
Stringy Differential Geometry and Double Field Theory

Jeong-Hyuck Park

Sogang University, Seoul

Developments in M-Theory, Gangwondo, Korea 2015

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Prologue

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Prologue

In Riemannian geometry, the fundamental object is the metric, gµν .

Diffeomorphism: ∂µ −→ ∇µ = ∂µ + Γµ

∇λgµν = 0, Γλ
[µν]

= 0 −→ Γλµν = 1
2 gλρ(∂µgνρ + ∂νgµρ − ∂ρgµν)

Curvature: [∇µ,∇ν ] −→ Rκλµν −→ R

On the other hand, string theory puts gµν , Bµν and φ on an equal footing,

as they, or NS-NS sector, form a multiplet of T-duality.

This suggests the existence of a novel unifying geometric description of them,

generalizing the above Riemannian formalism.

Basically, Riemannian geometry is for Particle theory. String theory requires a

novel differential geometry which geometrizes the whole NS-NS sector.
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Prologue

My talk today aims to introduce such a Stringy Geometry which is defined in

doubled-yet-gauged spacetime.

In four-dimensional spacetime photon has two physical degrees of freedom, but can be

best described by a four component vector.

Similarly, D-dimensional spacetime may be better understood in terms of

doubled-yet-gauged (D + D) coordinates.
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Talk based on works with Imtak Jeon & Kanghoon Lee

Differential geometry with a projection: Application to double field theory

arXiv:1011.1324 JHEP

Double field formulation of Yang-Mills theory arXiv:1102.0419 PLB

Stringy differential geometry, beyond Riemann arXiv:1105.6294 PRD

Incorporation of fermions into double field theory arXiv:1109.2035 JHEP

Supersymmetric Double Field Theory: Stringy Reformulation of Supergravity

arXiv:1112.0069 PRD Rapid Comm.

Ramond-Ramond Cohomology and O(D,D) T-duality arXiv:1206.3478 JHEP

Stringy Unification of Type IIA and IIB Supergravities under

N = 2 D = 10 Supersymmetric Double Field Theory arXiv:1210.5078 PLB

Comments on double field theory and diffeomorphisms arXiv:1304.5946 JHEP

Covariant action for a string in doubled yet gauged spacetime arXiv:1307.8377 NPB
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Parallel works on U-duality

U-geometry: SL(5) with Yoonji Suh arXiv:1302.1652 JHEP

M-theory and F-theory from a Duality Manifest Action

with Chris Blair and Emanuel Malek arXiv:1311.5109 JHEP

U-gravity: SL(N) with Yoonji Suh arXiv:1402.5027 JHEP
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Double Field Theory by Hull & Zwiebach (Hohm), c.f. Siegel

With a “generalized metric” Duff and a redefined dilaton:

HAB =

 g−1 −g−1B

Bg−1 g − Bg−1B

 , e−2d =
√
−ge−2φ

DFT Lagrangian constructed by Hull & Zwiebach (Hohm) reads

LDFT = e−2d
[
HAB

(
4∂A∂Bd − 4∂Ad∂Bd + 1

8 ∂AHCD∂BHCD − 1
2 ∂AHCD∂CHBD

)
+ 4∂AH

AB
∂Bd − ∂A∂BH

AB
]

Spacetime is formally doubled, yA = (x̃µ, xν), A = 1, 2, · · · ,D+D.

T-duality is manifestly realized as usual O(D,D) rotations Tseytlin, Siegel

HAB −→ MA
CMB

DHCD , d −→ d , M ∈ O(D,D) .

Yet, DFT (for NS-NS sector) is a D-dimensional theory written in terms of

(D + D)-dimensional language, i.e. tensors.

All the fields must live on a D-dimensional null hyperplane or ‘section’, subject to

∂A∂
A = 2

∂2

∂xµ∂x̃µ
≡ 0 : section condition
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2 ∂AHCD∂CHBD

)
+ 4∂AH

AB
∂Bd − ∂A∂BH

AB
]

Up to O(D,D) rotation, we may fix the section, or choose to set

∂

∂x̃µ
≡ 0 .

Then DFT reduces to the well-known effective action within ‘Riemannian’ setup:

LDFT =⇒ Leff. =
√
−ge−2φ

(
Rg + 4(∂φ)2 − 1

12 H2
)
.

where the diffeomorphism and the B-field gauge symmetry are ‘tamed’ under our

control,

xµ → xµ + δxµ , Bµν → Bµν + ∂µΛν − ∂νΛµ .
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On the other hand, in the above formulation of DFT, the diffeomorphism and the

B-field gauge symmetry are rather unclear, while O(D,D) T-duality is manifest.

The above expression may be analogous to the case of writing the Riemannian scalar

curvature, R, in terms of the metric and its derivative.

It is desirable to explore the underlying differential geometry, beyond Riemann.
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In the remaining of this talk, I will try to explain our proposal for

the Stringy Differential Geometry of DFT
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In the remaining of this talk, I will try to explain our proposal for

the Stringy Differential Geometry of DFT

Key concepts include

Projector

Semi-covariant derivative

Semi-covariant curvature

And their complete covariantization via ‘projection’

c.f. Alternative approaches: Berman-Blair-Malek-Perry, Cederwall, Geissbuhler, Marques et al.
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Geometric Constitution of Double Field Theory
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Geometric Constitution of Double Field Theory

Notation

Capital Latin alphabet letters denote the O(D,D) vector indices, i.e.

A,B,C, · · · = 1, 2, · · · ,D+D, which can be freely raised or lowered by the O(D,D)

invariant constant metric,

JAB =

 0 1

1 0

 .
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Geometric Constitution of Double Field Theory

Doubled-yet-gauged spacetime

The spacetime is formally doubled, being (D+D)-dimensional.

However, the doubled spacetime is gauged : the coordinate space is equipped with an

equivalence relation,

xA ∼ xA + φ∂Aϕ ,

which we call ‘coordinate gauge symmetry’.

Note that φ and ϕ are arbitrary functions in DFT.
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Geometric Constitution of Double Field Theory

Doubled-yet-gauged spacetime

The spacetime is formally doubled, being (D+D)-dimensional.

However, the doubled spacetime is gauged : the coordinate space is equipped with an

equivalence relation,

xA ∼ xA + φ∂Aϕ ,

which we call ‘coordinate gauge symmetry’.

Note that φ and ϕ are arbitrary functions in DFT.

Each equivalence class, or gauge orbit, represents a single physical point.

Diffeomorphism symmetry means an invariance under arbitrary reparametrizations of

the gauge orbits.
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Geometric Constitution of Double Field Theory

Realization of the coordinate gauge symmetry.

The equivalence relation is realized in DFT by enforcing that, arbitrary functions and

their arbitrary derivatives, denoted here collectively by Φ, are invariant under the

coordinate gauge symmetry shift,

Φ(x + ∆) = Φ(x) , ∆A = φ∂Aϕ .
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Geometric Constitution of Double Field Theory

Section condition.

The invariance under the coordinate gauge symmetry can be shown to be equivalent to

the section condition ,

∂A∂
A ≡ 0 .
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Geometric Constitution of Double Field Theory

Section condition.

The invariance under the coordinate gauge symmetry can be shown to be equivalent to

the section condition ,

∂A∂
A ≡ 0 .

Explicitly, acting on arbitrary functions, Φ, Φ′, and their products, we have

∂A∂
AΦ=0 (weak constraint) ,

∂AΦ∂AΦ′=0 (strong constraint) .
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Geometric Constitution of Double Field Theory

Diffeomorphism.

Diffeomorphism symmetry in O(D,D) DFT is generated by a generalized Lie derivative

Siegel, Courant, Grana

L̂X TA1···An := X B∂BTA1···An + ωT ∂BX BTA1···An +
n∑

i=1

(∂Ai XB − ∂BXAi )TA1···Ai−1
B

Ai+1···An ,

where ωT denotes the weight.
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Geometric Constitution of Double Field Theory

Diffeomorphism.

Diffeomorphism symmetry in O(D,D) DFT is generated by a generalized Lie derivative

Siegel, Courant, Grana

L̂X TA1···An := X B∂BTA1···An + ωT ∂BX BTA1···An +
n∑

i=1

(∂Ai XB − ∂BXAi )TA1···Ai−1
B

Ai+1···An ,

where ωT denotes the weight.

In particular, the generalized Lie derivative of the O(D,D) invariant metric is trivial,

L̂XJAB = 0 .

The commutator is closed by C-bracket Hull-Zwiebach[
L̂X , L̂Y

]
= L̂[X ,Y ]C , [X ,Y ]AC = X B∂BY A − Y B∂BX A + 1

2 Y B∂AXB − 1
2 X B∂AYB .
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Geometric Constitution of Double Field Theory

Dilaton and a pair of two-index projectors.

The geometric objects in DFT consist of a dilation, d , and a pair of symmetric

projection operators,

PAB = PBA , P̄AB = P̄BA , PA
BPB

C = P C
A , P̄A

BP̄B
C = P̄ C

A .

Further, the projectors are orthogonal and complementary,

PA
BP̄B

C = 0 , PAB + P̄AB = JAB .
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Geometric Constitution of Double Field Theory

Dilaton and a pair of two-index projectors.

The geometric objects in DFT consist of a dilation, d , and a pair of symmetric

projection operators,

PAB = PBA , P̄AB = P̄BA , PA
BPB

C = P C
A , P̄A

BP̄B
C = P̄ C

A .

Further, the projectors are orthogonal and complementary,

PA
BP̄B

C = 0 , PAB + P̄AB = JAB .

Remark: The difference of the two projectors, PAB − P̄AB = HAB , corresponds to the

“generalized metric" which can be also independently defined as a symmetric O(D,D)

element, i.e. HAB = HBA, HA
BHB

C = δ C
A . However, in supersymmetric double field

theories it appears that the projectors are more fundamental than the “generalized metric".
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Geometric Constitution of Double Field Theory

Integral measure.

While the projectors are weightless, the dilation gives rise to the O(D,D) invariant

integral measure with weight one, after exponentiation,

e−2d .
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Geometric Constitution of Double Field Theory

Semi-covariant derivative and semi-covariant Riemann curvature.

We define a semi-covariant derivative,

∇CTA1A2···An := ∂CTA1A2···An − ωT ΓB
BCTA1A2···An +

n∑
i=1

ΓCAi
BTA1···Ai−1BAi+1···An ,

and
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Geometric Constitution of Double Field Theory

Semi-covariant derivative and semi-covariant Riemann curvature.

We define a semi-covariant derivative,

∇CTA1A2···An := ∂CTA1A2···An − ωT ΓB
BCTA1A2···An +

n∑
i=1

ΓCAi
BTA1···Ai−1BAi+1···An ,

and a semi-covariant Riemann curvature,

SABCD := 1
2

(
RABCD + RCDAB − ΓE

ABΓECD

)
.

Here RABCD denotes the ordinary “field strength" of a connection,

RCDAB = ∂AΓBCD − ∂BΓACD + ΓAC
E ΓBED − ΓBC

E ΓAED .
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Geometric Constitution of Double Field Theory

Semi-covariant derivative and semi-covariant Riemann curvature.

We define a semi-covariant derivative,

∇CTA1A2···An := ∂CTA1A2···An − ωT ΓB
BCTA1A2···An +

n∑
i=1

ΓCAi
BTA1···Ai−1BAi+1···An ,

and a semi-covariant “Riemann” curvature,

SABCD := 1
2

(
RABCD + RCDAB − ΓE

ABΓECD

)
.

Here RABCD denotes the ordinary “field strength" of a connection,

RCDAB = ∂AΓBCD − ∂BΓACD + ΓAC
E ΓBED − ΓBC

E ΓAED .

As I will explain shortly, we may determine the (torsionelss) connection:

ΓCAB = 2
(
P∂CPP̄

)
[AB]

+ 2
(
P̄[A

DP̄B]
E − P[A

DPB]
E) ∂DPEC

− 4
D−1

(
P̄C[AP̄B]

D + PC[APB]
D)(∂Dd + (P∂E PP̄)[ED]

)
,

which is the DFT generalization of the Christoffel connection.

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Geometric Constitution of Double Field Theory

The semi-covariant derivative then obeys the Leibniz rule and annihilates the O(D,D)

invariant constant metric,

∇AJBC = 0 .
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Geometric Constitution of Double Field Theory

The semi-covariant derivative then obeys the Leibniz rule and annihilates the O(D,D)

invariant constant metric,

∇AJBC = 0 .

A crucial defining property of the semi-covariant “Riemann” curvature is that, under

arbitrary transformation of the connection, it transforms as total derivative,

δSABCD = ∇[AδΓB]CD +∇[CδΓD]AB .
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Geometric Constitution of Double Field Theory

The semi-covariant derivative then obeys the Leibniz rule and annihilates the O(D,D)

invariant constant metric,

∇AJBC = 0 .

A crucial defining property of the semi-covariant “Riemann” curvature is that, under

arbitrary transformation of the connection, it transforms as total derivative,

δSABCD = ∇[AδΓB]CD +∇[CδΓD]AB .

Further, the semi-covariant “Riemann” curvature satisfies precisely the same symmetric

properties as the ordinary Riemann curvature,

SABCD = S[AB][CD] = SCDAB , S[ABC]D = 0 ,

as well as additional identities concerning the projectors,

PI
APJ

BP̄K
C P̄L

DSABCD=0 , PI
AP̄J

BPK
C P̄L

DSABCD = 0 .

It follows that

SAB
AB=0 .

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Geometric Constitution of Double Field Theory

The uniqueness of the torsionless connection.

The connection is the unique solution to the following five constraints:

∇APBC = 0 , ∇AP̄BC = 0 ,

∇Ad = − 1
2 e2d∇A(e−2d ) = ∂Ad + 1

2 ΓB
BA = 0 ,

ΓABC + ΓACB = 0 ,

ΓABC + ΓBCA + ΓCAB = 0 ,

PABC
DEF ΓDEF = 0 , P̄ABC

DEF ΓDEF = 0 .
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Geometric Constitution of Double Field Theory

The uniqueness of the torsionless connection.

The connection is the unique solution to the following five constraints:

∇APBC = 0 , ∇AP̄BC = 0 ,

∇Ad = − 1
2 e2d∇A(e−2d ) = ∂Ad + 1

2 ΓB
BA = 0 ,

ΓABC + ΓACB = 0 ,

ΓABC + ΓBCA + ΓCAB = 0 ,

PABC
DEF ΓDEF = 0 , P̄ABC

DEF ΓDEF = 0 .

The first two relations are the compatibility conditions with all the geometric

objects , or NS-NS sector, in DFT.

The third constraint is the compatibility condition with the O(D,D) invariant

constant metric, i.e. ∇AJBC = 0.
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Geometric Constitution of Double Field Theory

The uniqueness of the torsionless connection.

The connection is the unique solution to the following five constraints:

∇APBC = 0 , ∇AP̄BC = 0 ,

∇Ad = − 1
2 e2d∇A(e−2d ) = ∂Ad + 1

2 ΓB
BA = 0 ,

ΓABC + ΓACB = 0 ,

ΓABC + ΓBCA + ΓCAB = 0 ,

PABC
DEF ΓDEF = 0 , P̄ABC

DEF ΓDEF = 0 .

The next cyclic property makes the semi-covariant derivative compatible with the

generalized Lie derivative as well as with the C-bracket,

L̂X (∂) = L̂X (∇) , [X ,Y ]C(∂) = [X ,Y ]C(∇) .

The last formulae are projection conditions which we impose intentionally in

order to ensure the uniqueness.
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The uniqueness of the torsionless connection.

The connection is the unique solution to the following five constraints:

∇APBC = 0 , ∇AP̄BC = 0 ,

∇Ad = − 1
2 e2d∇A(e−2d ) = ∂Ad + 1

2 ΓB
BA = 0 ,

ΓABC + ΓACB = 0 ,
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DEF ΓDEF = 0 .
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generalized Lie derivative as well as with the C-bracket,

L̂X (∂) = L̂X (∇) , [X ,Y ]C(∂) = [X ,Y ]C(∇) .

The last formulae are projection conditions which we impose intentionally in

order to ensure the uniqueness.
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Geometric Constitution of Double Field Theory

Six-index projection operators.

The six-index projection operators are explicitly,

PCAB
DEF := PC

DP[A
[E PB]

F ] + 2
D−1 PC[APB]

[E PF ]D ,

P̄CAB
DEF := P̄C

DP̄[A
[E P̄B]

F ] + 2
D−1 P̄C[AP̄B]

[E P̄F ]D ,

which satisfy the ‘projection’ properties,

PABC
DEFPDEF

GHI = PABC
GHI , P̄ABC

DEF P̄DEF
GHI = P̄ABC

GHI .

Further, they are symmetric and traceless,

PABCDEF = PDEFABC , PABCDEF = PA[BC]D[EF ] , PABPABCDEF = 0 ,

P̄ABCDEF = P̄DEFABC , P̄ABCDEF = P̄A[BC]D[EF ] , P̄ABP̄ABCDEF = 0 .
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Geometric Constitution of Double Field Theory

Crucially, the projection operator dictates the anomalous terms in the diffeomorphic

transformations of the semi-covariant derivative and the semi-covariant Riemann curvature,

(δX−L̂X )∇CTA1···An =
n∑

i=1

2(P+P̄)CAi
BDEF∂D∂E XF TA1···Ai−1BAi+1···An ,

(δX − L̂X )SABCD=2∇[A

(
(P+P̄)B][CD]

EFG∂E∂F XG

)
+ 2∇[C

(
(P+P̄)D][AB]

EFG∂E∂F XG

)
.
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Geometric Constitution of Double Field Theory

Complete covariantizations.

Both the semi-covariant derivative and the semi-covariant Riemann curvature can be

fully covariantized, through appropriate contractions with the projectors:

PC
DP̄A1

B1 · · · P̄An
Bn∇DTB1···Bn , P̄C

DPA1
B1 · · ·PAn

Bn∇DTB1···Bn ,

PABP̄C1
D1 · · · P̄Cn

Dn∇ATBD1···Dn , P̄ABPC1
D1 · · ·PCn

Dn∇ATBD1···Dn (divergences) ,

PABP̄C1
D1 · · · P̄Cn

Dn∇A∇BTD1···Dn , P̄ABPC1
D1 · · ·PCn

Dn∇A∇BTD1···Dn (Laplacians) ,

and
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Geometric Constitution of Double Field Theory

Complete covariantizations.

Both the semi-covariant derivative and the semi-covariant Riemann curvature can be

fully covariantized, through appropriate contractions with the projectors:

PC
DP̄A1

B1 · · · P̄An
Bn∇DTB1···Bn , P̄C

DPA1
B1 · · ·PAn

Bn∇DTB1···Bn ,

PABP̄C1
D1 · · · P̄Cn

Dn∇ATBD1···Dn , P̄ABPC1
D1 · · ·PCn

Dn∇ATBD1···Dn (divergences) ,

PABP̄C1
D1 · · · P̄Cn

Dn∇A∇BTD1···Dn , P̄ABPC1
D1 · · ·PCn

Dn∇A∇BTD1···Dn (Laplacians) ,

and

PA
C P̄B

DSCED
E (“Ricci” curvature) ,

(PACPBD − P̄AC P̄BD)SABCD (scalar curvature) .
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Geometric Constitution of Double Field Theory

Action.

The action of O(D,D) DFT is given by the fully covariant scalar curvature,

∫
ΣD

e−2d (PACPBD − P̄AC P̄BD)SABCD ,

where the integral is taken over a section, ΣD .
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Geometric Constitution of Double Field Theory

Action.

The action of O(D,D) DFT is given by the fully covariant scalar curvature,

∫
ΣD

e−2d (PACPBD − P̄AC P̄BD)SABCD ,

where the integral is taken over a section, ΣD .

The dilation and the projector equations of motion correspond to the vanishing of the

scalar curvature and the “Ricci” curvature respectively.
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Geometric Constitution of Double Field Theory

Action.

The action of O(D,D) DFT is given by the fully covariant scalar curvature,

∫
ΣD

e−2d (PACPBD − P̄AC P̄BD)SABCD ,

where the integral is taken over a section, ΣD .

The dilation and the projector equations of motion correspond to the vanishing of the

scalar curvature and the “Ricci” curvature respectively.

Note: It is precisely the above expression that allows the ‘1.5 formalism’ to work in the full

order supersymmetric extensions of N = 1, 2, D = 10 Jeon-Lee-JHP
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Geometric Constitution of Double Field Theory

Section.

Up to O(D,D) duality rotations, the solution to the section condition is unique. It is a

D-dimensional section, ΣD , characterized by the independence of the dual coordinates,

i.e.
∂

∂x̃µ
≡ 0 ,

while the whole doubled coordinates are given by

xA = (x̃µ, xν) ,

where µ, ν are now D-dimensional indices.
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Geometric Constitution of Double Field Theory

Riemannian reduction.

To perform the Riemannian reduction to the D-dimensional section, ΣD , we

parametrize the dilation and the projectors in terms of D-dimensional Riemannian

metric, gµν , ordinary dilaton, φ, and a Kalb-Ramond two-form potential, Bµν ,

PAB − P̄AB =

 g−1 −g−1B

Bg−1 g − Bg−1B

 , e−2d =
√
|g|e−2φ .
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Geometric Constitution of Double Field Theory

Riemannian reduction.

To perform the Riemannian reduction to the D-dimensional section, ΣD , we

parametrize the dilation and the projectors in terms of D-dimensional Riemannian

metric, gµν , ordinary dilaton, φ, and a Kalb-Ramond two-form potential, Bµν ,

PAB − P̄AB =

 g−1 −g−1B

Bg−1 g − Bg−1B

 , e−2d =
√
|g|e−2φ .

The DFT scalar curvature then reduces upon the section to

(PACPBD − P̄AC P̄BD)SABCD

∣∣∣
ΣD

= Rg + 4∆φ− 4∂µφ∂µφ− 1
12 HλµνHλµν ,

where as usual, Hλµν = 3∂[λBµν].
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Geometric Constitution of Double Field Theory

Riemannian reduction.

To perform the Riemannian reduction to the D-dimensional section, ΣD , we

parametrize the dilation and the projectors in terms of D-dimensional Riemannian

metric, gµν , ordinary dilaton, φ, and a Kalb-Ramond two-form potential, Bµν ,

PAB − P̄AB =

 g−1 −g−1B

Bg−1 g − Bg−1B

 , e−2d =
√
|g|e−2φ .

The DFT scalar curvature then reduces upon the section to

(PACPBD − P̄AC P̄BD)SABCD

∣∣∣
ΣD

= Rg + 4∆φ− 4∂µφ∂µφ− 1
12 HλµνHλµν ,

where as usual, Hλµν = 3∂[λBµν].

DFT-diffeomorphim ⇒ D-dimensional diffeomorphism plus B-field gauge symmetry.
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Geometric Constitution of Double Field Theory

Riemannian reduction.

To perform the Riemannian reduction to the D-dimensional section, ΣD , we

parametrize the dilation and the projectors in terms of D-dimensional Riemannian

metric, gµν , ordinary dilaton, φ, and a Kalb-Ramond two-form potential, Bµν ,

PAB − P̄AB =

 g−1 −g−1B

Bg−1 g − Bg−1B

 , e−2d =
√
|g|e−2φ .

The DFT scalar curvature then reduces upon the section to

(PACPBD − P̄AC P̄BD)SABCD

∣∣∣
ΣD

= Rg + 4∆φ− 4∂µφ∂µφ− 1
12 HλµνHλµν ,

where as usual, Hλµν = 3∂[λBµν].

DFT-diffeomorphim ⇒ D-dimensional diffeomorphism plus B-field gauge symmetry.

Up to field redefinitions, the above is the most general parametrization of the

“generalized metric", HAB = PAB − P̄AB , when its upper left D × D block is

non-degenerate.
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Geometric Constitution of Double Field Theory

Non-Riemannian backgrounds.

When the upper left D × D block of HAB = (P−P̄)AB is degenerate – where g−1 might

be positioned – the Riemannian metric ceases to exist upon the section, ΣD .

Nevertheless, DFT and a doubled sigma model –which I will discuss later– have no

problem with describing such a non-Riemannian background.

An extreme example of such a non-Riemannian background is the flat background

where

HAB = (P−P̄)AB = JAB .

This is a vacuum solution to the bosonic O(D,D) DFT and the corresponding doubled

sigma model reduces to a certain ‘chiral’ sigma model.
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Geometric Constitution of Double Field Theory

Non-Riemannian backgrounds.

When the upper left D × D block of HAB = (P−P̄)AB is degenerate – where g−1 might

be positioned – the Riemannian metric ceases to exist upon the section, ΣD .

Nevertheless, DFT and a doubled sigma model –which I will discuss later– have no

problem with describing such a non-Riemannian background.

An extreme example of such a non-Riemannian background is the flat background

where

HAB = (P−P̄)AB = JAB .

This is a vacuum solution to the bosonic DFT and the corresponding doubled sigma

model reduces to a certain ‘chiral’ sigma model.

Allowing non-Riemannian backgrounds, DFT is NOT a mere reformulation of

SUGRA. It describes a new class of string theory backgrounds. c.f. Gomis-Ooguri
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SUSY
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Based on the differential geometry I just described,

incorporating fermions and the R-R sector (i.e. vielbein formalism),

it is possible to construct the maximally supersymmetric double field theory

to the full order (i.e. quartic order) in fermions.
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N = 2 D = 10 Supersymmetric Double Field Theory
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Symmetries of N = 2 D = 10 SDFT

O(D,D) T-duality

Gauge symmetries

1 DFT-diffeomorphism (generalized Lie derivative)

2 A pair of local Lorentz symmetries, Spin(1,D−1)L × Spin(D−1, 1)R

3 local N = 2 SUSY with 32 supercharges.

All the bosonic symmetries will be realized manifestly and simultaneously.

The theory is chiral with respect to both Local Lorentz groups.

Consequently, there is no distinction of IIA and IIB =⇒ Unificaiton of IIA and IIB

While the theory is unique, it contains type IIA and IIB SUGRA backgrounds as

different kind of solutions.
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All the bosonic symmetries will be realized manifestly and simultaneously.

The theory is chiral with respect to both Local Lorentz groups.

Consequently, there is no distinction of IIA and IIB =⇒ Unificaiton of IIA and IIB

While the theory is unique, it contains type IIA and IIB SUGRA backgrounds as

different kind of solutions.
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For this, it is crucial to have the right field variables.

We shall postulate O(D,D) covariant genuine DFT-field-variables, and NOT employ

Riemannian variables such as metric, B-field, R-R p-forms.
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Field contents of N = 2 D = 10 SDFT

Bosons

NS-NS sector


DFT-dilaton: d

DFT-vielbeins: VAp , V̄Ap̄

R-R potential: Cαᾱ

Fermions

DFT-dilatinos: ρα , ρ′ᾱ

Gravitinos: ψαp̄ , ψ′ᾱp
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Fermions

DFT-dilatinos: ρα , ρ′ᾱ
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Field contents of N = 2 D = 10 SDFT

Bosons

NS-NS sector


DFT-dilaton: d

DFT-vielbeins: VAp , V̄Ap̄

R-R potential: Cαᾱ

Fermions

DFT-dilatinos: ρα , ρ′ᾱ

Gravitinos: ψαp̄ , ψ′ᾱp

Index Representation Metric (raising/lowering indices)

A, B, · · · O(D,D) & DFT-diffeom. vector JAB

p, q, · · · Spin(1,D−1)L vector ηpq = diag(− + + · · ·+)

α, β, · · · Spin(1,D−1)L spinor C+αβ , (γp)T = C+γ
pC−1

+

p̄, q̄, · · · Spin(D−1, 1)R vector η̄p̄q̄ = diag(+−− · · · −)

ᾱ, β̄, · · · Spin(D−1, 1)R spinor C̄+ᾱβ̄ , (γ̄p̄)T = C̄+γ̄
p̄C̄−1

+
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Field contents of N = 2 D = 10 SDFT

Bosons

NS-NS sector


DFT-dilaton: d

DFT-vielbeins: VAp , V̄Ap̄

R-R potential: Cαᾱ

Fermions

DFT-dilatinos: ρα , ρ′ᾱ

Gravitinos: ψαp̄ , ψ′ᾱp

R-R potential and Fermions carry NOT (D + D)-dimensional

BUT undoubled D-dimensional indices.
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Field contents of N = 2 D = 10 SDFT

Bosons

NS-NS sector


DFT-dilaton: d

DFT-vielbeins: VAp , V̄Ap̄

R-R potential: Cαᾱ

Fermions

DFT-dilatinos: ρα , ρ′ᾱ

Gravitinos: ψαp̄ , ψ′ᾱp

A priori, O(D,D) rotates only the O(D,D) vector indices (capital Roman), and

the R-R sector and all the fermions are O(D,D) T-duality singlet.

The usual IIA⇔ IIB exchange will follow only after fixing a gauge.
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Field contents of N = 2 D = 10 SDFT

Bosons

NS-NS sector


DFT-dilaton: d

DFT-vielbeins: VAp , V̄Ap̄

R-R potential: Cαᾱ

Fermions

DFT-dilatinos: ρα , ρ′ᾱ

Gravitinos: ψαp̄ , ψ′ᾱp

All the fields are required to satisfy the section condition,

∂A∂
A ≡ 0 .
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The DFT-dilaton gives rise to a scalar density with weight one,

e−2d .

The DFT-vielbeins satisfy the four defining properties:

VApV A
q = ηpq , V̄Ap̄V̄ A

q̄ = η̄p̄q̄ , VApV̄ A
q̄ = 0 , VApVB

p + V̄Ap̄V̄B
p̄ = JAB .

For fermions, the gravitinos and the DFT-dilatinos are not twenty, but

ten-dimensional Majorana-Weyl spinors,

γ(D+1)ψp̄ = cψp̄ , γ(D+1)ρ = −c ρ ,

γ̄(D+1)ψ′p = c′ψ′p , γ̄(D+1)ρ′ = −c′ρ′ ,

where c and c′ are arbitrary independent two sign factors, c2 = c′2 = 1.

Lastly for the R-R sector, we set the R-R potential, Cαᾱ, to be in the bi-fundamental

spinorial representation of Spin(1,D−1)L × Spin(D−1, 1)R . It possesses the chirality,

γ(D+1)Cγ̄(D+1) = cc′ C .
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Spin(1,D−1)L × Spin(D−1, 1)R chiralities:

γ(D+1)ψp̄ = cψp̄ , γ(D+1)ρ = −c ρ ,

γ̄(D+1)ψ′p = c′ψ′p , γ̄(D+1)ρ′ = −c′ρ′ ,

γ(D+1)Cγ̄(D+1) = cc′ C .

A priori all the possible four different sign choices are equivalent up to

Pin(1,D−1)L × Pin(D−1, 1)R rotations.

That is to say, N = 2 D = 10 SDFT is chiral with respect to both Pin(1,D−1)L and

Pin(D−1, 1)R , and the theory is unique, unlike IIA/IIB SUGRAs.

Hence, without loss of generality, we may safely set

c ≡ c′ ≡ +1 .

Later we shall see that while the theory is unique, it contains type IIA and IIB

supergravity backgrounds as different kind of solutions.
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The DFT-vielbeins generate a pair of two-index projectors,

PAB := VA
pVBp , PA

BPB
C = PA

C , P̄AB := V̄A
p̄V̄Bp̄ , P̄A

BP̄B
C = P̄A

C ,

which are symmetric, orthogonal and complementary to each other,

PAB = PBA , P̄AB = P̄BA , PA
BP̄B

C = 0 , PA
B + P̄A

B = δA
B .

It follows

PA
BVBp = VAp , P̄A

BV̄Bp̄ = V̄Ap̄ , P̄A
BVBp = 0 , PA

BV̄Bp̄ = 0 .

Note also

HAB = PAB − P̄AB .

However, our emphasis lies on the ‘projectors’ rather than the “generalized metric".
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Surely we also get the six-index projectors

PCAB
DEF := PC

DP[A
[E PB]

F ] + 2
D−1 PC[APB]

[E PF ]D , PCAB
DEFPDEF

GHI = PCAB
GHI ,

P̄CAB
DEF := P̄C

DP̄[A
[E P̄B]

F ] + 2
D−1 P̄C[AP̄B]

[E P̄F ]D , P̄CAB
DEF P̄DEF

GHI = P̄CAB
GHI ,

which are symmetric and traceless,

PCABDEF = PDEFCAB = PC[AB]D[EF ] , P̄CABDEF = P̄DEFCAB = P̄C[AB]D[EF ] ,

PA
ABDEF = 0 , PABPABCDEF = 0 , P̄A

ABDEF = 0 , P̄ABP̄ABCDEF = 0 ,

and play crucial roles in the construction of the completely covariant derivatives and

curvatures.
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Having all the ‘right’ field-variables prepared, we now discuss their derivatives or

‘semi-covariant derivatives’ .

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Semi-covariant derivatives

For each gauge symmetry we assign a corresponding connection,

ΓA for the DFT-diffeomorphism (generalized Lie derivative),

ΦA for the ‘unbarred’ local Lorentz symmetry, Spin(1,D−1)L,

Φ̄A for the ‘barred’ local Lorentz symmetry, Spin(D−1, 1)R .

Combining all of them, we introduce master ‘semi-covariant’ derivative

DA = ∂A + ΓA + ΦA + Φ̄A .
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It is also useful to set

∇A = ∂A + ΓA , DA = ∂A + ΦA + Φ̄A .

The former is the ‘semi-covariant’ derivative for the DFT-diffeomorphism (set by the

generalized Lie derivative),

∇CTA1A2···An := ∂CTA1A2···An − ωΓB
BCTA1A2···An +

n∑
i=1

ΓCAi
BTA1···Ai−1BAi+1···An .

And the latter is the covariant derivative for the Spin(1,D−1)L × Spin(D−1, 1)R local

Lorenz symmetries.
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By definition, the master derivative annihilates all the ‘constants’,

DAJBC = ∇AJBC = ΓAB
DJDC + ΓAC

DJBD = 0 ,

DAηpq = DAηpq = ΦAp
rηrq + ΦAq

rηpr = 0 ,

DAη̄p̄q̄ = DAη̄p̄q̄ = Φ̄Ap̄
r̄ η̄r̄ q̄ + Φ̄Aq̄

r̄ η̄p̄r̄ = 0 ,

DAC+αβ = DAC+αβ = ΦAα
δC+δβ + ΦAβ

δC+αδ = 0 ,

DAC̄+ᾱβ̄ = DAC̄+ᾱβ̄ = Φ̄Aᾱ
δ̄C̄+δ̄β̄ + Φ̄Aβ̄

δ̄C̄+ᾱδ̄ = 0 ,

including the gamma matrices,

DA(γp)αβ = DA(γp)αβ = ΦA
p

q(γq)αβ + ΦA
α
δ(γp)δβ − (γp)αδΦA

δ
β = 0 ,

DA(γ̄p̄)ᾱβ̄ = DA(γ̄p̄)ᾱβ̄ = Φ̄A
p̄

q̄(γ̄q̄)ᾱβ̄ + Φ̄A
ᾱ
δ̄(γ̄p̄)δ̄ β̄ − (γ̄p̄)ᾱδ̄Φ̄A

δ̄
β̄ = 0 .
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It follows then that the connections are all anti-symmetric,

ΓABC = −ΓACB ,

ΦApq = −ΦAqp , ΦAαβ = −ΦAβα ,

Φ̄Ap̄q̄ = −Φ̄Aq̄p̄ , Φ̄Aᾱβ̄ = −Φ̄Aβ̄ᾱ ,

and as usual,

ΦA
α
β = 1

4 ΦApq(γpq)αβ , Φ̄A
ᾱ
β̄ = 1

4 Φ̄Ap̄q̄(γ̄p̄q̄)ᾱβ̄ .
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Further, the master derivative is compatible with the whole NS-NS sector,

DAd = ∇Ad := − 1
2 e2d∇A(e−2d ) = ∂Ad + 1

2 ΓB
BA = 0 ,

DAVBp = ∂AVBp + ΓAB
CVCp + ΦAp

qVBq = 0 ,

DAV̄Bp̄ = ∂AV̄Bp̄ + ΓAB
C V̄Cp̄ + Φ̄Ap̄

q̄V̄Bq̄ = 0 .

It follows that

DAPBC = ∇APBC = 0 , DAP̄BC = ∇AP̄BC = 0 ,

and the connections are related to each other,

ΓABC = VB
pDAVCp + V̄B

p̄DAV̄Cp̄ ,

ΦApq = V B
p∇AVBq ,

Φ̄Ap̄q̄ = V̄ B
p̄∇AV̄Bq̄ .
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The connections assume the following most general forms:

ΓCAB = Γ0
CAB + ∆CpqVA

pVB
q + ∆̄Cp̄q̄V̄A

p̄V̄B
q̄ ,

ΦApq = Φ0
Apq + ∆Apq ,

Φ̄Ap̄q̄ = Φ̄0
Ap̄q̄ + ∆̄Ap̄q̄ .

Here Γ0
CAB is the torsionless DFT-Christoffel connection which we fixed earlier,

Γ0
CAB = 2

(
P∂CPP̄

)
[AB]

+ 2
(
P̄[A

DP̄B]
E − P[A

DPB]
E) ∂DPEC

− 4
D−1

(
P̄C[AP̄B]

D + PC[APB]
D)(∂Dd + (P∂E PP̄)[ED]

)
,

and, with the corresponding derivative, ∇0
A = ∂A + Γ0

A,

Φ0
Apq = V B

p∇0
AVBq = V B

p∂AVBq + Γ0
ABCV B

pV C
q ,

Φ̄0
Ap̄q̄ = V̄ B

p̄∇0
AV̄Bq̄ = V̄ B

p̄∂AV̄Bq̄ + Γ0
ABC V̄ B

p̄V̄ C
q̄ .
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The connections assume the following most general forms:

ΓCAB = Γ0
CAB + ∆CpqVA

pVB
q + ∆̄Cp̄q̄V̄A

p̄V̄B
q̄ ,

ΦApq = Φ0
Apq + ∆Apq ,

Φ̄Ap̄q̄ = Φ̄0
Ap̄q̄ + ∆̄Ap̄q̄ .

Further, the extra pieces, ∆Apq and ∆̄Ap̄q̄ , correspond to the torsion of SDFT, which

must be covariant and, in order to maintain DAd = 0, must satisfy

∆ApqV Ap = 0 , ∆̄Ap̄q̄V̄ Ap̄ = 0 .

Otherwise they are arbitrary.

As in SUGRA, the torsion can be constructed from the bi-spinorial objects, e.g.

ρ̄γpqψA , ψ̄p̄γAψq̄ , ρ̄γApqρ , ψ̄p̄γApqψ
p̄ ,

where we set ψA = V̄A
p̄ψp̄, γA = VA

pγp .
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Semi-covariant curvature

The usual curvatures for the three connections,

RCDAB = ∂AΓBCD − ∂BΓACD + ΓAC
E ΓBED − ΓBC

E ΓAED ,

FABpq = ∂AΦBpq − ∂BΦApq + ΦApr ΦB
r
q − ΦBpr ΦA

r
q ,

F̄ABp̄q̄ = ∂AΦ̄Bp̄q̄ − ∂BΦ̄Ap̄q̄ + Φ̄Ap̄r̄ Φ̄B
r̄
q̄ − Φ̄Bp̄r̄ Φ̄A

r̄
q̄ ,

are, from [DA,DB ]VCp = 0 and [DA,DB ]V̄Cp̄ = 0, related to each other,

RABCD = FCDpqVA
pVB

q + F̄CDp̄q̄V̄A
p̄V̄B

q̄ .

However, the crucial object in DFT is

SABCD := 1
2

(
RABCD + RCDAB − ΓE

ABΓECD

)
,

which we named the semi-covariant “Riemann” curvature.
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Properties of the semi-covariant curvature

Precisely the same symmetric property as the ordinary Riemann curvature,

SABCD = 1
2

(
S[AB][CD] + S[CD][AB]

)
,

S0
[ABC]D = 0 .

Projection property,

PI
AP̄J

BPK
C P̄L

DSABCD ≡ 0 .

Under arbitrary variation of the connection, δΓABC , it transforms as

δSABCD = D[AδΓB]CD +D[CδΓD]AB − 3
2 Γ[ABE ]δΓE

CD − 3
2 Γ[CDE ]δΓE

AB ,

δS0
ABCD = D[AδΓ0

B]CD +D[CδΓ0
D]AB .
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‘Semi-covariance’

In general, as discussed earlier in this talk, under DFT-diffeomorphisms the variation

of the semi-covariant derivative contains an anomalous part dictated by the six-index

projectors,

δX
(
∇CTA1···An

)
≡ L̂X

(
∇CTA1···An

)
+
∑

i

2(P+P̄)CAi
BFDE∂F∂[DXE ]T···B··· ,

and hence,

δX 6= L̂X .

However, the characteristic property of our master semi-covariant derivative is that,

contracted with the projectors, vielbeins as well as gamma matrices, it can generate

various fully covariant quantities, as listed below.
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Projector-aided, fully covariant derivatives

For O(D,D) tensors: we recall

PC
DP̄A1

B1 P̄A2
B2 · · · P̄An

Bn∇DTB1B2···Bn ,

P̄C
DPA1

B1 PA2
B2 · · ·PAn

Bn∇DTB1B2···Bn ,

PABP̄C1
D1 P̄C2

D2 · · · P̄Cn
Dn∇ATBD1D2···Dn ,

P̄ABPC1
D1 PC2

D2 · · ·PCn
Dn∇ATBD1D2···Dn

 Divergences ,

PABP̄C1
D1 P̄C2

D2 · · · P̄Cn
Dn∇A∇BTD1D2···Dn ,

P̄ABPC1
D1 PC2

D2 · · ·PCn
Dn∇A∇BTD1D2···Dn

 Laplacians .
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Projector-aided, fully covariant derivatives

For Spin(1,D−1)L × Spin(D−1, 1)R tensors:

DpTq̄1q̄2···q̄n , Dp̄Tq1q2···qn ,

DpTpq̄1q̄2···q̄n , Dp̄Tp̄q1q2···qn ,

DpDpTq̄1q̄2···q̄n , Dp̄Dp̄Tq1q2···qn ,

where we set

Dp := V A
pDA , Dp̄ := V̄ A

p̄DA .

These are the pull-back of the previous results using the DFT-vielbeins.
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Projector-aided, fully covariant derivatives

Dirac operators for fermions, ρα, ψαp̄ , ρ
′ᾱ, ψ′ᾱp :

γpDpρ = γADAρ , γpDpψp̄ = γADAψp̄ ,

Dp̄ρ , Dp̄ψ
p̄ = DAψ

A ,

ψ̄Aγp(DAψq̄ − 1
2Dq̄ψA) ,

γ̄p̄Dp̄ρ
′ = γ̄ADAρ

′ , γ̄p̄Dp̄ψ
′
p = γ̄ADAψ

′
p ,

Dpρ′ , Dpψ′p = DAψ
′A ,

ψ̄′Aγ̄p̄(DAψ
′
q − 1

2Dqψ′A) .

Incorporation of fermions into DFT 1109.2035
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Projector-aided, fully covariant derivatives

For Spin(1,D−1)L × Spin(D−1, 1)R bi-fundamental spinorial fields, T αβ̄ :

D+T := γADAT + γ(D+1)DAT γ̄A ,

D−T := γADAT − γ(D+1)DAT γ̄A .

Especially for the torsionless case, the corresponding operators are nilpotent

(D0
+)2T ≡ 0 , (D0

−)2T ≡ 0 ,

and hence, they define O(D,D) covariant cohomology.

The field strength of the R-R potential, Cαᾱ, is then defined by

F := D0
+C .

Thanks to the nilpotency, the R-R gauge symmetry is simply realized

δC = D0
+∆ =⇒ δF = D0

+(δC) = (D0
+)2∆ ≡ 0 .
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F := D0
+C .

Thanks to the nilpotency, the R-R gauge symmetry is simply realized

δC = D0
+∆ =⇒ δF = D0

+(δC) = (D0
+)2∆ ≡ 0 .

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Projector-aided, fully covariant derivatives

For Spin(1,D−1)L × Spin(D−1, 1)R bi-fundamental spinorial fields, T αβ̄ :

D+T := γADAT + γ(D+1)DAT γ̄A ,

D−T := γADAT − γ(D+1)DAT γ̄A .

Especially for the torsionless case, the corresponding operators are nilpotent

(D0
+)2T ≡ 0 , (D0

−)2T ≡ 0 ,

and hence, they define O(D,D) covariant cohomology.

The field strength of the R-R potential, Cαᾱ, is then defined by
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Projector-aided, fully covariant curvatures

Scalar curvature:

(PABPCD − P̄ABP̄CD)SACBD .

“Ricci” curvature:

Spq̄ + 1
2Dr̄ ∆̄pq̄

r̄ + 1
2Dr ∆q̄p

r ,

where we set

Spq̄ := V A
pV̄ B

q̄SAB , SAB = SACB
C .
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Combining all the results above, we are now ready to spell

N = 2 D = 10 Supersymmetric Double Field Theory
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N = 2 D = 10 SDFT [ 1210.5078 ]

Lagrangian :

LType II = e−2d
[

1
8 (PABPCD − P̄ABP̄CD)SACBD + 1

2Tr(FF̄)− i ρ̄Fρ′ + iψ̄p̄γqF γ̄p̄ψ′q

+i 1
2 ρ̄γ

pD?pρ− iψ̄p̄D?p̄ρ− i 1
2 ψ̄

p̄γqD?qψp̄ − i 1
2 ρ̄
′γ̄p̄D′?p̄ ρ

′ + iψ̄′pD′?p ρ′ + i 1
2 ψ̄
′p γ̄q̄D′?q̄ ψ

′
p

]
.

where F̄ ᾱα denotes the charge conjugation, F̄ := C̄−1
+ FT C+.

As they are contracted with the DFT-vielbeins properly,

every term in the Lagrangian is fully covariant.
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Torsions: The semi-covariant curvature, SABCD , is given by the connection,

ΓABC = Γ0
ABC + i 1

3 ρ̄γABCρ− 2i ρ̄γBCψA − i 1
3 ψ̄

p̄γABCψp̄ + 4iψ̄BγAψC

+ i 1
3 ρ̄
′γ̄ABCρ

′ − 2i ρ̄′γ̄BCψ
′
A − i 1

3 ψ̄
′p γ̄ABCψ

′
p + 4iψ̄′B γ̄Aψ

′
C ,

which corresponds to the solution for 1.5 formalism.

The master derivatives in the fermionic kinetic terms are twofold:

D?A for the unprimed fermions and D′?A for the primed fermions, set by

Γ?ABC = ΓABC − i 11
96 ρ̄γABCρ+ i 5

4 ρ̄γBCψA + i 5
24 ψ̄

p̄γABCψp̄ − 2iψ̄BγAψC + i 5
2 ρ̄
′γ̄BCψ

′
A ,

Γ′?ABC = ΓABC − i 11
96 ρ̄
′γ̄ABCρ

′ + i 5
4 ρ̄
′γ̄BCψ

′
A + i 5

24 ψ̄
′p γ̄ABCψ

′
p − 2iψ̄′B γ̄Aψ

′
C + i 5

2 ρ̄γBCψA .
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2Tr(FF̄)− i ρ̄Fρ′ + iψ̄p̄γqF γ̄p̄ψ′q

+i 1
2 ρ̄γ

pD?pρ− iψ̄p̄D?p̄ρ− i 1
2 ψ̄

p̄γqD?qψp̄ − i 1
2 ρ̄
′γ̄p̄D′?p̄ ρ

′ + iψ̄′pD′?p ρ′ + i 1
2 ψ̄
′p γ̄q̄D′?q̄ ψ

′
p

]
.

Torsions: The semi-covariant curvature, SABCD , is given by the connection,

ΓABC = Γ0
ABC + i 1

3 ρ̄γABCρ− 2i ρ̄γBCψA − i 1
3 ψ̄

p̄γABCψp̄ + 4iψ̄BγAψC

+ i 1
3 ρ̄
′γ̄ABCρ

′ − 2i ρ̄′γ̄BCψ
′
A − i 1

3 ψ̄
′p γ̄ABCψ

′
p + 4iψ̄′B γ̄Aψ

′
C ,

which corresponds to the solution for 1.5 formalism.

The master derivatives in the fermionic kinetic terms are twofold:

D?A for the unprimed fermions and D′?A for the primed fermions, set by

Γ?ABC = ΓABC − i 11
96 ρ̄γABCρ+ i 5

4 ρ̄γBCψA + i 5
24 ψ̄

p̄γABCψp̄ − 2iψ̄BγAψC + i 5
2 ρ̄
′γ̄BCψ

′
A ,

Γ′?ABC = ΓABC − i 11
96 ρ̄
′γ̄ABCρ

′ + i 5
4 ρ̄
′γ̄BCψ

′
A + i 5

24 ψ̄
′p γ̄ABCψ

′
p − 2iψ̄′B γ̄Aψ

′
C + i 5

2 ρ̄γBCψA .
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N = 2 D = 10 SDFT [ 1210.5078 ]

The N = 2 supersymmetry transformation rules are

δεd = −i 1
2 (ε̄ρ+ ε̄′ρ′) ,

δεVAp = i V̄A
q̄(ε̄′γ̄q̄ψ

′
p − ε̄γpψq̄) ,

δεV̄Ap̄ = iVA
q(ε̄γqψp̄ − ε̄′γ̄p̄ψ

′
q) ,

δεC = i 1
2 (γpεψ̄′p − ερ̄′ − ψp̄ ε̄

′γ̄p̄ + ρε̄′) + Cδεd − 1
2 (V̄ A

q̄ δεVAp)γ(d+1)γpCγ̄q̄ ,

δερ = −γpD̂pε+ i 1
2γ

pε ψ̄′pρ
′ − iγpψq̄ ε̄′γ̄q̄ψ

′
p ,

δερ′ = −γ̄p̄D̂′p̄ε
′ + i 1

2 γ̄
p̄ε′ ψ̄p̄ρ− i γ̄q̄ψ′p ε̄γ

pψq̄ ,

δεψp̄ = D̂p̄ε+ (F − i 1
2γ

qρ ψ̄′q + i 1
2ψ

q̄ ρ̄′γ̄q̄)γ̄p̄ε
′ + i 1

4 εψ̄p̄ρ+ i 1
2ψp̄ ε̄ρ ,

δεψ′p = D̂′pε′ + (F̄ − i 1
2 γ̄

q̄ρ′ψ̄q̄ + i 1
2ψ
′q ρ̄γq)γpε+ i 1

4 ε
′ψ̄′pρ

′ + i 1
2ψ
′
p ε̄
′ρ′ ,

where

Γ̂ABC = ΓABC − i 17
48 ρ̄γABCρ+ i 5

2 ρ̄γBCψA + i 1
4 ψ̄

p̄γABCψp̄ − 3iψ̄′B γ̄Aψ
′
C ,

Γ̂′ABC = ΓABC − i 17
48 ρ̄
′γ̄ABCρ

′ + i 5
2 ρ̄
′γ̄BCψ

′
A + i 1

4 ψ̄
′p γ̄ABCψ

′
p − 3iψ̄BγAψC .
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2 ψ̄
′p γ̄q̄D′?q̄ ψ

′
p

]
.

The Lagrangian is pseudo : It is necessary to impose a self-duality of the R-R field

strength by hand,

F̃− :=
(

1− γ(D+1)
)(
F − i 1

2ρρ̄
′ + i 1

2γ
pψq̄ψ̄

′
p γ̄

q̄
)
≡ 0 .
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N = 2 D = 10 SDFT [ 1210.5078 ]

Under the N = 2 SUSY transformation rule, the Lagrangian transforms, disregarding

total derivatives, as

δεLType II ' − 1
8 e−2d V̄ A

q̄δεVApTr
(
γpF̃−γ̄q̄F̃−

)
,

where

F̃− :=
(

1− γ(D+1)
)(
F − i 1

2ρρ̄
′ + i 1

2γ
pψq̄ψ̄

′
p γ̄

q̄
)
.

This verifies, to the full order in fermions, the supersymmetric invariance of the action,

modulo the self-duality.

For a nontrivial consistency check, the supersymmetric variation of the self-duality

relation is precisely closed by the equations of motion for the gravitinos,

δεF̃− = −i
(
D̃p̄ρ+ γpD̃pψp̄ − γpF γ̄p̄ψ

′
p

)
ε̄′γ̄p̄ − iγpε

(
D̃′p ρ̄′ + D̃′p̄ψ̄

′
p γ̄

p̄ − ψ̄p̄γpF γ̄p̄
)
.
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Equations of Motion for Bosons

DFT-vielbein:

Spq̄+Tr(γpF γ̄q̄F̄)+i ρ̄γpD̃q̄ρ+2iψ̄q̄D̃pρ−iψ̄p̄γpD̃q̄ψp̄+i ρ̄′γ̄q̄D̃pρ
′+2iψ̄′pD̃q̄ρ

′−iψ̄′q γ̄q̄D̃pψ
′
q= 0.

This is DFT-generalization of Einstein equation.

DFT-dilaton:

LType II = 0 .

Namely, the on-shell Lagrangian vanishes!

R-R potential:

D0
−

(
F − iρρ̄′ + iγrψs̄ψ̄

′
r γ̄

s̄
)

= 0 ,

which is automatically met by the self-duality, together with the nilpotency of D0
+,

D0
−

(
F − iρρ̄′ + iγrψs̄ψ̄

′
r γ̄

s̄
)

= D0
−

(
γ(D+1)F

)
= −γ(D+1)D0

+F = −γ(D+1)(D0
+)2C = 0 .

The 1.5 formalism works: The variation of the Lagrangian induced by that of the

connection is trivial, δLType II = δΓABC × 0 .
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Equations of Motion for Fermions

DFT-dilatinos,

γpD̃pρ− D̃p̄ψ
p̄ −Fρ′ = 0 , γ̄p̄D̃p̄ρ

′ − D̃pψ′p − F̄ρ = 0 .

Gravitinos,

D̃p̄ρ+ γpD̃pψp̄ − γpF γ̄p̄ψ
′
p = 0 , D̃pρ′ + γ̄p̄D̃p̄ψ

′
p − γ̄p̄F̄γpψp̄ = 0 .
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Truncation to N = 1 D = 10 SDFT [1112.0069]

Turning off the primed fermions and the R-R sector truncates the N = 2 D = 10

SDFT to N = 1 D = 10 SDFT,

LN=1 = e−2d
[

1
8

(
PABPCD − P̄ABP̄CD)SACBD + i 1

2 ρ̄γ
AD?Aρ− iψ̄AD?Aρ− i 1

2 ψ̄
BγAD?AψB

]
.

N = 1 Local SUSY:

δεd = −i 1
2 ε̄ρ ,

δεVAp = −i ε̄γpψA ,

δεV̄Ap̄ = i ε̄γAψp̄ ,

δερ = −γAD̂Aε ,

δεψp̄ = V̄ A
p̄D̂Aε− i 1

4 (ρ̄ψp̄)ε+ i 1
2 (ε̄ρ)ψp̄ .
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N = 1 SUSY Algebra [1112.0069]

Commutator of supersymmetry reads

[δε1 , δε2 ] ≡ L̂X3 + δε3 + δso(1,9)L
+ δso(9,1)R

+ δtrivial .

where

X A
3 = i ε̄1γ

Aε2 , ε3 = i 1
2 [(ε̄1γ

pε2)γpρ+ (ρ̄ε2)ε1 − (ρ̄ε1)ε2] , etc.

and δtrivial corresponds to the fermionic equations of motion.
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Now I am going to sketch

the parametrization of the DFT-field-variables in terms of Riemannian ones,

the diagonal gauge of Spin(1,D−1)L × Spin(D−1, 1)R ,

the reduction of SDFT to SUGRA,

and the ‘unification’ of IIA and IIB.

Nevertheless, we emphasize that SDFT can describe not only Riemannian (SUGRA)

backgrounds but also new type of non-Riemannian (“metric-less") string theory

backgrounds. c.f. Gomis-Ooguri

Note also ‘global’ aspects of interest in DFT:

T-fold Hull

“non-geometry" Berman-Cederwall-Perry, Papadopoulos

Scherk-Schwarz Geissbuhler, Grana-Marques-Aldazabal-Rosabal,

Dibitetto-Fernandez-Melgarejo-Marques-Roest, Berman-Lee
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Parametrization: Reduction to Generalized Geometry

Recall the defining algebraic properties of the DFT-vielbeins,

VApV A
q = ηpq , V̄Ap̄V̄ A

q̄ = η̄p̄q̄ , VApV̄ A
q̄ = 0 , VApVB

p + V̄Ap̄V̄B
p̄ = JAB .

We may parametrize the solution in terms of Riemannian variables.

Assuming that the upper half blocks are non-degenerate, the DFT-vielbein takes the

general form,

VAp = 1√
2

 (e−1)p
µ

(B + e)νp

 , V̄Ap̄ = 1√
2

 (ē−1)p̄
µ

(B + ē)νp̄

 .

Here eµp and ēν p̄ are two copies of the D-dimensional vielbeins, or zehnbeins,

corresponding to the same spacetime metric,

eµpeνqηpq = −ēµ p̄ēν q̄ η̄p̄q̄ = gµν ,

and further, Bµp = Bµν(e−1)p
ν , Bµp̄ = Bµν(ē−1)p̄

ν .
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(B + ē)νp̄

 .
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ν .
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Parametrization: Reduction to Generalized Geometry
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eµpeνqηpq = −ēµ p̄ēν q̄ η̄p̄q̄ = gµν ,

and further, Bµp = Bµν(e−1)p
ν , Bµp̄ = Bµν(ē−1)p̄
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Parametrization: Reduction to Generalized Geometry

Instead, we may choose an alternative parametrization,

VA
p = 1√

2

 (β + ẽ)µp

(ẽ−1)p
ν

 , V̄A
p̄ = 1√

2

 (β + ¯̃e)µp

(¯̃e−1)p
ν

 ,

where βµp = βµν(ẽ−1)p
ν , βµp̄ = βµν(¯̃e−1)p

ν , and ẽµp, ¯̃eµ p̄ correspond to

a pair of T-dual vielbeins for winding modes,

ẽµp ẽνqη
pq = −¯̃eµp̄

¯̃eν q̄η
p̄q̄ = (g − Bg−1B)−1µν .

Note that in the T-dual winding mode sector, the D-dimensional curved spacetime

indices are all upside-down: x̃µ, ẽµp, ¯̃eµp̄, βµν (cf. xµ, eµp , ēµp̄ , Bµν ).
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Parametrization: Reduction to Generalized Geometry

Two parametrizations:
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versus
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p̄ = 1√

2

 (β + ¯̃e)µp

(¯̃e−1)p
ν

 .

In connection to the section condition, ∂A∂A ≡ 0, the former matches well with the

choice, ∂
∂x̃µ
≡ 0, while the latter is natural when ∂

∂xµ ≡ 0.

Yet if we consider dimensional reductions from D to lower dimensions,

there is no longer preferred parametrization.

c.f. “β-gravity” Lust, Andriot, Betz, Blumenhagen, Fuchs, Sun et al.
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(B + ē)νp̄


versus

VA
p = 1√

2

 (β + ẽ)µp
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Parametrization: Reduction to Generalized Geometry

Two parametrizations:
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However, let me stress that to maintain the clear O(D,D) covariant structure, it is

necessary to work with the parametrization-independent, and O(D,D) covariant,

DFT-vielbeins, VAp, V̄Ap̄, rather than the Riemannian variables, eµp, Bµν .
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Parametrization: Reduction to Generalized Geometry

From now on, let us restrict ourselves to the former parametrization and impose
∂
∂x̃µ
≡ 0.

This reduces (S)DFT to Generalized Geometry

Hitchin; Grana, Minasian, Petrini, Waldram

For example, the O(D,D) covariant Dirac operators become

√
2γADAρ ≡ γm

(
∂mρ+ 1

4ωmnpγnpρ+ 1
24 Hmnpγnpρ− ∂mφρ

)
,

√
2γADAψp̄ ≡ γm

(
∂mψp̄ + 1

4ωmnpγnpψp̄ + ω̄mp̄q̄ψ
q̄ + 1

24 Hmnpγnpψp̄ + 1
2 Hmp̄q̄ψ

q̄ − ∂mφψp̄

)
,

√
2V̄ A

p̄DAρ ≡ ∂p̄ρ+ 1
4ωp̄qrγ

qrρ+ 1
8 Hp̄qrγ

qrρ ,

√
2DAψ

A ≡ ∂p̄ψp̄ + 1
4ωp̄qrγ

qrψp̄ + ω̄p̄
p̄q̄ψ

q̄ + 1
8 Hp̄qrγ

qrψp̄ − 2∂p̄φψ
p̄ .

ωµ ± 1
2 Hµ and ωµ ± 1

6 Hµ naturally appear as “spin connections”. Liu, Minasian
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Unification of type IIA and IIB SUGRAs

Since the two zehnbeins correspond to the same spacetime metric, they are related by

a Lorentz rotation,

(e−1ē)p
p̄(e−1ē)q

q̄ η̄p̄q̄ = −ηpq .

Further, there is a spinorial representation of this Lorentz rotation,

Seγ̄
p̄S−1

e = γ(D+1)γp(e−1ē)p
p̄ ,

such that

Seγ̄
(D+1)S−1

e = − det(e−1ē)γ(D+1) .
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Unification of type IIA and IIB SUGRAs

The N = 2 D = 10 SDFT Riemannian solutions are then classified into two groups,

cc′ det(e−1ē) = +1 : type IIA ,

cc′ det(e−1ē) = −1 : type IIB .

This identification with the ordinary IIA/IIB SUGRAs can be established, if we ‘fix’

the two zehnbeins equal to each other,

eµp ≡ ēµ p̄ ,

using a Pin(D−1, 1)R local Lorentz rotation which may or may not flip the

Pin(D−1, 1)R chirality,

c′ −→ det(e−1ē)c′ .

Namely, the Pin(D−1, 1)R chirality changes iff det(e−1ē) = −1.
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Unification of type IIA and IIB SUGRAs

The N = 2 D = 10 SDFT Riemannian solutions are then classified into two groups,

cc′ det(e−1ē) = +1 : type IIA ,

cc′ det(e−1ē) = −1 : type IIB .

That is to say, formulated in terms of the genuine DFT-field variables, i.e. VAp, V̄Ap̄,

Cαᾱ, etc. the N = 2 D = 10 SDFT is a chiral theory with respect to the pair of local

Lorentz groups. The possible four chirality choices are all equivalent and hence the

theory is unique. We may safely put c ≡ c′ ≡ +1 without loss of generality.

However, the theory contains two ‘types’ of Riemannian solutions, as classified above.

Conversely, any solution in type IIA and type IIB supergravities can be mapped to a

solution of N = 2 D = 10 SDFT of fixed chirality e.g. c ≡ c′ ≡ +1.

In conclusion, the single unique N = 2 D = 10 SDFT unifies type IIA and IIB

SUGRAs. Further it allows non-Riemannian solutions.
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cc′ det(e−1ē) = +1 : type IIA ,
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Diagonal gauge fixing and Reduction to SUGRA

Setting the diagonal gauge,

eµp ≡ ēµp̄

with ηpq = −η̄p̄q̄ , γ̄p̄ = γ(D+1)γp, γ̄(D+1) = −γ(D+1), breaks the local Lorentz

symmetry,

Spin(1,D−1)L × Spin(D−1, 1)R =⇒ Spin(1,D−1)D .

And it reduces SDFT to SUGRA:

N = 2 D = 10 SDFT =⇒ 10D Type II democratic SUGRA

Bergshoeff, et al.; Coimbra, Strickland-Constable, Waldram

N = 1 D = 10 SDFT =⇒ 10D minimal SUGRA Chamseddine; Bergshoeff et al.
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Diagonal gauge fixing and Reduction to SUGRA

After the diagonal gauge fixing, we may parameterize the R-R potential as

C ≡
(

1
2

) D+2
4 ∑′

p
1
p!
Ca1a2···apγ

a1a2···ap

and obtain the field strength,

F := D0
+C ≡

(
1
2

) D
4 ∑′

p
1

(p+1)!
Fa1a2···ap+1γ

a1a2···ap+1

where
∑′

p denotes the odd p sum for Type IIA and even p sum for Type IIB, and

Fa1a2···ap = p
(

D[a1
Ca2···ap ] − ∂[a1

φ Ca2···ap ]

)
+ p!

3!(p−3)!
H[a1a2a3

Ca4···ap ]

The pair of nilpotent differential operators, D0
+ and D0

−, reduce to a ‘twisted K-theory’

exterior derivative and its dual, after the diagonal gauge fixing,

D0
+ =⇒ d + (H − dφ) ∧

D0
− =⇒ ∗ [ d + (H − dφ) ∧ ] ∗
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+ and D0

−, reduce to a ‘twisted K-theory’

exterior derivative and its dual, after the diagonal gauge fixing,

D0
+ =⇒ d + (H − dφ) ∧

D0
− =⇒ ∗ [ d + (H − dφ) ∧ ] ∗
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Diagonal gauge fixing and Reduction to SUGRA

In this way, ordinary SUGRA ≡ gauge-fixed SDFT,

Spin(1,D−1)L × Spin(D−1, 1)R =⇒ Spin(1,D−1)D .

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Modifying O(D,D) transformation rule

The diagonal gauge, eµp ≡ ēµ p̄, is incompatible with the vectorial O(D,D)

transformation rule of the DFT-vielbein.

In order to preserve the diagonal gauge, it is necessary to modify the O(D,D)

transformation rule.
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The diagonal gauge, eµp ≡ ēµ p̄, is incompatible with the vectorial O(D,D)

transformation rule of the DFT-vielbein.

In order to preserve the diagonal gauge, it is necessary to modify the O(D,D)

transformation rule.

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Modifying O(D,D) transformation rule

The O(D,D) rotation must accompany a compensating Pin(D−1, 1)R local Lorentz

rotation, L̄q̄
p̄, SL̄

ᾱ
β̄ which we can construct explicitly as below.

L̄ = ē−1 [at − (g + B)bt] [at + (g − B)bt]−1 ē , γ̄q̄ L̄q̄
p̄ = S−1

L̄
γ̄p̄SL̄ ,

where a and b are parameters of a given O(D,D) group element,

MA
B =

 aµν bµσ

cρν dρσ

 .
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Modified O(D,D) Transformation Rule After The Diagonal Gauge Fixing

d −→ d

VA
p −→ MA

B VB
p

V̄A
p̄ −→ MA

B V̄B
q̄ L̄q̄

p̄

Cαᾱ , Fαᾱ −→ Cαβ̄(S−1
L̄

)β̄ ᾱ , Fαβ̄(S−1
L̄

)β̄ ᾱ

ρα −→ ρα

ρ′ᾱ −→ (SL̄)ᾱβ̄ρ
′β̄

ψαp̄ −→ (L̄−1)p̄
q̄ ψαq̄

ψ′ᾱp −→ (SL̄)ᾱβ̄ψ
′β̄
p

All the barred indices are now to be rotated. Consistent with Hassan

The R-R sector can be also mapped to O(D,D) spinors.

Fukuma, Oota Tanaka; Hohm, Kwak, Zwiebach
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Flipping the chirality: IIA ⇔ IIB

If and only if det(L̄) = −1, the modified O(D,D) rotation flips the chirality of the

theory, since

γ̄(D+1)SL̄ = det(L̄) SL̄γ̄
(D+1) .

Thus, the mechanism above naturally realizes the exchange of Type IIA and IIB

supergravities under O(D,D) T-duality.

However, since L̄ explicitly depends on the parametrization of VAp and V̄Ap̄ in terms of

gµν and Bµν , it is impossible to impose the modified O(D,D) transformation rule from

the beginning on the parametrization-independent covariant formalism.

The chirality flipping is an artifact of the diagonal gauge fixing.
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Worldsheet Perspective

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



String propagates in doubled-yet-gauged spacetime

The section condition is equivalent to the ‘coordinate gauge symmetry’, 1304.5946

xM ∼ xM + ϕ∂Mϕ′ .

A ‘physical point’ is one-to-one identified with a ‘gauge orbit’ in coordinate space.

The coordinate gauge symmetry can be concretely realized on worldsheet, 1307.8377

S = 1
4πα′

∫
d2σ L , L = − 1

2

√
−hhij Di X M Dj X NHMN (X)− εij Di X MAjM ,

where

Di X M = ∂i X M −AM
i , AM

i ∂M ≡ 0 .

The Lagrangian is quite symmetric thanks to the auxiliary gauge field, AM
i :

String worldsheet diffeomorphisms plus Weyl symmetry (as usual)

O(D,D) T-duality

Target spacetime diffeomorphisms

The coordinate gauge symmetry

c.f. Hull; Tseytlin; Copland, Berman, Thompson; Nibbelink, Patalong; Blair, Malek, Routh
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String propagates in doubled-yet-gauged spacetime

For example, under target spacetime ‘finite’ diffeomorphism à la Zwiebach-Hohm

LM
N := ∂AX ′B , L̄ := J LtJ−1 ,

F := 1
2

(
LL̄−1 + L̄−1L

)
, F̄ := J F tJ−1 = 1

2

(
L−1L̄ + L̄L−1) = F−1 ,

each field transforms as

X M −→ X ′M (X) ,

HMN (X) −→ H′MN (X ′) = F̄M
K F̄N

LHKL(X) ,

AM −→ A′M = ANFN
M + dX N (L− F )N

M : A′M∂′M ≡ 0 ,

DX M −→ D′X ′M = DX NFN
M ,

such that the worldsheet action remains invariant, up to total derivatives.
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String propagates in doubled-yet-gauged spacetime

The Equation Of Motion for X L can be conveniently organized in terms of our

DFT-Christoffel connection:

1√
−h
∂i
(√
−hDi X MHML + εij∂iAjL

)
− 2ΓLMN (PDi X)M (P̄Di X)N = 0 ,

which is comparable to the geodesic motion of a point particle, Ÿλ + Γλµν ẎµẎν = 0.

The EOM of AM
i implies a priori,

δAiM

(
HM

NDi X N + 1√
−h
εij Dj X M

)
= 0 .

Especially, for the case of the ‘non-degenerate’ Riemannian background, a complete

self-duality follows

HM
NDi X N + 1√

−h
εij Dj X M = 0 .

Finally, the EOM of hij gives the Virasoro constraints,(
Di X M Dj X N − 1

2 hij Dk X M Dk X N
)
HMN = 0 .
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String propagates in doubled-yet-gauged spacetime

After parametrization, X M = (Ỹµ,Yν), HMN (G,B), and integrating out AM
i , it can

produce either the standard string action for the ‘non-degenerate’ Riemannian case,

1
4πα′L ≡

1
2πα′

[
− 1

2

√
−hhij∂i Yµ∂j YνGµν(Y ) + 1

2 ε
ij∂i Yµ∂j YνBµν(Y ) + 1

2 ε
ij∂i Ỹµ∂j Yµ

]
,

with the bonus of the topological term introduced by Giveon-Rocek, Hull
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ij∂i Yµ∂j YνBµν(Y ) + 1

2 ε
ij∂i Ỹµ∂j Yµ

]
,

with the bonus of the topological term introduced by Giveon-Rocek, Hull

or chiral actions for ‘degenerate’ non-Riemannian cases, e.g. for HAB = JAB ,

1
4πα′L ≡

1
4πα′ ε

ij∂i Ỹµ∂j Yµ , ∂i Yµ + 1√
−h
εi

j∂j Yµ = 0 .

c.f. Gomis-Ooguri

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



U-duality
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Parallel to the stringy differential geometry for O(D,D) T-duality,

it is possible to construct M-theoretic differential geometry for each U-duality group.
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AN−1 ≡ sl(N)

DN−1 ≡ so(N−1,N−1)

EN−1

EN

Table: Dynkin diagrams for AN−1, DN−1, EN−1 and EN

E11 : conjectured to be the ultimate duality group. West

E10 : Damour, Nicolai, Henneaux and further En (n ≤ 8) “Exceptional Field Theory”

D10 : Double Field Theory

A10 : U-gravity
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Geometric Constitution of U-gravity
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Geometric Constitution of U-gravity

Notation.

Small Latin alphabet letters denote the SL(N) vector indices, i.e.

a, b, c, · · · = 1, 2, · · · ,N.
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Geometric Constitution of U-gravity

Extended-yet-gauged spacetime.

The spacetime is formally extended, being 1
2 N(N − 1)-dimensional. The

coordinates carry a pair of anti-symmetric SL(N) vector indices,

xab = −xba = x [ab] ,

and hence so does the derivative,

∂ab = −∂ba = ∂[ab] = ∂
∂xab , ∂abxcd = δ c

a δ
d

b − δ
d

a δ c
b .

However, the spacetime is gauged: the coordinate space is equipped with an

equivalence relation (‘Coordinate Gauge Symmetry’),

xab ∼ xab + 1
(N−4)!

εabc1···cN−4deφc1···cN−4∂deϕ ,

where φc1···cN−4 and ϕ are arbitrary functions in U-gravity.

Each equivalence class, or gauge orbit defined by the equivalence relation

represents a single physical point, and diffeomorphism symmetry means an

invariance under arbitrary reparametrizations of the gauge orbits.
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Geometric Constitution of U-gravity

Realization of the coordinate gauge symmetry.

The equivalence relation is realized in U-gravity by enforcing that, arbitrary functions

and their arbitrary derivatives are invariant under the coordinate gauge symmetry

shift,

Φ(x + ∆) = Φ(x) , ∆ab = 1
(N−4)!

εabc1···cN−4deφc1···cN−4∂deϕ .
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Geometric Constitution of U-gravity

Section condition.

The invariance under the coordinate gauge symmetry is, in fact, equivalent to a

section condition, c.f. Berman-Perry for N = 5

∂[ab∂cd ] ≡ 0 .

Acting on arbitrary functions, Φ, Φ′, and their products, the section condition

leads to

∂[ab∂cd ]Φ = ∂[ab∂c]d Φ=0 (weak constraint) ,

∂[abΦ∂cd ]Φ
′ = 1

2∂[abΦ∂c]d Φ′ − 1
2∂d [aΦ∂bc]Φ

′=0 (strong constraint) .
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Geometric Constitution of U-gravity

Diffeomorphism.

U-gravity diffeomorphism is generated by a generalized Lie derivative,

c.f. Berman-Perry for N = 5

L̂X T a1a2···ap b1b2···bq := 1
2 X cd∂cd T a1a2···ap b1b2···bq

+ 1
2 ( 1

2 p − 1
2 q + ω)∂cd X cd T a1a2···ap b1b2···bq

−
∑p

i=1 T a1···c···ap b1b2···bq∂cd X ai d

+
∑q

j=1 ∂bj d X cd T a1a2···ap b1···c···bq .

Here we let the tensor density, T a1a2···ap b1b2···bq , carry the ‘total’ weight, 1
2 p − 1

2 q + ω,

such that each upper or lower index contributes to the total weight by + 1
2 or − 1

2

respectively, while ω corresponds to a possible ‘extra’ weight.
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Geometric Constitution of U-gravity

Diffeomorphism.

U-gravity diffeomorphism is generated by a generalized Lie derivative,
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i=1 T a1···c···ap b1b2···bq∂cd X ai d

+
∑q

j=1 ∂bj d X cd T a1a2···ap b1···c···bq .

Note

L̂X δ
a
b = 0 ,

and the commutator,[
L̂X , L̂Y

]
= L̂[X ,Y ]G , [X ,Y ]ab

G = 1
2 X cd∂cd Y ab − 3

2 X [ab∂cd Y cd ] − (X ↔ Y ) .
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Geometric Constitution of U-gravity

U-metric.

The only geometric object in SL(N) U-gravity is a metric, or U-metric, which is a

generic non-degenerate N × N symmetric matrix, obeying surely the section condition,

Mab = Mba = M(ab) .

Like in Riemannian geometry, the U-metric with its inverse, Mab, may freely lower or

raise the positions of the N-dimensional SL(N) vector indices.

Integral measure.

While the U-metric has no extra weight, its determinant, M ≡ det(Mab), acquires an

extra weight, ω = 4− N. The duality invariant integral measure is then

|M|
1

4−N .
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Geometric Constitution of U-gravity

Semi-covariant derivative and semi-covariant Riemann curvature.

We define a semi-covariant derivative,

∇cd T a1a2···ap b1b2···bq := ∂cd T a1a2···ap b1b2···bq + 1
2 ( 1

2 p − 1
2 q + ω)Γcde

eT a1a2···ap b1b2···bq

−
∑p

i=1 T a1···e···ap b1b2···bq Γcde
ai +

∑q
j=1 Γcdbj

eT a1a2···ap b1···e···bq ,

and a semi-covariant Riemann curvature,

Sabcd := 3∂[abΓe][cd ]
e + 3∂[cd Γe][ab]

e + 1
4 Γabe

eΓcdf
f + 1

2 Γabe
f Γcdf

e

+Γab[c
eΓd ]ef

f + Γcd [a
eΓb]ef

f + Γea[c
f Γd ]fb

e − Γeb[c
f Γd ]fa

e .
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The semi-covariant derivative obeys the Leibniz rule and annihilates the Kronecker

delta symbol,

∇cdδ
a
b = 0 .
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Geometric Constitution of U-gravity

Semi-covariant derivative and semi-covariant Riemann curvature.

We define a semi-covariant derivative,

∇cd T a1a2···ap b1b2···bq := ∂cd T a1a2···ap b1b2···bq + 1
2 ( 1

2 p − 1
2 q + ω)Γcde

eT a1a2···ap b1b2···bq

−
∑p

i=1 T a1···e···ap b1b2···bq Γcde
ai +

∑q
j=1 Γcdbj

eT a1a2···ap b1···e···bq ,

and a semi-covariant Riemann curvature,

Sabcd := 3∂[abΓe][cd ]
e + 3∂[cd Γe][ab]

e + 1
4 Γabe

eΓcdf
f + 1

2 Γabe
f Γcdf

e

+Γab[c
eΓd ]ef

f + Γcd [a
eΓb]ef

f + Γea[c
f Γd ]fb

e − Γeb[c
f Γd ]fa

e .

A crucial defining property of the semi-covariant Riemann curvature is that, under

arbitrary transformation of the connection it transforms as total derivative,

δSabcd = 3∇[abδΓe][cd ]
e + 3∇[cdδΓe][ab]

e .
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e + 1
4 Γabe
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f + 1

2 Γabe
f Γcdf

e

+Γab[c
eΓd ]ef

f + Γcd [a
eΓb]ef

f + Γea[c
f Γd ]fb

e − Γeb[c
f Γd ]fa

e .

Further, the semi-covariant Riemann curvature satisfies precisely the same symmetric

properties as the ordinary Riemann curvature, including the Bianchi identity,

Sabcd = S[ab][cd ] = Scdab , S[abc]d = 0 .
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Geometric Constitution of U-gravity

Connection.

Γabcd = Aabcd + 1
2 (Aacbd − Aadbc + Abdac − Abcad )

+ 1
N−2

(
MacAe

(bd)e −Mad Ae
(bc)e + Mbd Ae

(ac)e −MbcAe
(ad)e

)
,

where

Aabcd := − 1
2∂abMcd + 1

2(N−4)
Mcd∂ab ln |M| .

This connection is the unique solution to the following five constraints:

Γabcd + Γabdc = 2Aabcd , (1)

Γabc
d + Γbac

d = 0 , (2)

Γabc
d + Γbca

d + Γcab
d = 0 , (3)

Γcab
c + Γcba

c = 0 , (4)

Pabcd
efghΓefgh = 0 . (5)
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Eq.(1) is equivalent to the U-metric compatibility condition,

∇abMcd = 0 .
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Eq.(2) is natural from the skew-symmetric nature of the coordinates, x (ab) = 0 and

hence ∂(ab) = ∇(ab) = 0.

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Geometric Constitution of U-gravity

Connection.
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Eqs.(3,4) make the semi-covariant derivative compatible with the generalized Lie

derivative and the generalized bracket: L̂X (∂) = L̂X (∇), [X ,Y ]G(∂) = [X ,Y ]G(∇).
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,

where
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d = 0 , (2)

Γabc
d + Γbca

d + Γcab
d = 0 , (3)

Γcab
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efghΓefgh = 0 . (5)

Eq.(5) is a projection condition which ensures the uniqueness.
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Geometric Constitution of U-gravity

Projection operator.

The above eight-index projection operator is explicitly,

Pabcd
klmn = 1

2 δ
[k

[a δ
l]

b]
δ

[m
[c δ

n]
d ]

+ 1
2 δ

[k
[c δ

l]
d ]
δ

[m
[a δ

n]
b]

+ 1
2 Mc[aδ

m
b]

Mn[kδ
l]

d −
1
2 Mc[aδ

[k
b]

M l]nδ m
d

+ 1
N−2

(
δ n

[a Mb][cMm[kδ
l]

d ]
+ δ n

[c Md ][aMm[kδ
l]

b]
−Mc[aMb]d Mm[k M l]n

)
,

which satisfies

Pabcd
pqrsPpqrs

klmn = Pabcd
klmn , Pabs

sklmn = 0 ,

Pabcd
klmn = P[ab]cd

[kl]mn , Pab[cd ]
klmn = Pcd [ab]

klmn .
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Projection operator.

The above eight-index projection operator is explicitly,

Pabcd
klmn = 1

2 δ
[k
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l]

b]
δ

[m
[c δ

n]
d ]

+ 1
2 δ

[k
[c δ

l]
d ]
δ

[m
[a δ

n]
b]

+ 1
2 Mc[aδ

m
b]

Mn[kδ
l]

d −
1
2 Mc[aδ

[k
b]

M l]nδ m
d

+ 1
N−2

(
δ n

[a Mb][cMm[kδ
l]

d ]
+ δ n

[c Md ][aMm[kδ
l]

b]
−Mc[aMb]d Mm[k M l]n

)
.

Crucially, the projection operator dictates the anomalous terms under diffeomorphism:

(δX − L̂X )(∇abT c1···cp d1d2···dq ) = −
∑p

i=1 T c1···e···cp d1···dq Ωabe
ci +

∑q
j=1 Ωabdj

eT c1···cp d1···e···dq ,

(δX − L̂X )Sabcd = 2∇e[aΩb][cd ]
e + 2∇e[cΩd ][ab]

e ,

where

Ωabcd = Pabcd
klm

n∂kl∂meX ne .
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Geometric Constitution of U-gravity

Complete covariantizations.

The semi-covariant derivative and the semi-covariant Riemann curvature can be fully

covariantized by (anti-)symmetrizing or contracting the SL(N) vector indices properly,

∇[abTc1c2···cq ] , ∇abT a , ∇a
bT[ca] +∇a

cT[ba] , ∇a
bT(ca) −∇a

cT(ba) ,

∇abT [abc1c2···cq ] (divergence) , ∇ab∇[abT c1c2···cq ] (Laplacian) ,

and

Sab := Sacb
c = Sba (“Ricci” curvature) ,

S := MabSab = Sab
ab (scalar curvature) .
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Geometric Constitution of U-gravity

Action.

The action of SL(N) U-gravity is given by the fully covariant scalar curvature,∫
Σ

M
1

4−N S ,

where the integral is taken over a section, Σ.

The Einstein equation of motion.

The equation of motion corresponds to the vanishing of the ‘Einstein’ tensor,

Sab + 1
2(N−4)

MabS = 0 .

Diffeomorphism symmetry of the action implies a conservation relation,

∇c
[aSb]c + 3

8∇abS = 0 .
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Geometric Constitution of U-gravity

Two inequivalent sections.

Up to SL(N) rotations, there exist two inequivalent solutions to the section condition :

1 ΣN−1 is an (N − 1)-dimensional section given by

∂αβ = 0 , ∂αN 6= 0 ,

where α, β = 1, 2, · · · ,N − 1.

2 Σ3 is a three-dimensional section characterized by

∂µi = 0 , ∂ij = 0 , ∂µν 6= 0 ,

where µ, ν = 1, 2, 3 and i, j = 4, 5, · · · ,N. We may further dualize

x̃µ ≡ 1
2 εµνρxνρ , ∂̃µx̃ν = δµν .
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Geometric Constitution of U-gravity

Two inequivalent sections.

Up to SL(N) rotations, there exist two inequivalent solutions to the section condition :

1 ΣN−1 is an (N − 1)-dimensional section given by

∂αβ = 0 , ∂αN 6= 0 ,

where α, β = 1, 2, · · · ,N − 1.

2 Σ3 is a three-dimensional section characterized by

∂µi = 0 , ∂ij = 0 , ∂µν 6= 0 ,

where µ, ν = 1, 2, 3 and i, j = 4, 5, · · · ,N. We may further dualize

x̃µ ≡ 1
2 εµνρxνρ , ∂̃µx̃ν = δµν .

For a triplet of arbitrary functions, we note

∂[abΦ∂c][d Φ′∂ef ]Φ
′′ = 0 on ΣN−1 , ∂[abΦ∂c][d Φ′∂ef ]Φ

′′ 6= 0 on Σ3 .

Since this is an SL(N) covariant statement, the two sections are inequivalent.
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Geometric Constitution of U-gravity

Two inequivalent sections.

Up to SL(N) rotations, there exist two inequivalent solutions to the section condition:

1 ΣN−1 is an (N − 1)-dimensional section given by

∂αβ = 0 , ∂αN 6= 0 ,

where α, β = 1, 2, · · · ,N − 1.

2 Σ3 is a three-dimensional section characterized by

∂µi = 0 , ∂ij = 0 , ∂µν 6= 0 ,

where µ, ν = 1, 2, 3 and i, j = 4, 5, · · · ,N. We may further dualize

x̃µ ≡ 1
2 εµνρxνρ , ∂̃µx̃ν = δµν .

Note: in the case of SL(5), they correspond toM-theory and type IIB theory respectively

(with the compactification on seven-manifold). Blair-Malek-JHP
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Geometric Constitution of U-gravity

Riemannian reductions.

1 Reduction to ΣN−1 through (N − 1)-dimensional Riemannian metric, gαβ , a

vector, vα, and a scalar, φ,

Mab =


gαβ√
|g|

vα

vβ
√
|g|
(
−eφ + v2)

 , |M|
1

4−N = e
1

4−N φ
√
|g| .

The U-gravity scalar curvature reduces upon the section, ΣN−1, to

S|ΣN−1
= 2e−φ

[
Rg − (N−3)(3N−8)

4(N−4)2 ∂αφ∂αφ+ N−2
N−4 ∆φ+ 1

2 e−φ (5αvα)2
]
.

The vector field can be dualized to an (N − 2)-form potential.
2 Reduction to Σ3, employing ‘dual’ upside-down notations,

Mab =


g̃µν
√
|g̃|

− ṽ jµ

−ṽ iν
√
|g̃|(e−φ̃M̃ij + ṽ iλṽ j

λ)

 , |M|
1

4−N = e
N−3
4−N φ̃

√
|g̃| .

The U-gravity scalar curvature reduces upon the section, Σ3, to

S|Σ3
= −2Rg̃+ (N−3)(3N−8)

2(N−4)2 ∂̃µφ̃∂̃µφ̃− 4(N−3)
N−4 ∆̃φ̃− 1

2 ∂̃
µM̃ij ∂̃µM̃ij +eφ̃M̃ij5̃µṽ i

µ5̃ν ṽ j
ν ,

which manifests SL(N−3) S-duality.
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Geometric Constitution of U-gravity

Non-Riemannian backgrounds.

When the upper left (N − 1)× (N − 1) block of the U-metric is degenerate – where
gαβ√
|g|

might have been positioned – the Riemannian metric ceases to exist upon ΣN−1.

Nevertheless, SL(N) U-gravity has no problem with describing such a non-Riemannian

background, as long as the whole N × N U-metric is non-degenerate.

Similarly upon Σ3, U-gravity may allow the upper left 3× 3 block of the inverse of the

U-metric to be degenerate.

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Conclusion

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Conclusion

Summary

Riemannian geometry is for particle theory. String theory requires a novel differential

geometry which geometrizes the whole NS-NS sector and underlies DFT.

Novel differential geometic ingredients:

� Spacetime being extended-yet-gauged (section condition)

� Semi-covariant derivative and semi-covariant curvature

� Complete covariantizations of them through ‘projection’.

N = 2 D = 10 SDFT has been constructed to the full order in fermions. The theory

unifies IIA and IIB SUGRAs, and allows non-Riemannian ‘metric-less’ backgrounds.

Precisely parallel formulation for SL(N) U-duality under the name, U-gravity.
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Conclusion

Outlook

Further study and classification of the non-Riemannian, ‘metric-less’ backgrounds.

Quantization of the string action on doubled-yet-gauged spacetime.

O(10, 10) covariant Killing spinor equation → SUSY and T-duality are compatible.

Further generalization of ‘Generalized Complex structure’ or ‘G-structure’.
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Thank you.
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