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@ In Riemannian geometry, the fundamental object is the metric, g, .
o Diffeomorphism: 8, — V, =0, + T,
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@ On the other hand, string theory puts g.., Bu, and ¢ on an equal footing,
as they, or NS-NS sector, form a multiplet of T-duality.
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@ On the other hand, string theory puts g.., Bu, and ¢ on an equal footing,
as they, or NS-NS sector, form a multiplet of T-duality.

@ This suggests the existence of a novel unifying geometric description of them,

generalizing the above Riemannian formalism.
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@ On the other hand, string theory puts g.., Bu, and ¢ on an equal footing,
as they, or NS-NS sector, form a multiplet of T-duality.

@ This suggests the existence of a novel unifying geometric description of them,

generalizing the above Riemannian formalism.

@ Basically, Riemannian geometry is for Particle theory. String theory requires a

novel differential geometry which geometrizes the whole NS-NS sector.
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@ My talk today aims to introduce such a Stringy Geometry which is defined in
doubled-yet-gauged spacetime.

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



@ My talk today aims to introduce such a Stringy Geometry which is defined in
doubled-yet-gauged spacetime.

@ In four-dimensional spacetime photon has two physical degrees of freedom, but can be
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@ My talk today aims to introduce such a Stringy Geometry which is defined in
doubled-yet-gauged spacetime.

@ In four-dimensional spacetime photon has two physical degrees of freedom, but can be

best described by a four component vector.

@ Similarly, D-dimensional spacetime may be better understood in terms of

doubled-yet-gauged (D + D) coordinates.
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Talk based on works with Imtak Jeon & Kanghoon Lee

@ Differential geometry with a projection: Application to double field theory
arXiv:1011.1324 JHEP

@ Double field formulation of Yang-Mills theory arXiv:1102.0419 PLB
@ Stringy differential geometry, beyond Riemann arXiv:1105.6294 PRD
@ Incorporation of fermions into double field theory arXiv:1109.2035 JHEP

@ Supersymmetric Double Field Theory: Stringy Reformulation of Supergravity
arXiv:1112.0069 PRD Rapid Comm.

@ Ramond-Ramond Cohomology and O(D,D) T-duality arXiv:1206.3478 JHEP
@ Stringy Unification of Type IlA and IIB Supergravities under

N =2 D = 10 Supersymmetric Double Field Theory arXiv:1210.5078 PLB
@ Comments on double field theory and diffeomorphisms arXiv:1304.5946 JHEP

@ Covariant action for a string in doubled yet gauged spacetime  arXiv:1307.8377 NPB
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Parallel works on U-duality

@ U-geometry: SL(5) with Yoonji Suh arXiv:1302.1652 JHEP

@ M-theory and F-theory from a Duality Manifest Action
with Chris Blair and Emanuel Malek arXiv:1311.5109 JHEP

@ U-gravity: SL(N) with Yoonji Suh arXiv:1402.5027 JHEP
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Double Field Theory by Hull & Zwiebach (Hohm), c.f. Siegel
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Double Field Theory by Hull & Zwiebach (Hohm), c.f. Siegel

@ With a “generalized metric” and a redefined dilaton:

—1 _o-'B

Bg~' g-Bg~'B
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Double Field Theory by Hull & Zwiebach (Hohm), c.f. Siegel

@ With a “generalized metric” and a redefined dilaton:
g —g'8 2d 2
Hap = : e % = /—ge?¢
Bg~' g-Bg~'B

@ DFT Lagrangian constructed by Hull & Zwiebach (Hohm) reads

Lppr = 27 [H"® (404050 — 4040050 + §0aHPO5Hop — S 0aMPOcHD) + 4041 P 0pd — 04051 7 |
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Lppr = 27 [H"® (404050 — 4040050 + §0aHPO5Hop — S 0aMPOcHD) + 4041 P 0pd — 04051 7 |

@ Spacetime is formally doubled, y4 = (Xu,xv), A=1,2,--- ,D+D.
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Double Field Theory by Hull & Zwiebach (Hohm), c.f. Siegel

@ With a “generalized metric” and a redefined dilaton:
g —g'8 2d 2
Hap = : e % = /—ge?¢
Bg~' g-Bg~'B

@ DFT Lagrangian constructed by Hull & Zwiebach (Hohm) reads

Lppr = 27 [H"® (404050 — 4040050 + §0aHPO5Hop — S 0aMPOcHD) + 4041 P 0pd — 04051 7 |

@ Spacetime is formally doubled, y4 = (Xu,xv), A=1,2,--- ,D+D.

@ T-duality is manifestly realized as usual O(D, D) rotations

Hapg — Ma°MgPHcp, d — d, M € o(D, D).
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Double Field Theory by Hull & Zwiebach (Hohm), c.f. Siegel

@ With a “generalized metric” and a redefined dilaton:
g —g'8 2d 2
Hap = : e % = /—ge?¢
Bg~' g-Bg~'B

@ DFT Lagrangian constructed by Hull & Zwiebach (Hohm) reads

Lppr = e 2 [H"B (48A85d — 40,d0gd + §0aHPOgH cp — %BAHCD{BCHBD) + 49,1 Bogd — aAaBHAB]
@ Spacetime is formally doubled, y4 = (Xu,xv), A=1,2,--- ,D+D.
@ T-duality is manifestly realized as usual O(D, D) rotations
Hag — MaCMgPHop, d — d, M € O(D, D).

@ Yet, DFT (for NS-NS sector) is a D-dimensional theory written in terms of

(D + D)-dimensional language, i.e. tensors.

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Double Field Theory by Hull & Zwiebach (Hohm), c.f. Siegel

@ With a “generalized metric” and a redefined dilaton:
g —g'8 2d 2
Hap = : e % = /—ge?¢
Bg~' g-Bg~'B

@ DFT Lagrangian constructed by Hull & Zwiebach (Hohm) reads

Lppr = 27 [H"® (404050 — 4040050 + §0aHPO5Hop — S 0aMPOcHD) + 4041 P 0pd — 04051 7 |

@ Spacetime is formally doubled, y4 = (Xu,xv), A=1,2,--- ,D+D.

@ T-duality is manifestly realized as usual O(D, D) rotations
Hag — MaCMPHep, d — d, M e O(D, D).
@ Yet, DFT (for NS-NS sector) is a D-dimensional theory written in terms of

(D + D)-dimensional language, i.e. tensors.

@ All the fields must live on a D-dimensional null hyperplane or ‘section’, subject to
62
aAaA =2——— =0 : section condition
OXHOXy,
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Double Field Theory by Hull & Zwiebach (Hohm), c.f. Siegel

@ With a “generalized metric” and a redefined dilaton:
g -g7'B
Hag = ; e 20 = /—ge~2¢
Bg~' g-Bg'B

@ DFT Lagrangian constructed by Hull & Zwiebach (Hohm) reads

Lppr = e 2 [H*‘B (4aAaBd — 494d0pd + $0,HPAgHcp — ‘EaAHCDaCHBD) 1 49,1 Bogd — 8ABB’HAB]
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Double Field Theory by Hull & Zwiebach (Hohm), c.f. Siegel

@ With a “generalized metric” and a redefined dilaton:
g -g7'B
Hag = ; e 20 = /—ge~2¢
Bg~' g-Bg'B

@ DFT Lagrangian constructed by Hull & Zwiebach (Hohm) reads

Lppr = e 2 [H*‘B (4aAaBd — 494d0pd + $0,HPAgHcp — ‘EaAHCDaCHBD) 1 49,1 Bogd — 8ABB’HAB]

@ Up to O(D, D) rotation, we may fix the section, or choose to set
o
X,

=0.
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Double Field Theory by Hull & Zwiebach (Hohm), c.f. Siegel

@ With a “generalized metric” and a redefined dilaton:
g -g7'B
Hag = ; e 20 = /—ge~2¢
Bg~' g-Bg'B

@ DFT Lagrangian constructed by Hull & Zwiebach (Hohm) reads

Lppr = e 2 [H*‘B (4aAaBd — 494d0pd + $0,HPAgHcp — ‘EaAHCDaCHBD) 1 49,1 Bogd — 8ABB’HAB]

@ Up to O(D, D) rotation, we may fix the section, or choose to set
0
X,

@ Then DFT reduces to the well-known effective action within ‘Riemannian’ setup:

Lppr = Leg. = /—ge 2% (Hg +4(8¢)% — 11—2H2> .

where the diffeomorphism and the B-field gauge symmetry are ‘tamed’ under our

=0.

control,

XH — x4 XM, By — Buy + 0uNy — O, .
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Double Field Theory by Hull & Zwiebach (Hohm), c.f. Siegel

@ With a “generalized metric” and a redefined dilaton:
-1 —1
g -9~ B
Hag = ; e 20 = /—ge2¢
Bg~' g-Bg~'B

@ DFT Lagrangian constructed by Hull & Zwiebach (Hohm) reads

Lppp = e 2 [H*‘B (48A85d — 40,d0gd + F0aHPOgH cp — %BAHCDacHBD) + 49, 1B ogd — 8A85’HAB]
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Double Field Theory by Hull & Zwiebach (Hohm), c.f. Siegel

@ With a “generalized metric” and a redefined dilaton:
-1 —1
g -9~ B
Hag = ; e 20 = /—ge2¢
Bg~' g-Bg~'B

@ DFT Lagrangian constructed by Hull & Zwiebach (Hohm) reads

Lppp = e 2 [H*‘B (48A85d — 40,d0gd + F0aHPOgH cp — %BAHCDacHBD) + 49, 1B ogd — 8A85’HAB]

@ On the other hand, in the above formulation of DFT, the diffeomorphism and the
B-field gauge symmetry are rather unclear, while O(D, D) T-duality is manifest.
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Double Field Theory by Hull & Zwiebach (Hohm), c.f. Siegel

@ With a “generalized metric” and a redefined dilaton:
-1 —1
g -9~ B
Hag = ; e 20 = /—ge2¢
Bg~' g-Bg~'B

@ DFT Lagrangian constructed by Hull & Zwiebach (Hohm) reads

Lppp = e 2 [H*‘B (48A85d — 40,d0gd + F0aHPOgH cp — %BAHCDacHBD) + 49, 1B ogd — 8A85’HAB]

@ On the other hand, in the above formulation of DFT, the diffeomorphism and the
B-field gauge symmetry are rather unclear, while O(D, D) T-duality is manifest.

@ The above expression may be analogous to the case of writing the Riemannian scalar

curvature, R, in terms of the metric and its derivative.
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Double Field Theory by Hull & Zwiebach (Hohm), c.f. Siegel

@ With a “generalized metric” and a redefined dilaton:
-1 —1
g -9~ B
Hag = ; e 20 = /—ge2¢
Bg~' g-Bg~'B

@ DFT Lagrangian constructed by Hull & Zwiebach (Hohm) reads

Lppp = e 2 [H*‘B (4aAaBd — 40,d0gd + F0aHPOgH cp — %BAHCDEBCHBD) + 49, 1B ogd — 8A83’HAB]

@ On the other hand, in the above formulation of DFT, the diffeomorphism and the
B-field gauge symmetry are rather unclear, while O(D, D) T-duality is manifest.

@ The above expression may be analogous to the case of writing the Riemannian scalar

curvature, R, in terms of the metric and its derivative.

@ It is desirable to explore the underlying differential geometry, beyond Riemann.
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In the remaining of this talk, | will try to explain our proposal for

the Stringy Differential Geometry of DFT
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In the remaining of this talk, | will try to explain our proposal for

the Stringy Differential Geometry of DFT

@ Key concepts include

Projector
Semi-covariant derivative

Semi-covariant curvature

And their complete covariantization via ‘projection’
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In the remaining of this talk, | will try to explain our proposal for

the Stringy Differential Geometry of DFT

@ Key concepts include

o Projector

o Semi-covariant derivative

@ Semi-covariant curvature

o And their complete covariantization via ‘projection’
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Geometric Constitution of Double Field Theory
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Geometric Constitution of Double Field Theory

@ Notation

Capital Latin alphabet letters denote the O(D, D) vector indices, i.e.

AB,C,---=1,2,--- ,D+D, which can be freely raised or lowered by the O(D, D)
invariant constant metric,
0o 1
Jag =
1 0
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Geometric Constitution of Double Field Theory

@ Doubled-yet-gauged spacetime

The spacetime is formally doubled, being (D+ D)-dimensional.
However, the doubled spacetime is gauged : the coordinate space is equipped with an
equivalence relation,

x4~ XA+ 0%,

which we call ‘coordinate gauge symmetry’.

Note that ¢ and ¢ are arbitrary functions in DFT.
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Geometric Constitution of Double Field Theory

@ Doubled-yet-gauged spacetime

The spacetime is formally doubled, being (D+D)-dimensional.
However, the doubled spacetime is gauged : the coordinate space is equipped with an

equivalence relation,

XA~ XA 4o e,

which we call ‘coordinate gauge symmetry’.
Note that ¢ and ¢ are arbitrary functions in DFT.
Each equivalence class, or gauge orbit, represents a single physical point.

Diffeomorphism symmetry means an invariance under arbitrary reparametrizations of

the gauge orbits.
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Geometric Constitution of Double Field Theory

@ Realization of the coordinate gauge symmetry.

The equivalence relation is realized in DFT by enforcing that, arbitrary functions and
their arbitrary derivatives, denoted here collectively by ®, are invariant under the

coordinate gauge symmetry shift,

O(x + A) = d(x), AA = ¢y
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Geometric Constitution of Double Field Theory

@ Section condition.

The invariance under the coordinate gauge symmetry can be shown to be equivalent to
the section condition ,
9a0% =0.
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Geometric Constitution of Double Field Theory

@ Section condition.

The invariance under the coordinate gauge symmetry can be shown to be equivalent to

the section condition ,
9,07 =0.

Explicitly, acting on arbitrary functions, ®, ®’, and their products, we have
a0 =0 (weak constraint),

a4’ =0 (strong constraint).
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Geometric Constitution of Double Field Theory

@ Diffeomorphism.

Diffeomorphism symmetry in O(D, D) DFT is generated by a generalized Lie derivative

n
CA)(7-A1...A,7 = XB(?BTA1...A,, + wr (9,9)(37-,41.../\,7 + Z(aA,»XB — BBXA,)TAV-A,IA BA/+1"'An s
i=1

where wr denotes the weight.
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Geometric Constitution of Double Field Theory

@ Diffeomorphism.

Diffeomorphism symmetry in O(D, D) DFT is generated by a generalized Lie derivative

n
EA)(TA1...A” = XB(()BTAVUA” + wr (9,:5;)(37-,41...,4,7 + Z(aA,»XB - BBXA,)TA1-»-A,',1 BA/+1-"An ,
i=1

where wr denotes the weight.

In particular, the generalized Lie derivative of the O(D, D) invariant metric is trivial,

LxTas=0.

The commutator is closed by C-bracket

[ﬁx, ﬁy] = Lixvio s [X, Y]A = XBag YA — YBOgXA + L YBOAXg — 1XBoAY.
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Geometric Constitution of Double Field Theory

@ Dilaton and a pair of two-index projectors.

The geometric objects in DFT consist of a dilation, d, and a pair of symmetric

projection operators,

Pag = Psa, Pag = Paga, PaBPgC =P, PaBPgC =P,C.

Further, the projectors are orthogonal and complementary,

PaBPgC =0, Pag + Pag = a5 -
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Geometric Constitution of Double Field Theory

@ Dilaton and a pair of two-index projectors.

The geometric objects in DFT consist of a dilation, d, and a pair of symmetric

projection operators,

Pag = Pga, Pag = Psa, PaBPgC =P, PaBPg¢ =P,°.

Further, the projectors are orthogonal and complementary,

P4BPgC =0, Pag + Pag = Jasg -

Remark: The difference of the two projectors, Pag — Pag = Hag, corresponds to the
“generalized metric" which can be also independently defined as a symmetric O(D, D)
element, i.e. Hag = Hpa, HaPHEC = §,C. However, in supersymmetric double field
theories it appears that the projectors are more fundamental than the “generalized metric".
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Geometric Constitution of Double Field Theory

@ Integral measure.

While the projectors are weightless, the dilation gives rise to the O(D, D) invariant

integral measure with weight one, after exponentiation,

e 2,
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Geometric Constitution of Double Field Theory

@ Semi-covariant derivative and semi-covariant Riemann curvature.

We define a semi-covariant derivative,

n
— B B
VeTa it Ay = 00Ta ppety — WT TPBCTa Aoty + D ToAPTAy A 1BALy Ay »
i—1

and
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Geometric Constitution of Double Field Theory

@ Semi-covariant derivative and semi-covariant Riemann curvature.

We define a semi-covariant derivative,

n
— B B
VeTatpan =0T mp oty — wTTPoCTa ppety + D ToA P Tay A 1BAL Ay »
=

and a semi-covariant Riemann curvature,
1 E
Sasep = 3 (HABCD + Repag — T ABrECD) .

Here Ragcp denotes the ordinary “field strength" of a connection,

Repag = 0T sep — 98T acp + TacETeD — TcET agD -
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Geometric Constitution of Double Field Theory

@ Semi-covariant derivative and semi-covariant Riemann curvature.

We define a semi-covariant derivative,

n
VT An = 0cTanp Ay — W T880Ta ppeny + > TonBTarn (BAL Ay
i=1

and a semi-covariant “Riemann” curvature,

Spsep = % (RABCD + Rcpas — rEABrECD) .
Here Ragcp denotes the ordinary “field strength" of a connection,

Repas = 0aTsep — 98T aco + Tac™Teep — Tac™T aep -
As I will explain shortly, we may determine the (torsionelss) connection:
Fcag = 2(POcPP) g +2 (PuPPg® — PuPPg®) dpPec
— 525 (PciaPg® + PciaPeP) (9pd + (POEPP)gp)) |

which is the DFT generalization of the Christoffel connection.
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Geometric Constitution of Double Field Theory

The semi-covariant derivative then obeys the Leibniz rule and annihilates the O(D, D)
invariant constant metric,
Vadeec =0.
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Geometric Constitution of Double Field Theory

The semi-covariant derivative then obeys the Leibniz rule and annihilates the O(D, D)
invariant constant metric,

Vadec =0.
A crucial defining property of the semi-covariant “Riemann” curvature is that, under

arbitrary transformation of the connection, it transforms as total derivative,

3Sascp = Viadlgico + Vicol pjas -
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Geometric Constitution of Double Field Theory

The semi-covariant derivative then obeys the Leibniz rule and annihilates the O(D, D)
invariant constant metric,

VaJsc =0.
A crucial defining property of the semi-covariant “Riemann” curvature is that, under

arbitrary transformation of the connection, it transforms as total derivative,

3Sagcp = Viadlgco + Vicol pjas -

Further, the semi-covariant “Riemann” curvature satisfies precisely the same symmetric

properties as the ordinary Riemann curvature,
Sasco = Siag)ico) = Scpas Siascip =0,
as well as additional identities concerning the projectors,
PAP,BPCP.PSppcp=0, PAP,BPkCP.LSpgcp = 0.

It follows that

S8 5=0.
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Geometric Constitution of Double Field Theory

@ The uniqueness of the torsionless connection.

The connection is the unique solution to the following five constraints:
VaPgc =0, VaPgc =0,
Vad = — 3629V a(e29) = 9pd + 3MBpa =0,
Fagc +Tacs =0,
Fagc +Teca+Tcag =0,

PascPE Tper =0, PascPE Tper = 0.
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Geometric Constitution of Double Field Theory

@ The uniqueness of the torsionless connection.

The connection is the unique solution to the following five constraints:
VaPgc =0, VaPge =0,
Vad = — 3629V a(e729) = 9pd + 3TBpa =0,
Fagc +Tacs =0,
Fagc +Teca+Tcag =0,
PascPF Tper =0, PascPFF Tper = 0.

@ The first two relations are the compatibility conditions with all the geometric
objects , or NS-NS sector, in DFT.

@ The third constraint is the compatibility condition with the O(D, D) invariant
constant metric, i.e. VaJge = 0.
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Geometric Constitution of Double Field Theory

@ The uniqueness of the torsionless connection.

The connection is the unique solution to the following five constraints:
VaPgc =0, VaPsc =0,
Vad = —3629Va(6729) = 9pd + TBpa =0,
Fagc +Tace =0,
Fasc +Tsca+Tcag =0,

PascPE Tper =0, PascPE Tper = 0.
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Geometric Constitution of Double Field Theory

@ The uniqueness of the torsionless connection.

The connection is the unique solution to the following five constraints:
VaPgc =0, VaPsc =0,
Vad = —3629Va(6729) = 9pd + TBpa =0,
Fagc +Tace =0,
Fasc +Tsca+Tcag =0,
Pasc EF Tper =0, PascPEF Tper = 0.
@ The next cyclic property makes the semi-covariant derivative compatible with the
generalized Lie derivative as well as with the C-bracket,

Lx(9) = Lx(V), [X, Ylc(9) = [X, Y]c(V).
@ The last formulae are projection conditions which we impose intentionally in

order to ensure the uniqueness.
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Geometric Constitution of Double Field Theory

@ Six-index projection operators.

The six-index projection operators are explicitly,
PeasEr = PcPPlE Pyl + 525 PoiaPgE PRI,
PcasPEF = PcPPulE Pyl + 525 PojaPyEPAID,
which satisfy the ‘projection’ properties,

DEF 5 5 5
PascPEF Pper ! = Pagc PascPEF Ppoer G = Pagc®!

Further, they are symmetric and traceless,

Pascoer = PDEFABC s Pascoer = PaBcIpEF] » PABPapcoer =0,

Pascoer = PDEFABC » Pascoer = PABCIDIEF] » PABPapcper = 0.
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Geometric Constitution of Double Field Theory

Crucially, the projection operator dictates the anomalous terms in the diffeomorphic

transformations of the semi-covariant derivative and the semi-covariant Riemann curvature,

n
(5)(—LA)()VC Ta, “'A":Z 2(P+75)CA1‘ BDEFBDQEXF Tay-A_4 BAi1+An>
=

(0x — £x)SaBco=2V 4 ((7’+75)B][co] EFG@EaFXG) +2Y(¢ ((P+75)D][AB] EFeaEaFXG>~
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Geometric Constitution of Double Field Theory

@ Complete covariantizations.

Both the semi-covariant derivative and the semi-covariant Riemann curvature can be

fully covariantized, through appropriate contractions with the projectors:

PcPPa Bt - Pa,BrVpTa, .. 5,, PcPPa Bt - Pa BV pTg, ..5,,

F"AB,‘E’C1 Dy... PCn AV TBD,..-D, » ,‘_DABPC1 Dy... F’CND”VA Tep, ..., (divergences) ,

PABP, D1 ... Pg, PnV 4V B Tp, .0, » PABpg D1 ... Pg Pnv 4V Tp,...0, (Laplacians),
and
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Geometric Constitution of Double Field Theory

@ Complete covariantizations.

Both the semi-covariant derivative and the semi-covariant Riemann curvature can be

fully covariantized, through appropriate contractions with the projectors:

PcPPy Bt - Py BrVp T, .5, PcPPa B - Py BovpTg, .8,
PABI_DC1 Dy... I_Dcn D”VA TBD1 D s /_DABPC1 Dy... PCND"VA TBD1 ..Dp (divergences),
PABPQ Do /_DCN AV Tp,---Dp > /_:’ABPC1 by... Pan”VAVB Tp,...0, (Laplacians),
and
PaCPgPScept (“Ricci” curvature) ,
(PACPBD — I_’ACI_’BD)SABCD (scalar curvature).
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Geometric Constitution of Double Field Theory

@ Action.

The action of O(D, D) DFT is given by the fully covariant scalar curvature,

/ e~20(PACPED _ pACHBDYg,
p

where the integral is taken over a section, X p.
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Geometric Constitution of Double Field Theory

@ Action.

The action of O(D, D) DFT is given by the fully covariant scalar curvature,

—2d ( pAC pBD pAC pBD
/ e =P P> — PA“P*%)Sapcp
p
where the integral is taken over a section, X p.

The dilation and the projector equations of motion correspond to the vanishing of the

scalar curvature and the “Ricci” curvature respectively.
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Geometric Constitution of Double Field Theory

@ Action.

The action of O(D, D) DFT is given by the fully covariant scalar curvature,

—2d(pAC pBD _ PACE
[ e 2(pIOPR0 — PAOPED) S0,
Xp
where the integral is taken over a section, ¥ p.

The dilation and the projector equations of motion correspond to the vanishing of the

scalar curvature and the “Ricci” curvature respectively.

Note: It is precisely the above expression that allows the ‘1.5 formalism’ to work in the full
order supersymmetric extensions of N' = 1,2, D =10
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Geometric Constitution of Double Field Theory

@ Section.

Up to O(D, D) duality rotations, the solution to the section condition is unique. It is a
D-dimensional section, ¥ p, characterized by the independence of the dual coordinates,

i.e.

1o}
X,
while the whole doubled coordinates are given by

=0,

XA:(;(M,X"),

where p, v are now D-dimensional indices.
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Geometric Constitution of Double Field Theory

@ Riemannian reduction.
To perform the Riemannian reduction to the D-dimensional section, ¥p, we

parametrize the dilation and the projectors in terms of D-dimensional Riemannian

metric, gy, ordinary dilaton, ¢, and a Kalb-Ramond two-form potential, B,

_ g’ -9 'B
Pag — Pag = ,
Bg~' g-Bg'B

e—2d — |g|e—2¢ .
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Geometric Constitution of Double Field Theory

@ Riemannian reduction.
To perform the Riemannian reduction to the D-dimensional section, ¥ p, we

parametrize the dilation and the projectors in terms of D-dimensional Riemannian

metric, gy, ordinary dilaton, ¢, and a Kalb-Ramond two-form potential, By,

—1 —1
_ g -g~'B
Pag — Pag = ; =24 = /|gle2¢.

Bg~' g-Bg~'B

The DFT scalar curvature then reduces upon the section to
(PACPBD — PACPBD)S pcp r, = Flo+ 400 — 40,0019 S H M

where as usual, Hy,.,, = 30\ B,
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Geometric Constitution of Double Field Theory

@ Riemannian reduction.

To perform the Riemannian reduction to the D-dimensional section, ¥ p, we

parametrize the dilation and the projectors in terms of D-dimensional Riemannian

metric, gy, ordinary dilaton, ¢, and a Kalb-Ramond two-form potential, By,

1 1
_ g -g7'B
Pag — Pag = ; =24 = /|gle2¢.
Bg~' g-Bg~'B

The DFT scalar curvature then reduces upon the section to
(PACPBD — PACPBD)S pcp r, = Flo+ 400 — 40,0019 S H M

where as usual, Hy,.,, = 30\ B,

DFT-diffeomorphim = D-dimensional diffeomorphism plus B-field gauge symmetry.
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Geometric Constitution of Double Field Theory

@ Riemannian reduction.

To perform the Riemannian reduction to the D-dimensional section, ¥ p, we
parametrize the dilation and the projectors in terms of D-dimensional Riemannian
metric, gy, ordinary dilaton, ¢, and a Kalb-Ramond two-form potential, By,
—1 —1
- g -97'B
Pag — Pag = ) e 2 = \/|gle=??.
Bg~' g-Bg'B

The DFT scalar curvature then reduces upon the section to
(PACPBD — PACPEDYS p0p g, = ot 406 —40,60"¢ - 15 Hapuw HAMY

where as usual, Hy,, = 30[\B,,-

DFT-diffeomorphim = D-dimensional diffeomorphism plus B-field gauge symmetry.

Up to field redefinitions, the above is the most general parametrization of the
“generalized metric", Hag = Pag — Pag, when its upper left D x D block is

non-degenerate.
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Geometric Constitution of Double Field Theory

@ Non-Riemannian backgrounds.

When the upper left D x D block of Hag = (P—P)ap is degenerate — where g~' might

be positioned — the Riemannian metric ceases to exist upon the section, ¥ p.

Nevertheless, DFT and a doubled sigma model —which I will discuss later— have no

problem with describing such a non-Riemannian background.

An extreme example of such a non-Riemannian background is the flat background

where

Hag = (P—P)ag = Jas -

This is a vacuum solution to the bosonic O(D, D) DFT and the corresponding doubled

sigma model reduces to a certain ‘chiral’ sigma model.
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Geometric Constitution of Double Field Theory

@ Non-Riemannian backgrounds.

When the upper left D x D block of Hag = (P— P)AB is degenerate — where g~ might

be positioned — the Riemannian metric ceases to exist upon the section, X p.

Nevertheless, DFT and a doubled sigma model —which I will discuss later— have no

problem with describing such a non-Riemannian background.

An extreme example of such a non-Riemannian background is the flat background

where
Hag = (P—P)ag = Jns-

This is a vacuum solution to the bosonic DFT and the corresponding doubled sigma

model reduces to a certain ‘chiral’ sigma model.

Allowing non-Riemannian backgrounds, DFT is NOT a mere reformulation of

SUGRA. It describes a new class of string theory backgrounds.
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SUSY
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Based on the differential geometry | just described,

incorporating fermions and the R-R sector (i.e. vielbein formalism),

it is possible to construct the maximally supersymmetric double field theory

to the full order (i.e. quartic order) in fermions.
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N =2 D = 10 Supersymmetric Double Field Theory
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Symmetries of N =2 D =10 SDFT

@ O(D, D) T-duality
@ Gauge symmetries

@ DFT-diffeomorphism (generalized Lie derivative)
@ A pair of local Lorentz symmetries, Spin(1, D—1), x Spin(D—1,1)g

© local V' = 2 SUSY with 32 supercharges.
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Symmetries of N =2 D =10 SDFT

@ O(D, D) T-duality
@ Gauge symmetries

@ DFT-diffeomorphism (generalized Lie derivative)
@ A pair of local Lorentz symmetries, Spin(1, D—1), x Spin(D—1,1)g

© local V' = 2 SUSY with 32 supercharges.

@ All the bosonic symmetries will be realized manifestly and simultaneously.
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Symmetries of N =2 D =10 SDFT

@ O(D, D) T-duality
@ Gauge symmetries

@ DFT-diffeomorphism (generalized Lie derivative)
@ A pair of local Lorentz symmetries, Spin(1, D—1), x Spin(D—1,1)g

© local V' = 2 SUSY with 32 supercharges.

@ All the bosonic symmetries will be realized manifestly and simultaneously.

@ The theory is chiral with respect to both Local Lorentz groups.
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Symmetries of N =2 D =10 SDFT

@ O(D, D) T-duality
@ Gauge symmetries

@ DFT-diffeomorphism (generalized Lie derivative)
@ A pair of local Lorentz symmetries, Spin(1, D—1), x Spin(D—1,1)g

© local V' = 2 SUSY with 32 supercharges.

@ All the bosonic symmetries will be realized manifestly and simultaneously.
@ The theory is chiral with respect to both Local Lorentz groups.

@ Consequently, there is no distinction of lIA and IIB — Unificaiton of IIA and IIB
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Symmetries of N =2 D =10 SDFT

@ O(D, D) T-duality

@ Gauge symmetries

@ DFT-diffeomorphism (generalized Lie derivative)
@ A pair of local Lorentz symmetries, Spin(1, D—1), x Spin(D—1,1)g

© local V' = 2 SUSY with 32 supercharges.

@ All the bosonic symmetries will be realized manifestly and simultaneously.
@ The theory is chiral with respect to both Local Lorentz groups.
@ Consequently, there is no distinction of lIA and IIB — Unificaiton of IIA and IIB

@ While the theory is unique, it contains type IIA and 1B SUGRA backgrounds as
different kind of solutions.
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Symmetries of N =2 D =10 SDFT

@ O(D, D) T-duality
@ Gauge symmetries

@ DFT-diffeomorphism (generalized Lie derivative)
@ A pair of local Lorentz symmetries, Spin(1, D—1), x Spin(D—1,1)g

© local V' = 2 SUSY with 32 supercharges.
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Symmetries of N =2 D =10 SDFT

@ O(D, D) T-duality
@ Gauge symmetries

@ DFT-diffeomorphism (generalized Lie derivative)
@ A pair of local Lorentz symmetries, Spin(1, D—1), x Spin(D—1,1)g

© local V' = 2 SUSY with 32 supercharges.

@ For this, it is crucial to have the right field variables.
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Symmetries of N =2 D =10 SDFT

@ O(D, D) T-duality

@ Gauge symmetries

@ DFT-diffeomorphism (generalized Lie derivative)
@ A pair of local Lorentz symmetries, Spin(1, D—1), x Spin(D—1,1)g

© local V' = 2 SUSY with 32 supercharges.

@ For this, it is crucial to have the right field variables.

@ We shall postulate O(D, D) covariant genuine DFT-field-variables, and NOT employ
Riemannian variables such as metric, B-field, R-R p-forms.
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Field contents of N =2 D = 10 SDFT

@ Bosons
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Field contents of N =2 D = 10 SDFT

@ Bosons

DFT-dilaton: d
@ NS-NS sector

DFT-vielbeins: Vap,  Vap
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Field contents of N =2 D = 10 SDFT

@ Bosons
DFT-dilaton: d
o NS-NS sector
DFT-vielbeins: Vap,  Vap
o R-R potential: C%
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Field contents of N =2 D = 10 SDFT

@ Bosons
DFT-dilaton: d
o NS-NS sector
DFT-vielbeins: Vap,  Vap
o R-R potential: C%

@ Fermions
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Field contents of N =2 D = 10 SDFT

@ Bosons
DFT-dilaton: d
@ NS-NS sector
DFT-vielbeins: Vap,  Vap
o R-R potential: C%
@ Fermions
o DFT-dilatinos: P, p°
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Field contents of N =2 D = 10 SDFT

@ Bosons
DFT-dilaton: d
@ NS-NS sector
DFT-vielbeins: Vap,  Vap
o R-R potential: C%
@ Fermions
o DFT-dilatinos: P, P
o Gravitinos: Uy

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Field contents of N =2 D = 10 SDFT

@ Bosons
DFT-dilaton: d
o NS-NS sector
DFT-vielbeins: Vap,  Vap
o R-R potential: C%
@ Fermions
o DFT-dilatinos: %, e
o Gravitinos: Uy
Index Representation Metric (raising/lowering indices)
AB,--- O(D, D) & DFT-diffeom. vector JaB
0.q, - Spin(1, D—1), vector 1pg = diag(— + +- - - +)
@, B, Spin(1, D—1), spinor Ciap, (P =cCirPCy!
PG, - Spin(D—1, 1)g vector Mpg = diag(+ — — -+ —)
&, 8, Spin(D—1, 1)z spinor Ciap (P = ¢papC!
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Field contents of N =2 D = 10 SDFT

@ Bosons
DFT-dilaton: d
@ NS-NS sector
DFT-vielbeins: Vap,  Vap
o R-R potential: C%
@ Fermions
o DFT-dilatinos: P, P
o Gravitinos: 2y Uy

R-R potential and Fermions carry NOT (D + D)-dimensional
BUT undoubled D-dimensional indices.
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Field contents of N =2 D = 10 SDFT

@ Bosons
DFT-dilaton: d
o NS-NS sector
DFT-vielbeins: Vap,  Vap
o R-R potential: C%
@ Fermions
o DFT-dilatinos: P, P
o Gravitinos: 2y Uy

A priori, O(D, D) rotates only the O(D, D) vector indices (capital Roman), and
the R-R sector and all the fermions are O(D, D) T-duality singlet.

The usual lIA < IIB exchange will follow only after fixing a gauge.
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Field contents of N =2 D = 10 SDFT

@ Bosons
DFT-dilaton: d
o NS-NS sector
DFT-vielbeins: Vap,  Vap
o R-R potential: C%
@ Fermions
o DFT-dilatinos: P, P
o Gravitinos: 2y Uy

All the fields are required to satisfy the section condition,

040°=0.
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ble Field Theory



@ The DFT-dilaton gives rise to a scalar density with weight one,

e 2,
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@ The DFT-dilaton gives rise to a scalar density with weight one,

e 2,

@ The DFT-vielbeins satisfy the four defining properties:

VapVAg=mpq,  VapVAG =1pg, VapVA =0,  VapVP + VapVisP = Tas.
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@ The DFT-dilaton gives rise to a scalar density with weight one,

e 2,

@ The DFT-vielbeins satisfy the four defining properties:

VapVAg=mpg, VgV =1pg, VapV25=0, VapVsP + VapVisP = Jas.

@ For fermions, the gravitinos and the DFT-dilatinos are not twenty, but

ten-dimensional Majorana-Weyl spinors,
P+ Dyp = c9pp, yP+Hp = —cp,
’7(D+1)¢;; — c/,(/);7 , ’_Y(DJrUP/ — _c/p/7

where ¢ and ¢’ are arbitrary independent two sign factors, ¢ = ¢/2 = 1.
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@ The DFT-dilaton gives rise to a scalar density with weight one,

e 2,

@ The DFT-vielbeins satisfy the four defining properties:

VapVAg=mpg, VgV =1pg, VapV25=0, VapVsP + VapVisP = Jas.

@ For fermions, the gravitinos and the DFT-dilatinos are not twenty, but

ten-dimensional Majorana-Weyl spinors,
P+ Dyp = c9pp, yP+Hp = —cp,
’7(D+1)¢;; — c/,(/);7 , ’_Y(DJrUP/ — _c/p/7

where ¢ and ¢’ are arbitrary independent two sign factors, ¢ = ¢/2 = 1.

@ Lastly for the R-R sector, we set the R-R potential, C*45, to be in the bi-fundamental
spinorial representation of Spin(1, D—1); x Spin(D—1,1)g. It possesses the chirality,

A(DE)e5(0H) — e/ C .
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@ Spin(1, D—1); x Spin(D—1,1)g chiralities:
APy = ey, A PHp = —cp,
PNy, = ey, PN = —¢'p’,

,Y(D+1)C,—Y(D+1) —cc'C.
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@ Spin(1, D—1); x Spin(D—1,1)g chiralities:
APy = ey, A PHp = —cp,
PNy, = ey, PN = —¢'p’,
,Y(D+1)C,—Y(D+1) —cc'C.

@ A priori all the possible four different sign choices are equivalent up to
Pin(1, D—1), x Pin(D—1,1)R rotations.
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@ Spin(1, D—1); x Spin(D—1,1)g chiralities:

AP eps = e, AP = —cp,
PNy, = ey, PN = —¢'p’,
,Y(D+1)C,—Y(D+1) —cc'C.

@ A priori all the possible four different sign choices are equivalent up to
Pin(1, D—1), x Pin(D—1,1)R rotations.

@ That is to say, N =2 D = 10 SDFT is chiral with respect to both Pin(1, D—1); and
Pin(D—1,1)R, and the theory is unique, unlike ITA /IIB SUGRAs.
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@ Spin(1, D—1); x Spin(D—1,1)g chiralities:

AP eps = e, AP = —cp,
PNy, = ey, PN = —¢'p’,
,Y(D+1)C,—Y(D+1) —cc'C.

@ A priori all the possible four different sign choices are equivalent up to
Pin(1, D—1), x Pin(D—1,1)R rotations.

@ That is to say, N =2 D = 10 SDFT is chiral with respect to both Pin(1, D—1); and
Pin(D—1,1)R, and the theory is unique, unlike ITA /IIB SUGRAs.

@ Hence, without loss of generality, we may safely set

c=c =+1.
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@ Spin(1, D—1); x Spin(D—1,1)g chiralities:

AP eps = e, AP = —cp,
'_Y(D+1)¢;; — c/w;) , ’7(D+1)/J/ =—c'p,
’Y(D+1)C’_Y(D+1) —cc'C.

@ A priori all the possible four different sign choices are equivalent up to
Pin(1, D—1), x Pin(D—1,1)R rotations.

@ That is to say, N =2 D = 10 SDFT is chiral with respect to both Pin(1, D—1); and
Pin(D—1,1)R, and the theory is unique, unlike ITA /IIB SUGRAs.

@ Hence, without loss of generality, we may safely set
c=c =+1.

@ Later we shall see that while the theory is unique, it contains type ITA and IIB

supergravity backgrounds as different kind of solutions.
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@ The DFT-vielbeins generate a pair of two-index projectors,

Pag := VaPVpp, PABPgC = P,C, Pag := VaPVgp, PABPgC = P4C,
which are symmetric, orthogonal and complementary to each other,

Pas = Pga, Pag = Pea, P4PPg¢ =0, PaB 4 PaP = 548.
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@ The DFT-vielbeins generate a pair of two-index projectors,

Pag := VaPVpp, PABPgC = P,C, Pag := VaPVgp, PABPgC = P4C,
which are symmetric, orthogonal and complementary to each other,

Pas = Pga, Pag = Pea, P4PPg¢ =0, PaB 4 PaP = 548.

@ It follows

PaBVigp = Vyp, PaBVgp = Vgp, PaBVpg, =0, PaBVgp=0.
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@ The DFT-vielbeins generate a pair of two-index projectors,
Pag = VaPVey,  PaPPgC =PaC,  Pag:=VaPVgp,  PaPPgC=PaC,
which are symmetric, orthogonal and complementary to each other,

Pas = Pga, Pag = Pea, P4PPg¢ =0, PaB 4 PaP = 548.

@ It follows

PaBVigp = Vyp, PaBVigp = Vpp, PaBVpg, =0, PaBVgp =

@ Note also
Hag = Pag — Pag.

However, our emphasis lies on the ‘projectors’ rather than the “generalized metric".
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@ Surely we also get the six-index projectors
PeasPEF := PePPWE Pl + 525 PoiaPgEPFIP . PoagPEF PpgrGHl = PpagtH
Pcag”F = PcPPalE Pyl + 525 PoiaPglEPFAIP, PeagPEF Pper Ml = Poag
which are symmetric and traceless,
Pcasper = Ppercas = Pcias|pler] » Peasper = Poercas = Peiasipier) »
PApsper =0,  PABPagcper =0, PAsper =0,  PABPagcper =0,

and play crucial roles in the construction of the completely covariant derivatives and

curvatures.
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@ Having all the ‘right’ field-variables prepared, we now discuss their derivatives or

‘semi-covariant derivatives’ .
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Semi-covariant derivatives

@ For each gauge symmetry we assign a corresponding connection,

o T[4 for the DFT-diffeomorphism (generalized Lie derivative),
o &, for the ‘unbarred’ local Lorentz symmetry, Spin(1, D—1),,

@ &, for the ‘barred’ local Lorentz symmetry, Spin(D—1,1)g.
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Semi-covariant derivatives

@ For each gauge symmetry we assign a corresponding connection,

o T[4 for the DFT-diffeomorphism (generalized Lie derivative),
o &, for the ‘unbarred’ local Lorentz symmetry, Spin(1, D—1),,

@ &, for the ‘barred’ local Lorentz symmetry, Spin(D—1,1)g.

@ Combining all of them, we introduce master ‘semi-covariant’ derivative

'DA:8A+FA+¢A+(BA.
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@ It is also useful to set

Va=0a+T4, DA:8A+¢A+&>A-
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@ It is also useful to set

Va=0a+T4, DA:8A+¢'A+q->A-

@ The former is the ‘semi-covariant’ derivative for the DFT-diffeomorphism (set by the

generalized Lie derivative),

n
. B B
VcTA1A2.HAn = BCTA1A2<--A,7 —wl BCTA1A2.HAH Jrz I'CAI. TA1A“AI._1BAI.+1H.A,,.
i=1
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@ It is also useful to set

Va=0a+T4, DA:8A+¢'A+q->A-
@ The former is the ‘semi-covariant’ derivative for the DFT-diffeomorphism (set by the
generalized Lie derivative),

n
. B B
VcTA1A2.HAn = BCTA1A2<--A,7 —wl BCTA1A2.HAH Jrz I'CAI. TA1A“AI._1BAI.+1H.A,,.
i=1

@ And the latter is the covariant derivative for the Spin(1, D—1); x Spin(D—1,1)pg local

Lorenz symmetries.
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@ By definition, the master derivative annihilates all the ‘constants’,
DaJsc = VaTsc = Tas®Toc + TacPTep = 0
Danpg = Danpg = ®ap"nrqg + Pag"npr =0,
Dailpg = Daflpg = Pap’iirg + Pag iipr = 0,

DACtap = DaCrap = a0’ Crss + Pa5°Cras =0,

DAC‘+&B:DAC+& =y 6& +53 + Egé+dg=0,
including the gamma matrices,

Da(7P)*s = Da(vP)* 5 = ®aPg(v9)* 5 + ®a%5(17)° 5 — (1P)*s®a’5 = 0,

Da(3P)% 5 = Da(3P)% 5 = ®aPg(79)% 5 + Pa%5(P)° 5 — (7P)% 5% 5 = 0.
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@ It follows then that the connections are all anti-symmetric,

Fasc = —Tacs,
Papg = —Pagp Paap = —Paga
Papg = —Pagps  Paas = —Paza>
and as usual,
Dp%5 = 1 Papg(YP9) 5, 455 = 1Papg (P 5.

Jeong-Hyuck Park
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@ Further, the master derivative is compatible with the whole NS-NS sector,

Dpd = Vad = 7%62dVA(672d) = 0pd + %FBBA =0,
DpVap = 9aVap + TasCVop + Pap?Vig =0,

Da VB;_) =0 VB,L_) + rABC_VC[) + ‘T)Aﬁa VB‘_? =0.
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@ Further, the master derivative is compatible with the whole NS-NS sector,

Dpd = Vad = 7%62dVA(672d) = 0pd + %FBBA =0,
DpVap = 9aVap + TasCVop + Pap?Vig =0,

Da VB;_) =0 VB,L_) + rABC_VC[) + ‘T)Aﬁa VB‘_? =0.

@ It follows that
DaPgc = VaPgc =0, DaPpc = VaPpc =0,
and the connections are related to each other,
Tasc = VBPDaVep + VaPDaVep
Papg = VBpV Ve,

a)Apa = \_/BI,VA \_/Ba .
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@ The connections assume the following most general forms:
Foas = Mg + AcpgVaP Va9 + Acpg VaP VT,

Dapg = Phpg + Dapg s

Dapg = Phpg + Lapg -

Here r%‘AB is the torsionless DFT-Christoffel connection which we fixed earlier,

Teag = 2(POcPP) g +2 (PuPPg® — PuPPg®) dpPec

— o7 (PoiaPe® + PeiaPa)®) (90d + (PO PP)ep)) ,

and, with the corresponding derivative, V9 = 94 + I,

Phpg = VEoVaVag = VEpOaVig + MipcVopVEa.
®hpg = V5V Veg = VEp0aVeg + Mpc VOV 5 -
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@ The connections assume the following most general forms:
Foas = Mg + Acpg VaP Va9 + Acpg VaP VT,
Papg = Py + Bapg s

¢Aﬁ_"_7 = ¢?4b(—7 + AApa .
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@ The connections assume the following most general forms:
Feas = Mag + Acpg VaP V9 + Acpg VaP Vel
Papg = Py + Bapg s
Dapg = g + Bapg -

@ Further, the extra pieces, Agpq and AAI_?G’ correspond to the torsion of SDFT, which

must be covariant and, in order to maintain Dad = 0, must satisfy
DppgV# =0, Dapg VP =0.

Otherwise they are arbitrary.
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@ The connections assume the following most general forms:
Foas = Mg + Acpg VaP Va9 + Acpg VaP VT,

Papg = Phog + Dapg »

Papg = P + Dapg -

Apg

@ Further, the extra pieces, Agpq and AAI_?G’ correspond to the torsion of SDFT, which

must be covariant and, in order to maintain Dad = 0, must satisfy
DppgV# =0, Dapg VP =0.

Otherwise they are arbitrary.

@ As in SUGRA, the torsion can be constructed from the bi-spinorial objects, e.g.

Pypq¥a,  Upvavg,  PrapgP,  UpvapgdP

where we set 14 = \7Ap¢p, Y4 = VaPyp .

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Semi-covariant curvature

@ The usual curvatures for the three connections,

Rcoas = daT sep — 98T aco + TacETeep — T aep

FAqu = 8A¢qu - 8B':')qu + q’Aprd)qu - ¢'Bpr¢’Arq s

Faspg = 0a®spg — 0P apg + Papr®s’g — Psr®a’s .
are, from [Da, Dp]Vep = 0 and [Dy, Dg] \70;‘7 =0, related to each other,

Rascp = Feopq VaP Vs? + Foppg VaP Va9 .
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Semi-covariant curvature

@ The usual curvatures for the three connections,

Rcoas = daT sep — 98T aco + TacETeep — T aep

FAqu = 8A¢qu - 8B':')qu + q’Aprd)qu - ¢'Bpr¢’Arq s

Faspg = 0a®spg — 0P apg + Papr®s’g — Psr®a’s .
are, from [Da, Dp]Vep = 0 and [Dy, Dg] \70;‘7 =0, related to each other,

Rascp = FoppgVaP Ve + Foppg VaP Vgl

@ However, the crucial object in DFT is

Spscp == 3 (RABCD + Rcpas — rEABrECD) ,

which we named the semi-covariant “Riemann” curvature.
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Properties of the semi-covariant curvature
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Properties of the semi-covariant curvature

@ Precisely the same symmetric property as the ordinary Riemann curvature,

Snaco = 3 (Susco) + Sicojag) »

S =0.

0
[ABC]ID
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Properties of the semi-covariant curvature

@ Precisely the same symmetric property as the ordinary Riemann curvature,

Snaco = 3 (Susco) + Sicojag) »

S =0.

0
[ABC]ID

@ Projection property,
P/A/_DJBPKCI-JLDSABCD =0.
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Properties of the semi-covariant curvature

@ Precisely the same symmetric property as the ordinary Riemann curvature,

Snaco = 3 (Susco) + Sicojag) »

S =0.

0
[ABC]ID

@ Projection property,
P/A/_DJBPKCI-JLDSABCD =0.

@ Under arbitrary variation of the connection, 6l 45¢, it transforms as

5Sasco = DadT giop + Dicdl pjas — ST(ase1dTEco — 3T(opgydTE s

3Shscp = PadTgcp + DicoTpjag -
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‘Semi-covariance’

@ In general, as discussed earlier in this talk, under DFT-diffeomorphisms the variation
of the semi-covariant derivative contains an anomalous part dictated by the six-index
projectors,

ox (VC TA1 "'An) = EAX (VC TA1 "'An) + Z 2(P+75)CA/.BFDE8F8[DXE] T.B..,
i

and hence,
ox # Lx.
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‘Semi-covariance’

@ In general, as discussed earlier in this talk, under DFT-diffeomorphisms the variation
of the semi-covariant derivative contains an anomalous part dictated by the six-index
projectors,

ox (VC TA1 "'An) = EAX (VC TA1 "'An) + Z 2(P+75)CA/.BFDE8F8[DXE] T.B..,
i

and hence,
ox # Lx.

@ However, the characteristic property of our master semi-covariant derivative is that,
contracted with the projectors, vielbeins as well as gamma matrices, it can generate
various fully covariant quantities, as listed below.

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Projector-aided, fully covariant derivatives

@ For O(D, D) tensors: we recall
PcPPa, B Pa,B - Pa,PrYpTa 5, .5,

PcPPp,B1PyB2 .. Py BV Tp 5,8,

ABp . Dy p_. D. p. D
P PC1 1P02 2"'PCn "VATBD1D2-~D,1» )
Divergences,

F’ABF’C1 b P02D2 e PCnDnVATBD1 Dy---Dn

PABPC1 by PCZDZ “'PCnD"VAVBTmDQmDn s .
Laplacians .

:‘:’ABPC1 Dy PC2D2 cee PCnD"VAvBTD1D2~~Dn
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Projector-aided, fully covariant derivatives

@ For Spin(1,D—1); x Spin(D—1, 1)z tensors:

DpTg1G5+-an - DpTa100---an »

DP Ty Gp---Gn » DpTﬁqumqn,

DpDP T30 » DpDPTg105--an »
where we set

Dp := VApDA7 Dp = VApDA.

These are the pull-back of the previous results using the DFT-vielbeins.
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Projector-aided, fully covariant derivatives

@ Dirac operators for fermions, p®, u— p'e z/’” :

YPDpp = vADap, YPDpbp = YA Davp
Dpp DpypP = Dy,

PAyp(Davg — 3Dgta) ,

FPDpp' = 3ADap’ , YPDpihp = A Datp
Doy, Dpy'P = Dpyp'A,

VA5p(Davy — 3Daibly) -

Incorporation of fermions into DFT
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Projector-aided, fully covariant derivatives

@ For Spin(1, D—1),; x Spin(D—1, 1)z bi-fundamental spinorial fields, T

Dy T :=ADpT + v PHID,THA,

D_T .= ’YADAT _ ’Y(D+1)DAT’7A .
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Projector-aided, fully covariant derivatives

@ For Spin(1, D—1), x Spin(D—1, 1) bi-fundamental spinorial fields, 7 5:

Dy T :=ADpT + v PHID,THA,

D_T:= ’YADAT _ ’Y(D+1)DAT’7A .

@ Especially for the torsionless case, the corresponding operators are nilpotent

(DY)2T =0, (D° 2T =0,

and hence, they define O(D, D) covariant cohomology.
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Projector-aided, fully covariant derivatives

@ For Spin(1, D—1), x Spin(D—1, 1) bi-fundamental spinorial fields, 7 5:

Dy T :=ADpT + v PHID,THA,

D_T:= ’YADAT _ ’Y(D+1)DAT’7A .

@ Especially for the torsionless case, the corresponding operators are nilpotent

(DY)2T =0, (D° 2T =0,

and hence, they define O(D, D) covariant cohomology.

@ The field strength of the R-R potential, C* 5, is then defined by

F = DiC.
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Projector-aided, fully covariant derivatives

@ For Spin(1, D—1), x Spin(D—1, 1) bi-fundamental spinorial fields, 7 5:

Dy T :=ADpT + v PHID,THA,

D_T:= ’YADAT _ ’Y(D+1)DAT’7A .

@ Especially for the torsionless case, the corresponding operators are nilpotent

(DY)2T =0, (D° 2T =0,

and hence, they define O(D, D) covariant cohomology.

@ The field strength of the R-R potential, C* 5, is then defined by
F = DiC.
@ Thanks to the nilpotency, the R-R gauge symmetry is simply realized

5C=D5A = §F =D4(5C) = (DY)2A=0.
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Projector-aided, fully covariant curvatures

@ Scalar curvature:
( pABpCD _ pAB pcu) Sacep -
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Projector-aided, fully covariant curvatures

@ Scalar curvature:
( pABpCD _ pAB I‘;CD) Sacep -

@ “Ricci” curvature:
L 1 A T o
Spg + 3Drbpg’ + 3Dy,
where we set

Spg = VApVB5Ss8, Sag = Sacs® .
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Combining all the results above, we are now ready to spell

@ N =2 D =10 Supersymmetric Double Field Theory

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



N =2D=10SDFT [1210.5078]

@ Lagrangian :
Lrypent = 6724 [L(PABPOD — PABPCD) S5, + JTu(FF) — ipFp' + ithp1aF3Pu'd

+i3p1PDp — iPDEp — iL Py IDGup — i35 PDY o + iBPDY ' + i3 HPIDE |

where F%,, denotes the charge conjugation, F := CI1FTC+.

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



N =2D=10SDFT [1210.5078]

@ Lagrangian :
Laypens = €2 [§(PABPOD — PABPOD)S o) + JTe(FF) — IpFp! + i FAPu'

+i3p1PDp — iPDEp — iL Py IDGup — i35 PDY o + iBPDY ' + i3 HPIDE |

where F%,, denotes the charge conjugation, F := CI1FTC+.

@ As they are contracted with the DFT-vielbeins properly,
every term in the Lagrangian is fully covariant.
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N =2D=10SDFT [1210.5078]

@ Lagrangian :
Lrypen = €729 [%(PABPCD — PABPCD)Sycpp + 3 Tx(FF) — ipFp' + ipyqF3Py'd

+i3p1PDyp — iBPDyp — i UPYIDGup — i35 APDY o + iBPDY ' + i3 HPTIDL ]
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N =2D=10SDFT [1210.5078]

@ Lagrangian :
Lrypent = 6729 J(PABPOD — PABPOD) S, ooy + ITu(FF) — ipFp! + idhpya FiPu!d
+ig5yPDpp — i0PDEp — i3 0Py IDgep — i35 APDY o' + i'PD p + i3/ PRIDE Y ]
@ Torsions: The semi-covariant curvature, Sagep, is given by the connection,
Tasc = TOgc +igPvasce — 2ipvectoa — i3UPYascYp + 4idByatc
+ i35 3aBce’ — 2ip' Tact’ A — I3%"PTascY b + 40 BIAY ¢ 5

which corresponds to the solution for 1.5 formalism.

The master derivatives in the fermionic kinetic terms are twofold:

D, for the unprimed fermions and Di\* for the primed fermions, set by

Tisc = TaBc — igsPrasce + i307vBcYA + i WPyactp — 2idsyatbc + 37 Y8c' A

Mise = Tasc — i3s0"Ansce’ + 155 80V A + i 53 0"PAascY p — 200 874 ¢ + 13 PYBCYA -
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N =2D=10SDFT [1210.5078]

@ The N = 2 supersymmetry transformation rules are
6.d=—is(Ep+&p),
6e Vap = IVa9(Z'3g1p — Evptlg) »
8e Viap = IVa%(Evqyp — E'3p04)
0:C = i} (YPethp — ep' — Yp' AP + p&') + Co=d — F(VAG 6= Vap)y @+ yPCHT
8ep = —vPDpe + iz7Pe Ppp’ — iWPYIE 505,
8ep' = —APDLe + i37Pe’ dpp — i59pE Py
Stp = Dpe + (F — igyIpdy + izv9 5'3g)3pe’ + igedpp + izvpép,
S:0p = Dpe’ + (F — i377p"g + i3 9pvq)vpe + i4e' Ppp’ + i5vpep’
where
Fasc = Tasc — i35 PvacP + i3 PvBcYA + i3 UPYABCYR — Bith YAt ,

e = Tasc — igP' Jasck’ + 130" ABcY a + i 39"PTasct’p — Bivbsyathc -
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N =2D=10SDFT [1210.5078]

@ Lagrangian :
Lrypers = €729 [%(PABPCD — PABPCD)Spcpp + 3 Te(FF) — ipFp' + idprgFAPy'

+i5p1PDgp — iTPDEp — iLIPY D — i35 TPDR pf + iUPDY o + ST PAID W]
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N =2D=10SDFT [1210.5078]

@ Lagrangian :
Lrypers = €729 [%(PABPCD — PABPCD)Spcpp + 3 Te(FF) — ipFp' + idprgFAPy'

+i3 PP Dyp — iBPDyp — i3 PPyI DG — i3 pAPDY p! + i PDy o + i39/PYIDL g p] .

@ The Lagrangian is pseudo : It is necessary to impose a self-duality of the R-R field

strength by hand,
F_= (1 —’y(DH)) (]:— i%pﬁ' + i%'ypzpazz;ﬁ/a) =0.
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N =2D=10SDFT [1210.5078]

@ Under the N' = 2 SUSY transformation rule, the Lagrangian transforms, disregarding
total derivatives, as
SeLorypert & — 10720 VA5 Vo T (fypﬁ, ,—yaf) ,
where
Foi= (1= 0) (F = ifod + it uaipd) -
This verifies, to the full order in fermions, the supersymmetric invariance of the action,
modulo the self-duality.
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N =2D=10SDFT [1210.5078]

@ Under the N' = 2 SUSY transformation rule, the Lagrangian transforms, disregarding

total derivatives, as
SeLorypert & — 10720 VA5 Vo T (fypﬁ, ,—yaf) ,
where
Foi= (1= 0) (F = ifod + it uaipd) -
This verifies, to the full order in fermions, the supersymmetric invariance of the action,
modulo the self-duality.

@ For a nontrivial consistency check, the supersymmetric variation of the self-duality

relation is precisely closed by the equations of motion for the gravitinos,

S F_ =i (ﬁ,ap + vPDpip — ’Ypf’_)’b’l//p) F3P — iyPe (ﬁﬁﬁ/ + 75';#[’;;“7’3 - @D’Ypfﬁﬁ) .
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Equations of Motion for Bosons
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Equations of Motion for Bosons

@ DFT-vielbein:
Spa+Tr (1 FAgF)+iprpDap+2ibgDpp—itPypDavop+ip 34 Dpp +2id pDgp’ —ith 55 Dpirg= 0.

This is DFT-generalization of Einstein equation.
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Equations of Motion for Bosons

@ DFT-vielbein:

Spa+Tr (1 FAgF)+iprpDap+2ibgDpp—itPypDavop+ip 34 Dpp +2id pDgp’ —ith 55 Dpirg= 0.
This is DFT-generalization of Einstein equation.

@ DFT-dilaton:

Lrypern = 0.

Namely, the on-shell Lagrangian vanishes!
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Equations of Motion for Bosons

@ DFT-vielbein:
Spa+Tr (1 FAgF)+iprpDap+2ibgDpp—itPypDavop+ip 34 Dpp +2id pDgp’ —ith 55 Dpirg= 0.

This is DFT-generalization of Einstein equation.

@ DFT-dilaton:
Lryperr = 0.

Namely, the on-shell Lagrangian vanishes!

@ R-R potential:
DY (F —ipp + i 4s0/7°) =0,
which is automatically met by the self-duality, together with the nilpotency of Di,

DY (F = ipp +iv"ysii5®) = DL (4 PHIF) = —yPHIDLF = —(PH)(DE 2c = 0.
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Equations of Motion for Bosons

@ DFT-vielbein:
Spa+Tr (1 FAgF)+iprpDap+2ibgDpp—itPypDavop+ip 34 Dpp +2id pDgp’ —ith 55 Dpirg= 0.

This is DFT-generalization of Einstein equation.

@ DFT-dilaton:
Lryperr = 0.

Namely, the on-shell Lagrangian vanishes!

@ R-R potential:
DY (F —ipp + i 4s0/7°) =0,
which is automatically met by the self-duality, together with the nilpotency of Di,

DY (F = ipp +iv"ysii5®) = DL (4 PHIF) = —yPHIDLF = —(PH)(DE 2c = 0.

@ The 1.5 formalism works: The variation of the Lagrangian induced by that of the

connection is trivial, §Lrype1r = 0 agc X 0.
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Equations of Motion for Fermions

@ DFT-dilatinos,

P Dop — Dy — Fp' =0, 3PDpp’ — Dpyp’? — Fp=0.
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Equations of Motion for Fermions

@ DFT-dilatinos,

P Dop — Dy — Fp' =0, 3PDpp’ — Dpyp’? — Fp=0.

@ Gravitinos,

ﬁﬁp + 'Ypﬁpwﬁ —YPF3Y'p =0, Dop’ + Wﬁﬁbiﬁ/p - ’7‘_7-7?%1/1[7 =0.
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Truncationto /=1 D = 10 SDFT [1112.0069]

@ Turning off the primed fermions and the R-R sector truncates the N'=2 D = 10
SDFT to N =1 D =10 SDFT,

Lar—1 = 672§ (PABPCD — PABPCD) Sycpp + i3 7 D — i Dp — i3 0B+ D] -

@ N =1 Local SUSY:
6ed  =—izp,
0eVap = —ipYa,
6-Vap = igvayp,
5ep = —"Dae,

55%‘7

\_/AF')@AE - I%(ﬁl/)p)fi + I%(gp)wp .
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N =1 SUSY Algebra [1112.0069]

@ Commutator of supersymmetry reads
[651 ) 552] = £X3 + 553 + 5SO(‘I 9 + 5so(9,1)g + trivial -

where

X3 = ig1y"ez, e3 = i} [(F17Pe2)vpp + (Pe2)et — (pet)e2] . et

and dirivial corresponds to the fermionic equations of motion.
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Now | am going to sketch
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Now | am going to sketch

@ the parametrization of the DFT-field-variables in terms of Riemannian ones,
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Now | am going to sketch

@ the parametrization of the DFT-field-variables in terms of Riemannian ones,

@ the diagonal gauge of Spin(1,D—1); x Spin(D—1,1)g,
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Now | am going to sketch
@ the parametrization of the DFT-field-variables in terms of Riemannian ones,

@ the diagonal gauge of Spin(1,D—1); x Spin(D—1,1)g,
@ the reduction of SDFT to SUGRA,
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Now | am going to sketch

@ the parametrization of the DFT-field-variables in terms of Riemannian ones,
@ the diagonal gauge of Spin(1,D—1); x Spin(D—1,1)g,
@ the reduction of SDFT to SUGRA,

@ and the ‘unification’ of lIA and IIB.
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Now | am going to sketch

@ the parametrization of the DFT-field-variables in terms of Riemannian ones,
@ the diagonal gauge of Spin(1,D—1); x Spin(D—1,1)g,
@ the reduction of SDFT to SUGRA,

@ and the ‘unification’ of lIA and IIB.

@ Nevertheless, we emphasize that SDFT can describe not only Riemannian (SUGRA)
backgrounds but also new type of non-Riemannian (“metric-less”) string theory
backgrounds.

@ Note also ‘global’ aspects of interest in DFT:

o T-fold
e “non-geometry”
o Scherk-Schwarz
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Parametrization: Reduction to Generalized Geometry

@ Recall the defining algebraic properties of the DFT-vielbeins,

VapVAg=mpq,  VapVAG =1pg, VapVP =0,  VapVgP + VapVisP = Tus.
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Parametrization: Reduction to Generalized Geometry

@ Recall the defining algebraic properties of the DFT-vielbeins,

VapVAg=mpq,  VapVAG =1pg, VapVP =0,  VapVgP + VapVisP = Tus.

@ We may parametrize the solution in terms of Riemannian variables.
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Parametrization: Reduction to Generalized Geometry

@ Recall the defining algebraic properties of the DFT-vielbeins,
VapVAg=mpq,  VapVAG =1pg, VapVP =0,  VapVgP + VapVisP = Tus.
@ We may parametrize the solution in terms of Riemannian variables.

@ Assuming that the upper half blocks are non-degenerate, the DFT-vielbein takes the
general form,

. (e ")p*

Vap = I

e
(B+e)up (B+8).p

Here e,P and 8,P are two copies of the D-dimensional vielbeins, or zehnbeins,
corresponding to the same spacetime metric,

and further, Bp = Buu(ef1 )o”s Bup = B;tt/(571 )"
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Parametrization: Reduction to Generalized Geometry

@ Instead, we may choose an alternative parametrization,

(B+ @& (B+@&mP

VP = % , p= 1 )
(Gl (&P
where 1P = grv(8=1)P,, giP = grv(3=1)P,, and ékp, é”p correspond to

a pair of T-dual vielbeins for winding modes,

B p8Y gl = —8"p8"gnP? = (g — Bg'B)T V.

@ Note that in the T-dual winding mode sector, the D-dimensional curved spacetime

indices are all upside-down: X,,, &"p, &5, BV (cf x*, e,P, 8,P, By.).
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Parametrization: Reduction to Generalized Geometry

@ Two parametrizations:

[ e e
VAp = 7z s Ab =
(B+€)up (B+8)up
versus
2)HP 2)HP
VApzﬁ (B+8) 7 _Aﬁ:% (8+8)
(& 1)P, (8P,
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Parametrization: Reduction to Generalized Geometry

@ Two parametrizations:

e N CW
Vap = 7 ) =7
(B+€)wp (B+8).p
versus
(B + )P o (B+@)rP
VAP = % s VAp = % _
(Gl &y,

@ In connection to the section condition, 8284 = 0, the former matches well with the

= 0, while the latter is natural when % =0.

choice, 8‘?7
M
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Parametrization: Reduction to Generalized Geometry

@ Two parametrizations:

[ e N N Ca
Vao = 75 , = 75
(B+ e)up (B+ é)Vﬁ
versus
(B + &)mP o (B+@epp
VP = % ; VP = % )
@ =P

@ In connection to the section condition, 8284 = 0, the former matches well with the

choice, 8‘?7 = 0, while the latter is natural when % =0.
m

@ Yet if we consider dimensional reductions from D to lower dimensions,
there is no longer preferred parametrization.

c.f. “B-gravity”
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Parametrization: Reduction to Generalized Geometry

@ Two parametrizations:

e e N G
(B+e)vp (B+8)up
versus
2)HP 4 )P
s L g 2| OO
(&P (&P,
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Parametrization: Reduction to Generalized Geometry

@ Two parametrizations:

. (e ")p" - ’ (CaT
Vap = 75 ; Vap = 5
(B+€)uwp (B+8)up
versus
2)HP 2)HP
VAP:% (B+8) 7 _Aﬁ:% (B+8)
(Gl (&P,

@ However, let me stress that to maintain the clear O(D, D) covariant structure, it is
necessary to work with the parametrization-independent, and O(D, D) covariant,

DFT-vielbeins, Vgp, _VA[,, rather than the Riemannian variables, e,”, By, .
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Parametrization: Reduction to Generalized Geometry

@ From now on, let us restrict ourselves to the former parametrization and impose

0 —
%, —
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Parametrization: Reduction to Generalized Geometry

@ From now on, let us restrict ourselves to the former parametrization and impose

0 —
%, —

@ This reduces (S)DFT to Generalized Geometry
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Parametrization: Reduction to Generalized Geometry

@ From now on, let us restrict ourselves to the former parametrization and impose

0 —
%, —

@ This reduces (S)DFT to Generalized Geometry

@ For example, the O(D, D) covariant Dirac operators become
V21ADp =AM (amp + %wmnp’ynpp + iHmnp’anP - 8m¢P) ,
VA Dap = 4™ <5m¢p + FwmnpyPVp + Bmpg? + 25 HmnpyPvp + 5 Hmpgh? — 3m¢¢p) ,
V2VA5Dap = 9pp + fwpary¥p + §Hoar T p

V2D ppA = 0Py + Fwpgry? P + @Ppgp? + § Hpgry ¥ yP — 205¢9P .
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Parametrization: Reduction to Generalized Geometry

@ From now on, let us restrict ourselves to the former parametrization and impose

0 —
%, —

@ This reduces (S)DFT to Generalized Geometry

@ For example, the O(D, D) covariant Dirac operators become
V21ADp =AM (amp + %wmnp’ynpp + iHmnp’anP - 8m¢P) ,
VA Dap = 4™ <5m¢p + FwmnpyPVp + Bmpg? + 25 HmnpyPvp + 5 Hmpgh? — 3m¢¢p) ,
V2VA5Dap = 9pp + fwpary¥p + §Hoar T p

V2D ppA = 0Py + Fwpgry? P + @Ppgp? + § Hpgry ¥ yP — 205¢9P .
Q w, £ %Hp and w;, %Hu naturally appear as “spin connections”.
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Unification of type IIA and IIB SUGRAs

@ Since the two zehnbeins correspond to the same spacetime metric, they are related by

a Lorentz rotation,

1=\ Bfa—1=\ G=
(e7'@)p (e ' 8)qlpg = —pq -
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Unification of type IIA and IIB SUGRAs

@ Since the two zehnbeins correspond to the same spacetime metric, they are related by

a Lorentz rotation,

1=\ Bfa—1=\ T=
(e7'@)p (e ' 8)qlpg = —pq -

@ Further, there is a spinorial representation of this Lorentz rotation,
SeAPSs " =P P(e7 1 B)P

such that
Se;y(D+1)Sg1 - _ det(ef1 é),Y(D+1) .
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Unification of type IIA and IIB SUGRAs

@ The N'=2 D = 10 SDFT Riemannian solutions are then classified into two groups,
cc'det(e”'8) =+1 : typellA,

cc/det(e~'8) = -1 : typeIIB.

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Unification of type IIA and IIB SUGRAs

@ The N'=2 D = 10 SDFT Riemannian solutions are then classified into two groups,
cc'det(e”'8) =+1 : typellA,
cc/det(e~'8) = -1 : typeIIB.

@ This identification with the ordinary ITA /IIB SUGRAs can be established, if we ‘fix’
the two zehnbeins equal to each other,
e’ =8,P,

using a Pin(D—1,1)g local Lorentz rotation which may or may not flip the
Pin(D—1,1)g chirality,

/

¢ — det(e @) .

Namely, the Pin(D—1,1)g chirality changes iff det(e~'@) = —1.
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Unification of type IIA and IIB SUGRAs

@ The N'=2 D = 10 SDFT Riemannian solutions are then classified into two groups,
cc/det(e~'8) = +1 : typellA,

cc/det(e~'8) = -1 : typeIIB.
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Unification of type IIA and IIB SUGRAs

@ The N'=2 D = 10 SDFT Riemannian solutions are then classified into two groups,
cc/det(e~'8) = +1 : typellA,

cc/det(e~'8) = -1 : typeIIB.

@ That is to say, formulated in terms of the genuine DFT-field variables, i.e. Vjp, \_/A,-,,
C%4, etc. the N'=2 D =10 SDFT is a chiral theory with respect to the pair of local
Lorentz groups. The possible four chirality choices are all equivalent and hence the

theory is unique. We may safely put ¢ = ¢/ = +1 without loss of generality.

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Unification of type IIA and IIB SUGRAs

@ The N'=2 D = 10 SDFT Riemannian solutions are then classified into two groups,
cc/det(e~'8) = +1 : typellA,

cc/det(e~'8) = -1 : typeIIB.

@ That is to say, formulated in terms of the genuine DFT-field variables, i.e. Vjp, \_/A,-,,
C%4, etc. the N'=2 D =10 SDFT is a chiral theory with respect to the pair of local
Lorentz groups. The possible four chirality choices are all equivalent and hence the

theory is unique. We may safely put ¢ = ¢/ = +1 without loss of generality.

@ However, the theory contains two ‘types’ of Riemannian solutions, as classified above.
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Unification of type IIA and IIB SUGRAs

@ The N'=2 D = 10 SDFT Riemannian solutions are then classified into two groups,
cc/det(e~'8) = +1 : typellA,

cc/det(e~'8) = -1 : typeIIB.

@ That is to say, formulated in terms of the genuine DFT-field variables, i.e. Vjp, \_/A,-,,
C%4, etc. the N'=2 D =10 SDFT is a chiral theory with respect to the pair of local
Lorentz groups. The possible four chirality choices are all equivalent and hence the

theory is unique. We may safely put ¢ = ¢/ = +1 without loss of generality.
@ However, the theory contains two ‘types’ of Riemannian solutions, as classified above.

@ Conversely, any solution in type ITA and type IIB supergravities can be mapped to a
solution of N'=2 D = 10 SDFT of fixed chirality e.g. ¢ = ¢’ = +1.

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Unification of type IIA and IIB SUGRAs

@ The N'=2 D = 10 SDFT Riemannian solutions are then classified into two groups,
cc/det(e~'8) = +1 : typellA,

cc/det(e~'8) = -1 : typeIIB.

@ That is to say, formulated in terms of the genuine DFT-field variables, i.e. Vjp, \_/A,-,,
C%4, etc. the N'=2 D =10 SDFT is a chiral theory with respect to the pair of local
Lorentz groups. The possible four chirality choices are all equivalent and hence the

theory is unique. We may safely put ¢ = ¢/ = +1 without loss of generality.
@ However, the theory contains two ‘types’ of Riemannian solutions, as classified above.

@ Conversely, any solution in type ITA and type IIB supergravities can be mapped to a
solution of N'=2 D = 10 SDFT of fixed chirality e.g. ¢ = ¢’ = +1.

@ In conclusion, the single unique N'=2 D = 10 SDFT unifies type IIA and IIB

SUGRAs. Further it allows non-Riemannian solutions.
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Diagonal gauge fixing and Reduction to SUGRA

@ Setting the diagonal gauge,

e, =8P
with 7pg = —fjpg, P = 4D+ 5(D+1) — _4(D+1) reaks the local Lorentz
symmetry,

Spin(1,D—1), x Spin(D—-1,1)g = Spin(1,D-1)p.
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Diagonal gauge fixing and Reduction to SUGRA

@ Setting the diagonal gauge,

e, =8P

with 7pg = —fjpg, P = 4D+ 5(D+1) — _4(D+1) reaks the local Lorentz

symmetry,
Spin(1,D—1), x Spin(D—-1,1)g = Spin(1,D-1)p.

@ And it reduces SDFT to SUGRA:

N =2D=10SDFT = 10D Type Il democratic SUGRA

N =1D=10SDFT — 10D minimal SUGRA
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Diagonal gauge fixing and Reduction to SUGRA

@ After the diagonal gauge fixing, we may parameterize the R-R potential as

2,
1 ! aia,---a
C (é) ZPECa.‘aZ,..ap’y 192 P

and obtain the field strength,
D
., _ (1) % 1
Fi=D4C=(1)" Sp oty Faraarap s 7%
where Z;, denotes the odd p sum for Type IIA and even p sum for Type IIB, and

_ p!
Fayay-ap =P (D[31 Caz“'ap] - 8[«31<7§C«32‘“3p]> + 31(p—3)! H[313233034“‘3p]
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Diagonal gauge fixing and Reduction to SUGRA

@ After the diagonal gauge fixing, we may parameterize the R-R potential as

c

(%) ZZ) %Caﬁzmap,yaﬁz‘.‘ap
and obtain the field strength,
D
= =(1)\* 1
7= DiC = <§> z:l/J [ fa132"'ap+1 182 o
where Z;, denotes the odd p sum for Type IIA and even p sum for Type IIB, and

_ p!
Farag--ap = P (Diay Cay--ap) — ay ¢ Cay-ap)) + 2yt Hien 2 Cas--ap)

@ The pair of nilpotent differential operators, ’Di and D° , reduce to a ‘twisted K-theory’

exterior derivative and its dual, after the diagonal gauge fixing,
2 = d+ (H—-d¢)A

Do = x[d+(H—dg)A ]x
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Diagonal gauge fixing and Reduction to SUGRA

@ In this way, ordinary SUGRA = gauge-fixed SDFT,

Spin(1,D—1); x Spin(D—-1,1)g = Spin(1,D-1)p.
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Modifying O(D, D) transformation rule

@ The diagonal gauge, e,P = é‘/_’, is incompatible with the vectorial O(D, D)

transformation rule of the DFT-vielbein.
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Modifying O(D, D) transformation rule

@ The diagonal gauge, e,P = é‘/_’, is incompatible with the vectorial O(D, D)

transformation rule of the DFT-vielbein.

@ In order to preserve the diagonal gauge, it is necessary to modify the O(D, D)

transformation rule.
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Modifying O(D, D) transformation rule

@ The O(D, D) rotation must accompany a compensating Pin(D—1,1)g local Lorentz

rotation, Zﬁ'b7 SZ(_’ 3 which we can construct explicitly as below.
- 1o . -
L=eg"'[a' - (g+B)b] [a' +(g— B)b!] &, FILaP = S;'3PS,
where a and b are parameters of a given O(D, D) group element,

5 a*, b#o
My® =
Cor dy°
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Modified O(D, D) Transformation Rule After The Diagonal Gauge Fixing

d — d

VaP — MaB VgP
VAP — MyB Vgl L5

Co%, Fo — a8 )Pa, Fop(S)a

P — pe

e — ST
3 — (L p9vg
Vi — (SD)* 5

@ All the barred indices are now to be rotated.

@ The R-R sector can be also mapped to O(D, D) spinors.
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Flipping the chirality: 1A < 1B

@ If and only if det(L) = —1, the modified O(D, D) rotation flips the chirality of the
theory, since
7P+ s; = det(L) Sp7(P+) .
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Flipping the chirality: 1A < 1B

@ If and only if det(L) = —1, the modified O(D, D) rotation flips the chirality of the

theory, since
7P+ s; = det(L) Sp7(P+) .

@ Thus, the mechanism above naturally realizes the exchange of Type IIA and IIB
supergravities under O(D, D) T-duality.
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Flipping the chirality: 1A < 1B

@ If and only if det(L) = —1, the modified O(D, D) rotation flips the chirality of the
theory, since
7P+ s; = det(L) Sp7(P+) .

@ Thus, the mechanism above naturally realizes the exchange of Type IIA and IIB
supergravities under O(D, D) T-duality.

@ However, since L explicitly depends on the parametrization of Vap and _VAp in terms of
Ouv and By, , it is impossible to impose the modified O(D, D) transformation rule from

the beginning on the parametrization-independent covariant formalism.

The chirality flipping is an artifact of the diagonal gauge fixing.
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Worldsheet Perspective
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String propagates in doubled-yet-gauged spacetime

@ The section condition is equivalent to the ‘coordinate gauge symmetry’,
XM o XMy oMy

A ‘physical point’ is one-to-one identified with a ‘gauge orbit’ in coordinate space.
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String propagates in doubled-yet-gauged spacetime

@ The section condition is equivalent to the ‘coordinate gauge symmetry’,
XM o XMy oMy

A ‘physical point’ is one-to-one identified with a ‘gauge orbit’ in coordinate space.

@ The coordinate gauge symmetry can be concretely realized on worldsheet,

S= /dzcr L, L= —3V/=RhiDXMDXNHyn(X) — el DIXM Ajy
where

DiXM = g XM — AM, AMoy =o0.
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String propagates in doubled-yet-gauged spacetime

@ The section condition is equivalent to the ‘coordinate gauge symmetry’,
XM o XMy oMy

A ‘physical point’ is one-to-one identified with a ‘gauge orbit’ in coordinate space.

@ The coordinate gauge symmetry can be concretely realized on worldsheet,

4w

=4 /dzcr L, L= —3V/=RhiDXMDXNHyn(X) — el DIXM Ajy
where

DiXM = g XM — AM, AMoy =o0.

@ The Lagrangian is quite symmetric thanks to the auxiliary gauge field, .A;V’:

@ String worldsheet diffeomorphisms plus Weyl symmetry (as usual)
O(D, D) T-duality

o Target spacetime diffeomorphisms

@ The coordinate gauge symmetry
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String propagates in doubled-yet-gauged spacetime

@ For example, under target spacetime ‘finite’ diffeomorphism a la
LyN == 9,X'B, L.=gLtg—1,
Fu=% (L-"+L'L), F=gFlg-t=1(L""L+LL-")=F",
each field transforms as
XM — XM(X)y,
Hw(X)  —  Hyy(X') = FuFnt i (X)),
AM — AM = ANFAM 1 aXN(L — F)yM : .A’MBI’V,EO,
DxM — D'X'™M = DXNFM

such that the worldsheet action remains invariant, up to total derivatives.
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String propagates in doubled-yet-gauged spacetime

@ The Equation Of Motion for Xt can be conveniently organized in terms of our
DFT-Christoffel connection:

\/%78,- (\/thiXM’HML + Eija,'AjL) — 2 N (PD;X)M(PDIX)N =0,

which is comparable to the geodesic motion of a point particle, Yx 4 Fﬁ,j Yryv = 0.
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String propagates in doubled-yet-gauged spacetime

@ The Equation Of Motion for Xt can be conveniently organized in terms of our
DFT-Christoffel connection:

\/%78,- (V=hD XMy + €10;A1) — 2T .yn (PDIX)M(PD'X)N = 0,

which is comparable to the geodesic motion of a point particle, Yx 4 Fﬁ,j Yryv = 0.

@ The EOM of .A;M implies a priori,

5 A (HMND’XN + \/L—heUD/XM) —0.

Especially, for the case of the ‘non-degenerate’ Riemannian background, a complete

self-duality follows

HYND'XN + S diDpxM = 0.
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String propagates in doubled-yet-gauged spacetime

@ The Equation Of Motion for Xt can be conveniently organized in terms of our
DFT-Christoffel connection:

\/%78,- (V=hD XMy + €10;A1) — 2T .yn (PDIX)M(PD'X)N = 0,

which is comparable to the geodesic motion of a point particle, Yx 4 Fﬁ,j Yryv = 0.

@ The EOM of .A;M implies a priori,

5 A (HMND’XN + \/L—heUD/XM) —0.

Especially, for the case of the ‘non-degenerate’ Riemannian background, a complete

self-duality follows

HYND'XN + S diDpxM = 0.

@ Finally, the EOM of hj gives the Virasoro constraints,
(DXMDXN — L1y DXMDKXN) Ha = 0.
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String propagates in doubled-yet-gauged spacetime

@ After parametrization, XM = (V#, Y"), Hun(G, B), and integrating out A;V’, it can

produce either the standard string action for the ‘non-degenerate’ Riemannian case,

4o’ 2mwal

L [—;Mhi/a,wa,we,w(y) + 1eIa YR YV B (Y) + %e"fa,?,,a,w] ,

with the bonus of the topological term introduced by
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String propagates in doubled-yet-gauged spacetime

@ After parametrization, XM = (\N/H, Y"), Hun(G, B), and integrating out .A;V’, it can

produce either the standard string action for the ‘non-degenerate’ Riemannian case,

o £ = gk [~ VRO Y Gl (Y) + JI0 Y0¥V B (Y) + bl Va0, vv ]

with the bonus of the topological term introduced by

or chiral actions for ‘degenerate’ non-Riemannian cases, e.g. for Hag = Jas,

£,4 ,eIB,Y oiYH, 8,Y“+Fe,/6,Y“ 0.

47'ro/
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U-duality
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Parallel to the stringy differential geometry for O(D, D) T-duality,

it is possible to construct M-theoretic differential geometry for each U-duality group.
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o —eo—e— Dy_1 = so(N—1,N—1)
o —e—— - En_1
o —eo—e En

Table: Dynkin diagrams for Ay_1, Dy_1, Ey—1 and Ey

@ E;1: conjectured to be the ultimate duality group.
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o —eo—e— - ———0—0 An_1 = sl(N)

o —eo—e— A._I_. Dy_1 = so(N—1,N—1)

En—1

o —eo—e— En

Table: Dynkin diagrams for Ay_1, Dy_1, Ey—1 and Ey

@ E;1: conjectured to be the ultimate duality group.

@ Eq: and further Ep (n < 8) “Exceptional Field Theory”
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o —eo—e— - ———0—0 An_1 = sl(N)

o —eo—e— A._I_. Dy_1 = so(N—1,N—1)

o —e—— - A.—I—‘—. En_1
o —eo—e ‘.—I—.—. En

Table: Dynkin diagrams for Ay_1, Dy_1, Ey—1 and Ey

@ E;1: conjectured to be the ultimate duality group.

@ Eq: and further Ep (n < 8) “Exceptional Field Theory”
@ Djg: Double Field Theory
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o —eo—e— - ———0—0 An_1 = sl(N)

* —o—— H—I—Q Dy_1 = so(N—1,N—1)
*—— AO—I—O—O En_1
o —o—0— ‘Q—I—O—O En

Table: Dynkin diagrams for Ay_1, Dy_1, Ey—1 and Ey

@ E;1: conjectured to be the ultimate duality group.
@ Eq: and further Ep (n < 8) “Exceptional Field Theory”
@ Djg: Double Field Theory

@ Ajp: U-gravity
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Geometric Constitution of U-gravity
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Geometric Constitution of U-gravity

@ Notation.

Small Latin alphabet letters denote the SL(N) vector indices, i.e.
a,b,c,---=1,2,--- /N.
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Geometric Constitution of U-gravity

@ Extended-yet-gauged spacetime.

@ The spacetime is formally extended, being 1EN(N — 1)-dimensional. The

coordinates carry a pair of anti-symmetric SL(N) vector indices,

ab ba __ X[ab] ,

X7 ==X

and hence so does the derivative,

83[3 = _6ba = 8[ab] = % 3 8abXCd = 6805bd — 5ad5bc.
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Geometric Constitution of U-gravity

@ Extended-yet-gauged spacetime.

@ The spacetime is formally extended, being 1§N(N — 1)-dimensional. The
coordinates carry a pair of anti-symmetric SL(N) vector indices,
ab

ba __ X[ab] ,

X7 ==X

and hence so does the derivative,

Oab = —Oba = Ojab) = 2oz - Bapx° = 6,26,0 —6,95,°.
o However, the spacetime is gauged: the coordinate space is equipped with an

equivalence relation (‘Coordinate Gauge Symmetry’),

ab ab 1 abcy---cy_q4de
XT o XT o gy €T N4 P ey oy g Detp s

where ¢c,...cy_, and ¢ are arbitrary functions in U-gravity.
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Geometric Constitution of U-gravity

@ Extended-yet-gauged spacetime.

@ The spacetime is formally extended, being 1§N(N — 1)-dimensional. The

coordinates carry a pair of anti-symmetric SL(N) vector indices,

b b b]
x@ :_Xa:X[a]7
and hence so does the derivative,
5}
Oab = —Opa = Ofab) = 5ap » Oapx®d =5,66,0 — 6,96, .

o However, the spacetime is gauged: the coordinate space is equipped with an
equivalence relation (‘Coordinate Gauge Symmetry’),

ab ab 1 abcy---cy_q4de
XT o XT o gy €T N4 P ey oy g Detp s

where ¢c,...cy_, and ¢ are arbitrary functions in U-gravity.
@ Each equivalence class, or gauge orbit defined by the equivalence relation
represents a single physical point, and diffeomorphism symmetry means an

invariance under arbitrary reparametrizations of the gauge orbits.
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Geometric Constitution of U-gravity

@ Realization of the coordinate gauge symmetry.

The equivalence relation is realized in U-gravity by enforcing that, arbitrary functions
and their arbitrary derivatives are invariant under the coordinate gauge symmetry

shift,

O(x + A) = b(x), A = gy e N %o oy Doetp -

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Geometric Constitution of U-gravity

@ Section condition.

@ The invariance under the coordinate gauge symmetry is, in fact, equivalent to a

section condition,

8[ab80d] =0.
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Geometric Constitution of U-gravity

@ Section condition.

@ The invariance under the coordinate gauge symmetry is, in fact, equivalent to a

section condition,

8[ab80d] =0.

@ Acting on arbitrary functions, ®, ®’, and their products, the section condition

leads to
Oab%ce)® = O[ap0c)g P=0 (weak constraint),

OabPog) ' = 302 ®0gjqg® — 39g[aPIpey ' =0 (strong constraint).
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Geometric Constitution of U-gravity

@ Diffeomorphism.

U-gravity diffeomorphism is generated by a generalized Lie derivative,

A 1
LxTé2 apb1b2...bq = §X°dacha1a2 apb1b2...bq
+3(3P — 3G+ w)0g XT3
2\3 2 cd byby---bg
YR T Ay L Deg X

q
+Zj:1 abjdXCdTa1 & apb1 ceCebg -

Here we let the tensor density, T21% 3, ., carry the ‘total’ weight, 3p — 1q + w
1b2+-bg ght, 30— 34 )
|

such that each upper or lower index contributes to the total weight by —i—% or —3

respectively, while w corresponds to a possible ‘extra’ weight.
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Geometric Constitution of U-gravity

@ Diffeomorphism.

U-gravity diffeomorphism is generated by a generalized Lie derivative,

CAXTa1a2"'apb1b2»..bq = %XCdacdTa1a2mapb1b2'“bq
+3(Ep— 3q+ W)X TR, )
—Zf:1 Ta1“'C‘“apb1b2---bqacdxafd

+ 2;721 8b]dXCdTa1 a2~-~apb1 <eCoebyg ¢

Note
Lxd% =0,
and the commutator,
[éx,ﬁy] = Lix vl [X, Y2 = 1X9,4 Y3 — 3Xlaba, yed — (X « V).
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Geometric Constitution of U-gravity

@ U-metric.
The only geometric object in SL(N) U-gravity is a metric, or U-metric, which is a
generic non-degenerate N X N symmetric matrix, obeying surely the section condition,

Map = Mpa = M(ab) .

Like in Riemannian geometry, the U-metric with its inverse, M@, may freely lower or

raise the positions of the N-dimensional SL(N) vector indices.
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Geometric Constitution of U-gravity

@ U-metric.
The only geometric object in SL(N) U-gravity is a metric, or U-metric, which is a
generic non-degenerate N X N symmetric matrix, obeying surely the section condition,

Map = Mpa = M(ab) .

Like in Riemannian geometry, the U-metric with its inverse, M@, may freely lower or

raise the positions of the N-dimensional SL(N) vector indices.

@ Integral measure.
While the U-metric has no extra weight, its determinant, M = det(Mpp), acquires an

extra weight, w = 4 — N. The duality invariant integral measure is then

1
M=
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Geometric Constitution of U-gravity

@ Semi-covariant derivative and semi-covariant Riemann curvature.

We define a semi-covariant derivative,
s 1,1 1
Ve T % by by = Oca TH%2 7% p by by + 5(3P = 3G+ W) eae® TR % p p, .y

P Taj.-e-- . q
_Zi:1 Té1 e apb1b2<-4bqrcdea‘+zj:1 I'cdbjeTa1a2 apb14.4e.4.bq,

and a semi-covariant Riemann curvature,
Sabed = 30abT ejod)® + 30T ejjat)® + 4 abe®Toar’ + 3T ave' T car®

+T abic®T djer’ + Moafa®Tojer’ + Meae' Tajn® — Fepe! Taja® -
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Geometric Constitution of U-gravity

@ Semi-covariant derivative and semi-covariant Riemann curvature.

We define a semi-covariant derivative,
L 1,1 1
Vea T?1% apb1b2...bq = Qg T2 an1b2,..bq +5(zPp— 39+ W)l ege® T3 apb1b2...bq
=R Ty by b Tode® + 321 Ty, S T3 %p, by
and a semi-covariant Riemann curvature,
L 1 f 1 f
Sabcad = 30(abl eljca)® + 30(cd  eljan)® + 7T abe®Tcar’ + 5 abe’ Mear®

Jrre'zzb[cerd]eff + I—cd[aerb]ef’ + re::l[clrd]fbe - I—eb[cfrd]féze .

The semi-covariant derivative obeys the Leibniz rule and annihilates the Kronecker

delta symbol,
Vedd% =0.
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Geometric Constitution of U-gravity

@ Semi-covariant derivative and semi-covariant Riemann curvature.

We define a semi-covariant derivative,

. 1,1 1
Vg T#% 7% by = Oca T3 p b,y + 5(5P — 39 + W) cge®TH% % p p, ..p,

_ ZIF_’:1 Ta‘"'e"'apb1b2mbqrcdeai 4 27:1 rcdbjeTa1a2...apb1membq ,
and a semi-covariant Riemann curvature,
— 1 f 1 f
Sabcd = 30(abl e[od)® + 30(cal efan)® + 5 ave®Tcar’ + 5T avbe' M car®

+T abic®T djer” + Moafa®Tojer’ + Teae' Tajn® — Fepe Taja® -

A crucial defining property of the semi-covariant Riemann curvature is that, under

arbitrary transformation of the connection it transforms as total derivative,

8Sabcd = 3V ab0T gjjcd]® + 3V [cadT ¢jjan)® -
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Geometric Constitution of U-gravity

@ Semi-covariant derivative and semi-covariant Riemann curvature.

We define a semi-covariant derivative,
ajap-- g, — ajay--- g, 101 1 eTajax -4
Vea TaH8 8 by by = Ocg T2 % p . by + 5(5P — 59 + W) cge® THE %y p, .,

P Tas e . q
= i TRy by by Fode™ + 3074 Tod S TH%2 %, py

and a semi-covariant Riemann curvature,
Sabcd = 30abT eljoa)® + 30(ca T ejfa)® + 5T abe®Tcar” + 3T abe’ T car®
+T abc®T djer’ + Moapa®Tojer’ + Meae’ Toin® — Fepe! Taja® -

Further, the semi-covariant Riemann curvature satisfies precisely the same symmetric

properties as the ordinary Riemann curvature, including the Bianchi identity,

Sabcd = Sjabljca] = Scdab 5 Siabcjg =0
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Geometric Constitution of U-gravity

@ Connection.
Fabcd = Aabod + %(Aacbd — Aaabe + Abdac — Abcad )

+ 75 (MacA® (baye — MagA® (boye + MbaA® (ac)e — MbcA® (aa)e)
where

Aabed = _%aachd + 2(/\/1_4) McqOap In [M] .

This connection is the unique solution to the following five constraints:

Fabcd + T abde = 2Aabcd » (1)
Fabc? + Mpac® =0, 2
Fabe? + Tbca® + Feap? =0, (3)
Tab® + Feba® =0, (4)
Pabca®® M eign = 0. (5)
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Geometric Constitution of U-gravity

@ Connection.
Fabcd = Aabod + %(Aacbd — Aaabe + Abdac — Abcad )

+ 75 (MacA® (baye — MagA® (boye + MbaA® (ac)e — MbcA® (aa)e)
where
Aabed = _%aachd + mMcdaab In|M] .

This connection is the unique solution to the following five constraints:

Fabcd + T abde = 2Aabcd » (1)
Fabc? + Mpac® =0, 2
Fabe? + Tbca® + Feap? =0, (3)
Tab® + Feba® =0, (4)
Pabca®® M eign = 0. (5)

Eq.(1) is equivalent to the U-metric compatibility condition,
VapMeg = 0.
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Geometric Constitution of U-gravity

@ Connection.
Fabcd = Aabod + %(Aacbd — Aaabe + Abdac — Abcad )

+ 75 (MacA® (baye — MagA® (boye + MbaA® (ac)e — MbcA® (aa)e)
where
Aabed = _%8achd + mMcdaab In|M] .

This connection is the unique solution to the following five constraints:

Fabcd + T abde = 2Aabcd » (1)
Fabc? + Mpac® =0, 2
Fabe? + Tbca® + Feap? =0, (3)
Tab® + Feba® =0, (4)
Pabca®® M eign = 0. (5)

Eq.(2) is natural from the skew-symmetric nature of the coordinates, x(@) = 0 and

hence O(gp) = V(ap) = 0.
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Geometric Constitution of U-gravity

@ Connection.

Fabcd = Aabod + %(Aacbd — Aagbe + Abdac — Abcad )

+ 755 (MacA®(baye — MagA® (boye + ModA® (ac)e — MbcA® (a)e)
where

Aabcd = *%8achd + 2(,\,1,4) McaOap In[M] .

This connection is the unique solution to the following five constraints:

[ abcd + Tabde = 2Aabed » (1)
rabcd + I—bacd =0, (2)
razbcd + I—bcard + rcabd =0, (3)
Meab® + Tepa® =0, (4)
7:'abcdefgl-'refgh =0. (5)

Eqgs.(3,4) make the semi-covariant derivative compatible with the generalized Lie

derivative and the generalized bracket: £x(8) = Lx(V), [X, Y]a(8) = [X, Y]a(V).
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Geometric Constitution of U-gravity

@ Connection.

Mabcd = Aabed + %(Aacbd — Aadbc + Abdac — Abcad )
+ 15 (MacA®(baye — MagA® (boye + MbdA® (ac)e — MbcA® (ag)e)

where

Aabed 1= _%aachd + mMcdaab In M| .

This connection is the unique solution to the following five constraints:

Fabed + Mabde = 2Aabed ; (1)
rabcd + rbacd =0, (2)
rabcd + I—bz‘;ad + rcabd =0, (3)
Meab® + Tepa® =0, (4)
Pabcdefghrefgh =0. (5)

Eq.(5) is a projection condition which ensures the uniqueness.
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Geometric Constitution of U-gravity

@ Projection operator.

The above eight-index projection operator is explicitly,

kimn — 1glksleImenl | 1clksNemen] | 1 n_1 [k
Pabeg™™" = 55[a (Sb] 5[c 5d] +§5[c 5d] 5[a 6b] + éMc{a(sb]mMn[k‘sd — 2 c[3517] M”n5dm

I I
+ x5 (5[;Mb][CM"'[k6d]] + 5[gMd“aMmlk5b]1 - C[aMb]dM’"[kM’J”) ,

which satisfies

K
Pabc dpqrsppqrs Imn _ Pabc dklmn , pabssk/mn =0 ,

kimn _

Pabed = 7D[ab] cd (ki}mn >

Pabjcd] Hmn — Pedab] fmn .
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Geometric Constitution of U-gravity

@ Projection operator.

The above eight-index projection operator is explicitly,

Kimn __ [k Ml]n(;dm

Pabod 1o o lmo M+ St oo Mo, + M0 mtks ) — S My .0,

5 %lc %a] T 2%c %91 %a b b]
+ (6[;Mb][CM’"[k5d’]] + 8 MM 5 ] — C[aMb]dM’"["M’]") .

Crucially, the projection operator dictates the anomalous terms under diffeomorphism:

(6x — ﬁx)(vaquA.Ade1d2mdq) = _ 2?21 TC1memed1-~-dqQabeCi + 2;7:1 QabdieTc““deyuemdq7
(6x — Lx)Sabed = 2V eaQ)1ca)® + 2V e1cajfat)© »

where
Kii
Qabcd = Pabed mnaklamexne .
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Geometric Constitution of U-gravity

@ Complete covariantizations.

The semi-covariant derivative and the semi-covariant Riemann curvature can be fully

covariantized by (anti-)symmetrizing or contracting the SL(N) vector indices properly,

Viab Teycs-cql - VarT?, Ve Ticg + VacTiba » V Tica) — VT (ba) s
Vap T1a0€102:Cal  (divergence), VapVI@ TGl (Laplacian),
and
Sab := Sach® = Spa (“Ricei” curvature) ,
S:= MG, = S,y (scalar curvature) .
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Geometric Constitution of U-gravity

@ Action.

The action of SL(N) U-gravity is given by the fully covariant scalar curvature,

/Mﬁs,
r

where the integral is taken over a section, X.
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Geometric Constitution of U-gravity

@ Action.

The action of SL(N) U-gravity is given by the fully covariant scalar curvature,

/Mﬁs,
r

where the integral is taken over a section, X.

@ The Einstein equation of motion.

The equation of motion corresponds to the vanishing of the ‘Einstein’ tensor,

Sab + gy MarS = 0.

Diffeomorphism symmetry of the action implies a conservation relation,

Vc[asb]c + %Vabs =0.
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Geometric Constitution of U-gravity

@ Two inequivalent sections.

Up to SL(N) rotations, there exist two inequivalent solutions to the section condition :
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Geometric Constitution of U-gravity

@ Two inequivalent sections.

Up to SL(N) rotations, there exist two inequivalent solutions to the section condition :
@ Xy_qis an (N — 1)-dimensional section given by

6&,8:07 8(1[\[#0,
where o, 8 =1,2,--- N —1.
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Geometric Constitution of U-gravity

@ Two inequivalent sections.

Up to SL(N) rotations, there exist two inequivalent solutions to the section condition :

@ Xy_qis an (N — 1)-dimensional section given by
8&,8 =0 ) 8ocN # 07
where o, 8 =1,2,--- N —1.
@ x; is a three-dimensional section characterized by

0ui =0, 9j=0, Ouv # 0,
where p,v =1,2,3 and i,j = 4,5, - , N. We may further dualize

, oHx, =64, .
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Geometric Constitution of U-gravity

@ Two inequivalent sections.

Up to SL(N) rotations, there exist two inequivalent solutions to the section condition :

@ Xn_qis an (N — 1)-dimensional section given by

6&,6:07 8(1[\[#0,
where o, 8 =1,2,--- N —1.

@ 33 is a three-dimensional section characterized by
0ui =0, 0j=0, Ouv # 0,
where p,v =1,2,3 and i,j = 4,5,--- , N. We may further dualize
%0 = Lepupx?? %, = o, .
For a triplet of arbitrary functions, we note
8[ab¢80”d<b’6ef]¢” =0 on ZN71 5 8[ab(b8cl[dd>’8ef]¢” # 0 on 23 .

Since this is an SL(N) covariant statement, the two sections are inequivalent.

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Geometric Constitution of U-gravity

@ Two inequivalent sections.

Up to SL(N) rotations, there exist two inequivalent solutions to the section condition:

@ Xn_;is an (N — 1)-dimensional section given by

aa,é’:()» 8aN7£Oa
where o, =1,2,--- ;N —1.

@ x; is a three-dimensional section characterized by

0ui =0, 9; =0, Ouv # 0,

where u,v =1,2,3 and i,j = 4,5,--- , N. We may further dualize

Note: in the case of SL(5), they correspond to M-theory and type IIB theory respectively
(with the compactification on seven-manifold).
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Geometric Constitution of U-gravity

@ Riemannian reductions.
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Geometric Constitution of U-gravity

@ Riemannian reductions.

@ Reduction to Zy_q through (N — 1)-dimensional Riemannian metric, Jap, a
vector, v¥, and a scalar, ¢,
Sob Vo 1 1
My = | V9l : IM|FR = e7=R% /[g].
v Vgl (-e + )
The U-gravity scalar curvature reduces upon the section, Xn_1, to

Sly,, , =267 [Rg — W00, 6070 + N2 86+ Je ¢ (vav®)] -

The vector field can be dualized to an (N — 2)-form potential.
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Geometric Constitution of U-gravity

@ Riemannian reductions.

@ Reduction to Zy_q through (N — 1)-dimensional Riemannian metric, Jap, a
vector, v¥, and a scalar, ¢,
Sop Vo 1 1
Map = | V14 . IMTE = emR? /g
vs Vgl (~e? 1 v?)

The U-gravity scalar curvature reduces upon the section, Xn_1, to

Sly,, , =267 [Rg — W00, 6070 + N2 86+ Je ¢ (vav®)] -

The vector field can be dualized to an (N — 2)-form potential.
@ Reduction to X3, employing ‘dual’ upside-down notations,
g — N3 -
mab — | /18] M| T R S 1al.
—v /1Gl(e e MI 4+ AU y)

The U-gravity scalar curvature reduces upon the section, X3, to

Sl = ~2Ry+ (N0 55, 5 AN AG 1w K15, X008 K377 w5 9

which manifests SL(N—3) S-duality.
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Geometric Constitution of U-gravity

@ Non-Riemannian backgrounds.

When the upper left (N — 1) x (N — 1) block of the U-metric is degenerate — where
9o

‘ might have been positioned — the Riemannian metric ceases to exist upon Xpn_1.

Nevertheless, SL(N) U-gravity has no problem with describing such a non-Riemannian

background, as long as the whole N x N U-metric is non-degenerate.

Similarly upon X3, U-gravity may allow the upper left 3 x 3 block of the inverse of the

U-metric to be degenerate.
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unifies ITA and IIB SUGRAs, and allows non-Riemannian ‘metric-less’ backgrounds.
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Conclusion

Summary

@ Riemannian geometry is for particle theory. String theory requires a novel differential

geometry which geometrizes the whole NS-NS sector and underlies DFT.

@ Novel differential geometic ingredients:
> Spacetime being extended-yet-gauged (section condition)
> Semi-covariant derivative and semi-covariant curvature

> Complete covariantizations of them through ‘projection’.

@ N =2 D =10 SDFT has been constructed to the full order in fermions. The theory

unifies ITA and IIB SUGRAs, and allows non-Riemannian ‘metric-less’ backgrounds.

@ Precisely parallel formulation for SL(N) U-duality under the name, U-gravity.
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Conclusion

Outlook

@ Further study and classification of the non-Riemannian, ‘metric-less’ backgrounds.

@ Quantization of the string action on doubled-yet-gauged spacetime.

@ 0(10,10) covariant Killing spinor equation — SUSY and T-duality are compatible.
Further generalization of ‘Generalized Complex structure’ or ‘G-structure’.

@ DFT cosmology? Cosmological constant reads Ae—29 = A,/—ge—2¢.

@ The “relaxation” of the section condition:

for Scherk-Schwarz

and for non-associativity.

@ Geometrization of ‘Exceptional Field Theory’

@ o'-correction to DFT

@ Quantization of Gravity in the new set up?

Thank you.
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The End
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