genus expansion of ABJM theory satisfies a holomorphic anomaly equation.
e In the case of ABJM we know (recursively) the full all-genus partition function.

e Ignoring the instanton terms in the planar free energy F{ the solution to this equation
[Fuji,Hirano]

is remarkably simple Moriyama

2

ZmAi|(e/k)R] o=

/i

N /
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Universal Airy function behavior

e The genus expansion of ABJM theory satisfies a holomorphic anomaly equation.
e In the case of ABJM we know (recursively) the full all-genus partition function.

e Ignoring the instanton terms in the planar free energy F{ the solution to this equation

is remarkably simple [Fuji,Hirano}

Moriyama
2

ZmAi|(e/k)R] o=

/i

e The same is true for quite general theories with N’ = 3 SUSY

(with appropriate ¢ and N ). [MariﬁO}

Putrov

e [ will outline the derivation for a two node circular quiver and later a D-shaped quiver.

e The story for longer quivers is not significantly different.

N /

Nadav Drukker 8-a AdS,4 localization




4 N

e Considering a 2-node circular quiver with one fundamental field on each node,
Fayet-Iliopoulos parameters (;, bifundamental masses m; and Chern-Simons levels +k,

the matrix model is

o2miC A ik (A2 2mica AP —mik(A(?)?

ik

palet ch AV ch A
[T, sh? (Y = A sh? (A2 — A2
IL ;b O = AP +my) ch (AP — AP 4my)

X

e The crucial step in rewriting this expression as a Fermi-gas partition function is the

use of the Cauchy determinant identity

Hz<]( )( yj o 1
=2

Hz j( y] cESN i=1 x’L T yO'(’L))

,’:12

e The partition function is then

N (D) (N2 o e 3 (2 (2)42
(1) 11 (2) e2miC1 A, +mik(A;7) e2miC2 A, mik(X;7)
A aT T -
- ch AV ch AP
al 1 al 1
% (_1)01—1-02
al,@z;szv 11;[1 ch (/\51) )‘(2)( ) T m;) zl_[l ch ()‘z('Q) . /\((712)@) + M)

N /
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ch=1 (AP — AWy

sh2(A{”) — A%)

ch=1 (AP — A1y

sh?(A{) —A%Y)

ch=1(A) — x

)

Nadav Drukker
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e A relabelling of eigenvalues )\g )

M= 2 0 [T

ocESN

:N!Z /Hd)\

ocESN

N

Y _)1( ) resolves one of the sums over permutations

@ N omi¢iA{Y +ink(A{D)? 1
b ch A ch (A = AP 4 my)
o2miC ALY —imk(A))? 1
) ch A% ch (A2 = AL + ma)

(1) (1)
)\ )\O'(Z))

/
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/ e A relabelling of eigenvalues )\2(2) — )\0_1(i) resolves one of the sums over permutations
1

2)
1 il 1) 1 (2) N omici AV +irk(AH)? 1
Z(N) = — (—1)0/ AN A
N! U;:N 1;[1 1;[1 ch AV ch (A = AP 1 my)
o2miC ALY —imk(A))? 1
X
ch A% ch (A2 = AL + ma)

N
_ . (1) (D) @)
= = > (-1 /Hldxi KN M)

ocESN
e The kernel K can be considered the matrix element of the density operator K defined

by

627ri§'1(j—|—7m'k:(j2 p2mimap 62m'§2(j—mk42 p2mimap

K(Qh%) — <Q1\K\QQ>7 K —

A

chq chp ch ¢ chp
e p and ¢ are canonical conjugate variables: [¢,p| = ih with h = 1/2x.

e and we use

f(@)\g) = fla)la)
2T f(G)e*TP = f(3 —m)
(1] —— g2 = ——
o chp = Ch(Ql — 612)

N /
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/Grand potential and Airy function \

e We can write

2 =55 2 7 [TTa KOO AR) = 55 S o7 T i)

ocESN cESN l=cycle of o
e The resulting expressions are simpler if we switch to the grand-canonical partition

function z = e#

n

=(z) =1+ i NZ(N) =det(1+2K) = [J(1 + e F)

where E,, are the eigenvalues of H = — log K.

N /

Nadav Drukker 12 AdS,4 localization




/Grand potential and Airy function \

e We can write

2 =55 2 7 [TTa KOO AR) = 55 S o7 T i)

ocESN cESN l=cycle of o
e The resulting expressions are simpler if we switch to the grand-canonical partition

function z = e#

n

=(z) =1+ i NZ(N) =det(1+2K) = [J(1 + e F)

where E,, are the eigenvalues of H = — log K.

e Different statistical mechanical tools allow one to approximate the grand potential as

— C 7T2C
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/Grand potential and Airy function \

e We can write

2 =55 2 7 [TTa KOO AR) = 55 S o7 T i)

ocESN cESN l=cycle of o
e The resulting expressions are simpler if we switch to the grand-canonical partition

function z = e#
S(z) =1+ Y 2VZ(N) =det(1+2K) =] [(1 +e ")
N=1 n
where E,, are the eigenvalues of H = — log K.

e Different statistical mechanical tools allow one to approximate the grand potential as

. C 7T2C

e Then the canonical partition function can be derived from the canonical potential by

1 B c\—1/3 l/7eN—1/3 w2
Z(N) = %/due‘](w Np (%) €AA1[<E> (Ng—kno)] ,

c and ng can be evaluated for any particular model. A depends more intimately on the

\\ instanton corrections and can be evaluated perturbatively. /
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/ Mirror symmetry

o If [ set k = 0, this theory has two known mirror theories, related in the IIB brane

de Boer,Hori |

construction by SL(2,7Z) transformations. [ Oogurt. Oz, Vin

e This was tested for the matrix model using integral identities. [ Kapustin

Willett, Yaakov |

N /
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/ Mirror symmetry

o If [ set k = 0, this theory has two known mirror theories, related in the IIB brane

de Boer,Hori |

construction by SL(2,7Z) transformations. [ Oogurt. Oz, Vin

e This was tested for the matrix model using integral identities. [ Kapustin

Willett, Yaakov |

e the density operator is

627r7;§'1cj 627m'm1]§ 62771'('2(} 627r7;m2]5

A

K =

ch g chp ch ¢ chp

e The first of the known mirror theories is one with identical matter content but with
mass and FI parameters exchanged

m; — my = —(1, mo — Mo = —(a, ¢1 — (1 =ma, G2 — (o =my

e At the level of the density function, this gives

K(S) 627Tz7ngq 6—2771@“1]3 627Tz7nlq 6—27m§'2p 6—2771C1p 627Tz7nlq 6—27m§'2p 627Tz7ngq
— Y

ch ¢ chp ch g chp chp ch ¢ chp ch g

Y

N /
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Mirror symmetry

If T set kK = 0, this theory has two known mirror theories, related in the IIB brane

construction by SL(2,7Z) transformations. [

This was tested for the matrix model using integral identities. [ Kapustin

the density operator is

627r7;§'1cj 627m'm1]§ 62771'('2(} 627r7;m2]5

A

K =

ch g chp ch ¢ chp

The first of the known mirror theories is one with identical matter content but with
mass and FI parameters exchanged

m; — my = —(1, mo — Mo = —(a, ¢1 — (1 =ma, G2 — (o =my

At the level of the density function, this gives

K(S) 627Tz7ngq 6—2771@“1]3 627Tz7nlq 6—27m§'2p 6—2771C1p 627Tz7nlq 6—27m§'2p 627Tz7ngq
— Y
ch ¢ chp ch g chp chp ch ¢ chp ch g

We find that this density is the same as the original K under the replacement

p—=q, q——p

de Boer,Hori |
Ooguri,Oz,Yinl

Willett, Yaakov |

~

/

Nadav Drukker 13-b AdS,4 localization



N

Mirror symmetry

If T set kK = 0, this theory has two known mirror theories, related in the IIB brane

construction by SL(2,7Z) transformations. [

This was tested for the matrix model using integral identities. [ Kapustin

the density operator is

627r7;§'1cj 627m'm1]§ 62771'('2(} 627r7;m2]5

A

K =

ch g chp ch ¢ chp

The first of the known mirror theories is one with identical matter content but with
mass and FI parameters exchanged

m; — my = —(1, mo — Mo = —(a, ¢1 — (1 =ma, G2 — (o =my

At the level of the density function, this gives

K(S) 627Tz7ngq 6—2771@“1]3 627Tz7nlq 6—27m§'2p 6—2771C1p 627Tz7nlq 6—27m§'2p 627Tz7ngq
— Y
ch ¢ chp ch g chp chp ch ¢ chp ch g

We find that this density is the same as the original K under the replacement

p—=q, q——p

This is a linear canonical transformation on phase space!

de Boer,Hori |
Ooguri,Oz,Yinl

Willett, Yaakov |

~
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e To get the second mirror theory we apply
p—>p+q,

e The result is

e—2miC1P L2mimi(P+q) ,—2miC2p 2

LN
1
|
3>

mimz (p+q)

RO &7
chp ch(p+¢q) chp ch(@+q)
_ 6—27r7§§'1]3 e—iﬂQQ 627m'm1]§ eiWCjQ 6—27r7§§'2]3 e—iﬁQQ
chp chp chp

where we used the identity

e f(p) e = f(

p+4q)

€

A

chp

2mwimeop

62'77(}2

/
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e To get the second mirror theory we apply
p—p+4q, q— —p

e The result is

A~

6—27TZ.C1]§ 627Tim1(]5—|—(j) 6—27‘("i<2]§ 627rz'm2(p—|— )

q
i) _
chp ch(p+q4) chp ch(p+q)
ch j chp ch p chp

where we used the identity
o 2P . A2
e f(p)e™ = f(p+q)

e One can read off the corresponding quiver theory:
— A four node circular quiver.
— Alternating Chern-Simons levels k£ = +1.
— Vanishing FI parameters.

— Bifundamental multiplets with masses {—(1,m1, —(2, M2 }.

N /
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SL(2,7)

N

e The S transformation

satisfies S2 = —1.

e The U transformation

satisfies U2 = —1.

p—=q, q——p
p—=p+q, q— =D
15

/
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SL(2,7)
e The S transformation
p—q, q— =D
satisfies S% = —1.
e The U transformation
p—p+4q, q— —p

satisfies U2 = —1.

e Defining 7' = SU, we find the usual SL(2,7Z) action of S, T.

N /
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SL(2,7)
e The S transformation
p—q, q— =D
satisfies S% = —1.
e The U transformation
p—p+4q, q— —p

N

satisfies U2 = —1.

e Defining 7' = SU, we find the usual SL(2,7Z) action of S, T.

e Any other canonical transformation will give an equivalent operator, but most will not

correspond to a Lagrangian thoery.

/
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D-quivers and Sp-quivers

e The partition function for the D, 1 s-quiver is given by

N n—1 2N n—1 D (a) (a)
1 0) 1(0) 1y (n) 1y () @ 1z TLo ysh? (A7 = A7)

Z(N) = /| [NV aA, ™A, T [T ax
NM@N)In=3 n Rt B | (s [T, ch (AF = AF*)

[T,.;sh? (A — XY sh? (AR, — ARL,) sh2 (A — A1) sh? (A, — AWL,)

Hi“] ch ()\50) — )\Sl)> ch ()\5\221_@ _ )\31)) n ()\En) o )\Sn—l)) <In (AE\TfL_)H - )\E]n—l))

e Rewrite the contribution of the U(N) (end) nodes
2 (1(0) (0)) «h2 () (0)
Hz’<j sh® (A; — Aj ) sh </\N+z' - )‘N+j)
0 1 0 1
[T ch (A = A57) eh (A = A57)
0 0 (0) (0) (0) (0)
HI<JSh ()\g) _)\f])) 1_I’L'<j sh ()\Z _)\j )Sh ()\N—H_)\N—Fj)
0 1 0 0
[ ch (A7 = A7) [1;;sh (A = AW%,)

%

N

/
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e Applying the Cauchy identity gives

n 2N

1 a
Z(N) = NI (2N)In=3 U+T/H Hd)‘ )

{U}ESN a=0TI=1
{r}€San

N n—1 2N

1
H o )\(0) )\(n) H H )\(a) )\(a—i—l)

=1 Sh()\(o(z) N—i—z) h( (z)_)\S\CL—H a=01=1C a([))

e Relabelling the eigenvalues removes all the Sy and all but one of the Ssy

permutations
1 n 2N ) 1
Z(N) = / d)\ . ~ ~
v 0 I o ae
(”rfﬁ -
a0 71 ch (Af) — Aﬁ““)) ch (A" = A7)

e We need to study the relation between the permutation 7 and R acting by

RI)=I+N

N /
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e an index [ under a full cycle forward and back along the quiver transforms to

I - 7)) = Rr(I) = 7 '*Rr(I) = Rt~ 'Rr(I)

e Need to study the cycle structure of R7—'RT.

/
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e an index [ under a full cycle forward and back along the quiver transforms to

I - 7)) = Rr(I) = 7 '*Rr(I) = Rt 'Rr(I)

e Need to study the cycle structure of R7—'RT.

e In any case the resulting density function is

KOG ) = /d)\(o ") H AN HdA(_lRTR(I

n—2

1 1 1
ch (A7 =AY sh (A = AQ)0) o ch (Aglpy — Asiry)

n—1

1 1 H 1
ch (/\g(;;) - )\572(1)) sh (A(TT;%(I) - /\gT)R(J)) a=1 Ch ()\(a—)lRTR(I) - /\(ajgmu))

/
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e an index [ under a full cycle forward and back along the quiver transforms to

I - 7)) = Rr(I) = 7 '*Rr(I) = Rt 'Rr(I)

e Need to study the cycle structure of R7—'RT.

e In any case the resulting density function is

KOG ) = /d)\(o ") H AN HdA(_lRTR(I

n—2

1 1 1
ch (/\Erl) - )\go)) sh (Ago) /\g()l)) a=0 ch (A%‘() 1) /\g(j;)l))
1 1 ”1:[1 1
ch (/\g(;;) - )\572(1)) sh (A(TT;%(I) - /\gT)R(J)) a=1 Ch ()\(a—)lRTR(I) /\(Tajgm(f))

e Using the Fourier transform of 1/shx we get the density operator

1 gshp 1 1 1 —gshp 1 1
chp chp chp Chn_gﬁ chp chp chp Chn_gﬁ

N /
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/ e The D4-quiver has n = 2. Let us in addition include a fundamental field coupled to \

the central node, masses for the bi-fundamentals and some FI terms

2 ON
_ 1 aNy(a) TT € 2 (1) (1)
a=0 I=1 CLAf I<J

[Ty sh® m” = A7) sh® (AN — AWhy) sh® (% — A7) sh? (AR — AWl )

Hz’,J ch (AEO) — )\81) — mo) ch (AESL — )\E,l) - mo) ch ()\1(2) — )\81) — m2) ch ()\g\?)ﬂ _ )\Sl) N m2)

2im (oA +¢ AP +AP)

o After applying the Cauchy identity we find the density function

KA\ N) = / AV AW, DA A

+1
1 2o (MO A9, ) ] 2miCAD
ch (A = A 4+ mg) sh (A —AQ ) b (WD, — XD — ) AW
1 €2WiCo(A§2)+/\(N2)+1) 1 p2miC1 N
ch (AD = AP, +mo) sh (AP, = AP) ch AP = X —my) ch X

N /
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K e The D4-quiver has n = 2. Let us in addition include a fundamental field coupled to \

the central node, masses for the bi-fundamentals and some FI terms

2im (oA +a A+

Z(N) = N'4 / H a2V \(@) H )\(1) H sh? (Agl) _ )\Sl))

I1<J

[Ty sh® (A = A7) = <A§3L — AVh) sh” () = AF) sh? (AR, — AR )

[T b (U A0 — )l (N0 — X7 o) ey (N — X0 — i) e (E, — AY — )

o After applying the Cauchy identity we find the density function

K(\N) = / AV AW, DA A

+1
1 e2mico (7 +AQL) 1 e2miaA
ch (A =22 4mg) sh (A = AQ ) ch (AP, = 2D —mg) ch AWM
1 o2miCo (A AT ) 1 2miCL N

ch ()\(1) — )\5\27)+1 + m2> sh (AE\?)JA = )\52)) ch ()\52) — N — mg) ch A

e This can be expressed as the density operator

—2imTmqop A a
K= € 027C04 shp o2imC0d € p21mC24d shp 2in(sg €

chp chp chp ch g chp chp chp ch g

2iTmgp 627271'(1(} €—2i7rm215 2iTmop €2i7rC1(j

. ) 2. .
21m¢14q 1 e (149

_ —din(Como+eama) 1 2incoq SHPD 2imcoq 1 € (2im¢2d SN 2ingyg 1

\ - chp chp chp chg chp chp chp chg?/
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Sp-quivers

e The mirror theory is a 2-node linear Sp-quiver with a pair of fundamentals on each
node. [Dey,Distler]

e The partition function is

SRS PN T, so—
N')2 oo A eh (A — f) eh (A + i)

[Too [Tic; 3h° (0% — A5”) sh® (A + A)"))
[T, ch (A =A% — ) ch (A0 = AP + 1) ch (AQ + 2D — 1) ch (OO + 2D + 1)

e Let us define \j 1y = —)\;

h2A{® 1
Y HHS o -

a=0i=1C h2)\(a) Ha ollr=1 h(Aga)_Ma)
HI<J sh ()\(O) /\(0)) sh ()\(1) /\(1))
[1.sch (A7 = A5 =)

e We can apply the Cauchy identity to the last line, which becomes

2N

1
(—1)° -
5 D | U
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4 N

e We have a similar issue to before where we have the reflection operator R(I) =1 + N

Z(N sh)\ 1
a=0i=1C h)\(a [Taeo ITi; ch (Az('a) — fia) ch (Ag()i) ~ fia)
N

1
< > v7]] (0 AT )b 0O a0y

TESON =1 7(4)

e The density operator is then

= 62i7rfhﬁ = 2iTmp

i sh g
chqgch(q— fir)ch(Gg+ fi1) chp chqgch(q— fiz) ch(q+ fiz) chp

e Finally we conjugate by

A

oy g2imip g o—2imiap

to find
[’\( 1 627;7”1123 Shq 62i7T/11]3 1 622'7T(77~”L—111_/12)15 1 Simfinp Shq\ Simfinp 1 627271'(7%—/11—/12)]3
ch g ch g ch g chp chq ch g ch g chp

N /
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e We have a similar issue to before where we have the reflection operator R(I) =1 + N

sh)\ 1
2 = @l N @ - @ -
a—0i=1 b A [[,—o 1 [i=; ch (Ai - Ma) ch ()\R(i) - ”a)
N
1
< >, (=07]]
(0) (1) (0) (1) _
TESaN i=1 ch ()‘ )‘T(i) . )Ch (>‘ R(i) )‘TR(Z) - m)
e The density operator is then
f( B Sh(j 62i7rfhﬁ ShqA 622'777%13

chqgch(q— fir)ch(Gg+ fi1) chp chqgch(q— fiz) ch(q+ fiz) chp

e Finally we conjugate by

A

oy g2imip g o—2imiap

to find
N 1 SimfinD sh g Sim iy 1 e2im(m—fp1—p2)p | dinfiap sh g Sirfind 1 e2im(m—p1—pA2)p
K=—e 4 - € - - - 4 < € - -
ch g chq ch g chp chq ch g ch g chp
e A somewhat different formalism gives even and odd operators. [Mezei,Pufu}

e One can calculate from the above density the Airy function expression.
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/I\/Iirror symmetry

Ksp =

N

e For the D-quiver, with all masses set to zero we had

- 1 . .shp o .. 1 e2imC1q 1 o oshp o 1 02imC1g
KD o 6227TC0q e2z7rC0q €2Z7TC2q e2z7rC2q

~ chp chp chp chqg chp chp chp chgq

e Compare to the Sp-quiver

2im(m—ji1—fi2)p A 2im(m—ji1—fi2)p
1 281 P 247 i1 P € 1 p2im 2P Shq62m;1215 1L e

ch g ch g ch g chp ch g ch g ch g chp
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/ Mirror symmetry \

e For the D-quiver, with all masses set to zero we had

- 1 . .shp o .. 1 e2imC1q 1 o oshp o 1 02imC1g
KD o €2Z7TC0q e2z7rC0q e2z7rC2q e2z7rC2q

~ chp chp chp chqg chp chp chp chgq

e Compare to the Sp-quiver

e2im(m—p1—p2)p e2im(m—p1—p2)p

KSp _ 1 ; 247 i1 P sh g o2 LP 1 A A p2im 2P sh g o217 2P 1 ; ;

ch g ch g ch g chp ch g ch g ch g chp

o If we identify
Co = fi1 G2 = fi2 C1=m — fi1 — fi2,

Then the two expressions are identical with

q—p, P —q

N /
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/ Mirror symmetry \

e For the D-quiver, with all masses set to zero we had

R 1 . shp 5. .. 1 e2imC1q 1 . shp 5. . 1 02imC1g
KD o €2z7rcoq 62@7TC0q 62@7TC2q 62@7TC2q

~ chp chp chp chq chp chp chp chq

e Compare to the Sp-quiver
KSp — - 1T P e 1T P - _ e 1TU2P e H2p _ -

ch g ch g ch g chp ch g ch g ch g chp

o If we identify
Co = fi1 G2 = fi2 C1=m — fi1 — fi2,

Then the two expressions are identical with

q—p, D= —(

Again, in the Fermi-gas formalism, mirror symmetry

is a linear canonical transformation.
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/ Mirror symmetry \

e For the D-quiver, with all masses set to zero we had

R 1 . shp 5. .. 1 e2imC1q 1 . shp 5. . 1 02imC1g
KD o €2z7rcoq 62z7rCoq 6227TC2q 6227TC2q

~ chp chp chp chq chp chp chp chq

e Compare to the Sp-quiver

e2im(m—p1—p2)p e2im(Mm—p1—pA2)p

KSp _ 1 A 2P sh g €2z'7r/1115 1 A ] €2z'7r/12]3 sh g 622‘7”1215 1 A A

ch g ch g ch g chp ch g ch g ch g chp

o If we identify
Co = fi1, G2 = fi2 C1=m — fi1 — fi2,

Then the two expressions are identical with

qA%ﬁ7 ﬁ_>_qA

Again, in the Fermi-gas formalism, mirror symmetry

is a linear canonical transformation.

e This mapping of parameters exactly matches what has been previously found via

complicated integral identities [Dey,Distler}
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Summary

e The Fermi-gas approach allows to solve Many A > 3 to all orders in 1/N.

e Can be generalized to D-quivers and Sp-quivers

e Mirror symmetry is very simple in this setup - just a symplectic transformation on

phase space.

e Many more results for D-quivers and Sp-quivers will be in our upcoming paper.
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The end
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