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Introduction and previous works

• Topological strings: A N = (2,2) supersymmetric non-linear sigma
model from world sheet ⌃ to target space X.

�
i

: ⌃ ! X

Topological string theory is the most interesting and free of world sheet
anomaly, when the target space X is a Calabi-Yau 3-fold.

• There are two types of topological twisting: A-model and B-model.
We are interested in the topological string partition function
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are Kahler moduli in the case of A-model, and complex struc-
ture moduli in the case of B-model.



• The A-model topological string free energy counts holomorphic curves,
can be expanded in terms of Gopakumar-Vafa(GV) invariants n

�

g

, where
� is an element of 2nd integral homology class. It is related to Gromov-
Witten invariants by a transformation.

• Mirror symmetry relates topological A-model on manifold X to topolog-
ical B-model on its mirror manifold. Some very di�cult mathematical
problems of enumerative geometry can be easily solved by topological
B-model methods.



• There are many ways to compute the topological string free energy (e.g.
matrix models, topological vertex), with many physical and mathemat-
ical applications (e.g. gauge theories, black hole physics).

• Topological strings on non-compact toric Calabi-Yaus are essentially
solved to all genera by topological vertex formalism, and also the B-
model method using holomorphic anomaly equation.

• A long standing problem: How to solve topological strings on compact
Calabi-Yau three-folds? The non-compact Calabi-Yau three-folds are
basically described by a Riemann surface, so the geometric structure
is simpler than the compact case. Many methods work only on the
non-compact case.



• A well known example: the Quintic manifold, a degree 5 hypersurface
in CP4.
Candelas et al solve the genus zero sector, i.e. counting rational curve,
using mirror symmetry and Picard-Fuchs equation.
The mirror symmetry results are later proven by mathematicians using
Kontsevich’s localization methods, Givental; Lian, Liu, Yau.

• At higher genus, the only available approach is the BCOV method.
One use holomorphic anomaly equation to compute F

(g) recursively in
genus g. This was done by BCOV (in 1993) up to genus 2.

• There are also some mathematical approaches for compact Calabi-
Yaus. In particular, Pandharipande’s method can in principle compute
to all genera. But a collaborator tells me that the method is too
complicated that one can not go very far and test the results.



• The holomorphic anomaly comes from the boundaries of the moduli
space of genus g Riemann surface. The BCOV holomorphic anomaly
equation relates the anholomorphic derivative of the free energy to
lower genus data
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• The degenerations of Riemann surface (c.f. BCOV)
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• However, it is di�cult to push the BCOV methods to higher genus.
Two major di�culties are the the followings.

1. Holomorphic ambiguity problem. The holomorphic anomaly equa-
tion only determine F

(g) recursively in terms of lower genus results
up to a holomorphic ambiguity, a meromorphic function in the mod-
uli space with a finite number of unknown constants. One need find
alternative ways to fix these unknown constants.

2. Computational complexity in BCOV method: the number of dia-
grams grows exponentially with genus. A normal laptop can handle
the computation only up to about genus 6, even for the simplest
one parameter models such as the quintic.

• The calculation was pushed up to genus 3 for the quintic, using further
information from the counting of BPS states known as Gopakumar-
Vafa invariants. Katz, Klemm, Vafa, hep-th/9910181.



• We made some important progress Huang, Klemm, Quackenbush, hep-
th/0612125.

1. We solve the holomorphic anomaly equation directly without the
BCOV Feynman diagrams, by using the idea of formulating topolog-
ical strings as polynomials Yamaguchi, Yau, hep-th/0406078. The
computational complexity of the method grows only polynomially in
genus.

2. We discover boundary conditions at the conifold point of the moduli
space, i.e. the “gap” condition c.f. Huang, Klemm, hep-th/0605195,
which fix the holomorphic ambiguity to a large extend.

• We are able to solve a class of one-parameter Calabi-Yau models to
very high genus, e.g. in principle to genus 51 for the quintic (in practice
up to around genus 20). At low genus we have redundant data which
provide non-trivial test of the results.



Toward solving the compact elliptic
Calabi-Yau three-folds

• In this work, we reconsider the case of the compact elliptic Calabi-Yau
three-folds. Some recent works are
M. Alim and E. Scheidegger, arXiv:1205.1784 [hep-th];
A. Klemm, J. Manschot and T. Wotschke, arXiv:1205.1795 [hep-th].
Based on these earlier works, using various conditions, notably the
involution symmetry, and the weak Jacobi forms, we make some more
progress toward solving the models.

• Some quick introduction of elliptic Calabi-Yau: The construction of
mirror pairs of Calabi-Yau n-folds as hypersurfaces in toric ambient
spaces Pn+1

� follows Batyrev’s construction which relies on dual pairs
of n + 1 dimensional reflexive pairs of lattice polyhedra (�,�⇤).



• To give an elliptic fibration structure, we combine a base polyhedron
�B⇤ and a reflexive fibre polyhedron �F⇤ into an n + 1 dimensional
polyhedron �⇤.

⌫

⇤
i

2 �⇤
⌫

j

2 �
⌫

F⇤
i

⌫

F

j

�B⇤
n�m

... s

ij

�B

n�m

...
⌫

F⇤
i

⌫

F

j

0 . . .0 0 . . .0
... �⇤F

m+1
... �F

m+1
0 . . .0 0 . . .0

.

If �⇤F and �⇤B are reflexive, then (�,�⇤) is a reflexive pair. Here
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i + 1 2 N, and we indicated the dimensions of some
polyhedra by subscripts; elliptic fibrations correspond to m = 1.



• For n = 3 and m = 1 we get many examples by choosing any of the 16
reflexive polyhedra in 2d as �⇤F and �⇤B respectively and specifying
in addition ⌫

F⇤
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2 �⇤F
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9 10 11 15141312 16



• The main example: the elliptic fibration over P2.
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0 0 0 0 0 0 0 0 �6 0
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.

• The geometry has two Kahler parameters from the base and the fiber.
The Gopakumar-Vafa(GV) invariants are n

(d
B

,d

E

)
g

, where d

B

and d

E

are
base and fiber degrees.

• Another example: the elliptic fibration over the Hirzebruch surface F1.
The base has two Kahler parameters. In a limit where one of the base
parameters decouple, this reduces to the half K3 geometry and the
topological strings compute elliptic genus of E-strings.



• The complex structure parameters of the mirror are denoted z1, z2.
From standard techniques in mirror symmetry, we can derive the Picard-
Fuchs di↵erential equations, and calculate the three-point functions and
prepotential.

C111 =
9

z

3
1�1

, C112 = C121 = C211 =
3�3

z

2
1z2�1

,

C122 = C212 = C221 =
�2

3
z1z

2
2�1

, C222 =
9(�3

3 + (432z1)3)

z

2
2�1�2

,

where the discriminants are �1 = (1 � 432z1)3 � 27z2(432z1)3,�2 =
1 + 27z2, and for convenience we also define �3 = 1� 432z1.



The involution symmetry

• An involution symmetry for the model has been known in the early days
of mirror symmetry.

I : (z1, z2) ! (x1, x2) =
⇣ 1

432
� z1,� (432z1)3z2

(1� 432z1)3

⌘
.

This is an involution I

2 = 1.

• The involution exchanges the two discriminants

I(�1) = (432z1)
3�2, I(�2) =
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.

• It acts on the holomorphic 3-form as I : ⌦ ! i⌦. Since ⌦ defines
vacuum line bundle L and the higher genus amplitudes F(g) transforms
as section F(g) 2 L2g�2 we conclude that

I : F(g) ! (�1)g�1F(g)
.



• The three point functions are covariant derivatives of the genus zero
prepotential, so transform as a tensor except for a minus sign

I : C
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• The BCOV propagators are defined by
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K is the special Kahler metric of the moduli space.

• It is convenient to make a change of variables with the derivative of
Kähler potential K
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K by the following (Alim et al, 2007)
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Then the topological string amplitudes F

(g) are polynomials of degree
3g � 3 with rational function coe�cients, where one assigns degree
1,2,3 respectively to the propagators S
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, S.



• The propagators do not transform exactly like a tensor under the invo-
lution symmetry. Instead, we find
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Here the minus sign is similar to the three-point functions. We also
have the shifts f

i, f

0, which are rational functions of z1, z2.

• We integrate the defining equations for the propagators, then make a
gauge choice of the holomorphic ambiguities. We determine the shift
functions f

i, f

0 such that the involution transformation is equivalent
to the original equations. We find the formulas of f

i, f

0 for the gauge
choice used in Alim et al 2012.



• We first find a particular holomorphic ambiguity such that the total
genus g amplitude transform with (�1)g�1 under the involution. Then
we only need to consider additional ambiguity of the form

I : f

(g)(z1, z2) ! (�1)g�1
f

(g)(z1, z2).

• Overall the number of unknown constants at large genus is reduced to
about one quarter of the original one by the involution symmetry.

• Fiber modularity: we can expand for base degree
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It was known that the coe�cients P

(g)
k
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) are quasi-modular forms,
i.e. polynomials of Eisenstein series E2, E4, E6, of modular weight 18k+
2g � 2, and satisfy a modular anomaly equation.

• We find that fiber modularity is basically equivalent to the involution
symmetry plus regularity condition at z1 ⇠ 1.



• The gap condition at the conifold divisors �1�2 = 0 greatly reduces

the number of unknown constants, to about g

2

54 for large genus g, or
about 1

7 of the number after imposing involution symmetry,

• Some remarks: It is su�cient to consider only one point in the conifold
divisor. The remaining ambiguity is now a holomorphic function with
no pole, transforms with (�1)g�1 under involution symmetry.



The use of weak Jacobi forms

• Consider a holomorphic function ' : H ⇥ C ! C depend on a modular
parameter ⌧ 2 H, an elliptic parameter z 2 C. They transform under
the modular group as

'
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Here k 2 Z is called the weight and m 2 Z
>0 is called the index.

• Due to the periodicity, the function has a Fourier expansion
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• A (holomorphic) Jacobi form: c(n, r) = 0 unless 4mn � r

2.
(stronger) A cusp Jacobi form: c(n, r) = 0 unless 4mn > r

2.
(weaker) A weak Jacobi form : c(n, r) = 0 unless n � 0.

• Some weak Jacobi forms can be constructed by theta functions
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Here �0,1(⌧, z) is the elliptic genus of K3.

• A. Dabholkar, S. Murthy and D. Zagier, arXiv:1208.4074 [hep-th].
A weak Jacobi form of given index m and even modular weight k is
a polynomial of E4(⌧), E6(⌧), �0,1(⌧, z), ��2,1(⌧, z) whose modular
weights and indices are 4,6,0,�2 and 0,0,1,1 respectively.



• The even weight weak Jacobi forms have a Taylor expansion in z with
coe�cients are quasi-modular forms. For example the first coe�cients
in the expansion of ��2,1(z, ⌧) and �0,1(z, ⌧) are
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• They satisfy the modular anomaly equation
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• Therefore a weak Jacobi form '
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• Some recent developments on the elliptic genus of E-strings, which is
related to the topological strings on half K3 space.
Haghighat, Lockhart and Vafa, arXiv:1406.0850 [hep-th];
Cai, MH and Sun, arXiv:1411.2801 [hep-th];
J. Kim, S. Kim, Lee, Park and Vafa, arXiv:1411.2324 [hep-th];
Haghighat, Klemm, Lockhart and Vafa, arXiv:1412.3152 [hep-th].

• The works of Haghighat et al use the M5 brane domain wall blocks
from M-strings, and make an ansatz for the M9 brane domain wall
blocks. Basic ingredients:
M-Strings: M2 branes suspended between two M5 branes.
E-Strings: M2 branes suspended between a M5 brane and a M9 brane.
Heterotic Strings: M2 branes suspended between two M9 branes.
We push the calculations to three-strings.

• On the other hand, Kim et al constructs a 2d quiver gauge theory for
E-strings, and can in principle compute the elliptic genus of any finite
number of E-strings with the beautiful techniques of Je↵rey-Kirwan
residues (c.f Kim et al, Benini et al).



• Inspired by these works, we apply the idea to compact elliptic Calabi-
Yau manifolds (without refinement). We expand the partition function
on base degree
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where z = � is the genus expansion parameter of topological strings.

• According to the modular anomaly equation, Z
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• Castelnuovo’s bound: for a given degree (d
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), the GV invariant
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vanish at su�ciently large genus g. This fix many coe�cients
in the ansatz for the weak Jacobi form '
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(z, ⌧) in the denominator.

• The basic constrain is that '�2,1(⌧, kz)�1 for k > 1 contributes to arbi-
trarily large genus, and must be cancelled by multi-cover contributions
from lower degrees. So the remaining unfixed ansatz is

d

B

(d
B

�3)
2X

k=�1
f18d

B

+2k

(E4, E6)��2,1(z, ⌧)k

�0,1(z, ⌧)
d

B

(d
B

�3)
2 �k

,

where f18d
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+2k

(E4, E6) symbolizes a modular form of weight 18d

B

+2k,
which is a polynomials of E4 and E6 with many unknown coe�cients, so
that the total modular weight and index are the same as the more gen-
eral ansatz. These sub-family of ansatz can not be fixed by vanishing
GV conditions.



• This approach can be combined with the B-model holomorphic anomaly
approach to compute higher genus topological string amplitudes.
Using the involution symmetry and the boundary conditions at the
conifold point, we find that the exact formula at base degree d

B

can
provide su�cient boundary data to fix the B-model formula at genus
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+ 1), valid for all base and fiber degrees.
On the other hand, in order to fix the exact formula at base degree d
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procedure to fix the exact formula with increasing base degrees. In this
way we can in principle determine the exact formula up to base degree
d

B

= 20 (for all genera and fiber degrees), and the topological string
free energy up to genus 189 (for all base and fiber degrees). In practice
we compute up to d
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= 5 and genus g = 8.



Curve counting considerations

• We make many predictions for the Gopakumar-Vafa invariants. The
counting of BPS states can be calculated from the cohomology of
the moduli space M of curves with certain degrees and genus. The
algebraic geometric counting is developed in Katz, Klemm, Vafa, 1999.

• The top genus numbers are the easiest to calculate.
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There are corrections to the formula below the top genus.
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Summary and Conclusion

• We shall study other examples, e.g. the elliptic fibration over the
Hirzebruch surface F1.

• We make some progress, but still have not completely solve the topo-
logical string partition function on the compact Calabi-Yau models.
More ideas are needed.

• Explore the connection to CFT’s. Localization may help.



Thank You


