Instanton Operators in 5D Gauge Theories

Costis Papageorgakis High1, 13th Jan 2015

w/ N. Lambert and M. Schmidt-Sommerfeld 1412.2789

Motivation

Dramatic result coming out of string/M-theory: ∃ interacting SCFTs in 5D and 6D

⇒ Provide UV completions for a variety of 5D gauge theories [Seiberg]

UV theories enjoy global or Lorentz symmetry enhancement:

◇ N = 1 SYM theories with N_f ≤ 7 and SO(2N_f) symmetry
⇒ N = 1 5D SCFT with E_{N_f+1} symmetry
◇ N = 2 SYM theory ⇒ (2,0) 6D SCFT

Indirect ways of seeing this enhancement, mainly using index calculations [Kim²-Lee, Bashkirov, Hwang-Kim²-Park,...]

Can we find a simpler way? \Rightarrow Draw upon our knowledge of 3D theories where local monopole operators play important role

 \Rightarrow Global symmetry and susy enhancement in the IR [Borokhov-Kapustin-Wu, Gaiotto-Witten, ABJM, ...]

Q: Is there an analogue in 5D?

A: We can construct local instanton operators

Outline

- Definition of instanton operators
- Supersymmetry
- Chern-Simons terms
- Applications
- Summary

Definition

Well-known that 5D SYM has conserved current

$$J = \frac{1}{8\pi^2} \operatorname{Tr} \star (F \wedge F)$$

Charged BPS-particle solutions: instanton solitons

Both global and Lorentz symmetry enhancement associated with instanton charge.

Preliminary: An instanton operator is a local operator which creates instanton solitons out of vacuum

The OPE of this current with $\mathcal{I}_n(0)$ is given by

$$J^{\mu}(x)\mathcal{I}_n(0) \sim \frac{3n}{8\pi^2} \frac{x^{\mu}}{|x|^5} \mathcal{I}_n(0) + \cdots$$

More formally: Instanton operators, $\mathcal{I}_n(x)$, modify boundary conditions for gauge field at infinity in Eucliden path integral:

$$\mathcal{I}_{n}(x)\mathcal{O}_{01}(x_{1})\dots\mathcal{O}_{0k}(x_{k})\rangle = \\ = \int_{\frac{1}{8\pi^{2}}\operatorname{Tr}\oint_{S_{x}^{4}}F\wedge F=n} [DXDAD\psi] \mathcal{O}_{01}(x_{1})\dots\mathcal{O}_{0k}(x_{k})e^{-S_{E}}$$

Fields need to satisfy classical eom near insertion point in \mathbb{R}^5

$$D^{\mu}F_{\mu\nu} = 0 , \qquad D_{[\mu}F_{\nu\lambda]} = 0$$

but with non-vanishing

$$I = \frac{1}{8\pi^2} \operatorname{Tr} \oint_{S^4} F \wedge F$$

In spherical coordinates a simple solution is given by taking $A_r = F_{ri} = 0$ and the angular components satisfying

$$F = \pm \star_{S^4} F$$

This solution for SU(2) theory was found long ago by Yang, as static SO(5)-symmetric particle in 6D \Rightarrow Yang monopole

A DBI generalisation for SU(N) later given by Constable-Myers-Tafjord in context of D1 \perp D5 intersections

Alternatively: Instanton operators defined by the condition that the gauge field has a Yang monopole singularity at the insertion point Instantons on S^4 can be straightforwardly constructed by stereographic projection from \mathbb{R}^4

The solutions exhibit some amusing properties:

$$F \wedge F = \frac{8\rho^4 \sum_{i=1}^3 T_i^2}{\left(1 + \rho^2 + (1 - \rho^2)\cos\theta^1\right)^4} \sqrt{\gamma} \ d^4\theta$$

with $[T_i, T_j] = 2i\epsilon_{ijk}T_k$ an $N \times N$ representation of $\mathfrak{su}(2)$

When $\rho = 1$ this reduces to the SO(5)-symmetric

$$F \wedge F = \frac{1}{2} \sum_{i=1}^{3} T_i^2 \sqrt{\gamma} \ d^4\theta$$

When the T_i are irreps of $\mathfrak{su}(2)$ then

$$\sum_{i=1}^{3} T_i^2 = (N^2 - 1) \, \mathbf{1}_{N \times N}$$

and $F \wedge F$ is gauge invariant without the trace

By further considering (for generic ρ)

$$I = \frac{1}{8\pi^2} \operatorname{Tr} \int F \wedge F = \frac{N(N^2 - 1)}{6}$$

Supersymmetry

Are these solutions supersymmetric?

The supervariation of a fermion in the background of the Yang monopole is

$$\delta\psi = \frac{1}{2}\Gamma^{\mu\nu}F_{\mu\nu}\Gamma_5\varepsilon$$

The ε are 32-component spinors which also satisfy

 $\Gamma_{012345}\varepsilon = \varepsilon$

Using that $F = \pm \star_{S^4} F$ one can satisfy $\delta \psi = 0$ if

$$\left(\frac{x^{\mu}}{|x|^2}\Gamma_{\mu}\Gamma_5 \pm i\right)\varepsilon = 0$$

This cannot hold for all x^{μ} and supersymmetry is broken.

Q: How can a non-susy instanton operator create a $\frac{1}{2}$ -BPS instanton soliton state?

A: The operator creates a tower of states; the BPS instanton soliton can be found at the bottom of that tower

The 5D susy algebra contains a central charge

$$Z_5 = -\frac{1}{2g^2} \operatorname{Tr} \int F \wedge F$$

The instanton-solitons with charge n can be found after projecting out all other states

$$|n\rangle = \lim_{\tau \to \infty} e^{-(H - Z_5)\tau} \mathcal{I}_n(0) |0\rangle$$

Analogous to 3D where monopole operators and BPS vortices annihilated by different combinations of supercharges [Intriligator-Seiberg]

CS terms

In $\mathcal{N} = 1$ theories we can also add Chern-Simons terms

$$S_{CS} = \frac{k}{24\pi^2} \operatorname{Tr} \int (F \wedge F \wedge A + \frac{i}{2}F \wedge A \wedge A \wedge A - \frac{1}{10}A \wedge A \wedge A \wedge A \wedge A)$$

In the presence of such a term the instanton operators are not always gauge invariant:

$$\delta S_{CS} = \frac{k}{8\pi^2} \text{Tr} \int F \wedge F \wedge \delta A$$

and by considering $\delta A = D\omega$ with $\omega = 0$ at ∞ one finds

$$\delta S_{CS} = -\frac{k}{8\pi^2} \operatorname{Tr}\left[\omega(x) \oint_{S_x^4} F \wedge F\right]$$

Inserting this into a correlator

$$\begin{split} \delta \langle \mathcal{I}_n(x) \mathcal{O}_{01}(x_1) \dots \mathcal{O}_{0k}(x_k) \rangle &= \\ &= -\int_{\frac{1}{8\pi^2} \operatorname{Tr} \oint_{S_x^4} F \wedge F = n} [DXDAD\psi] \ \mathcal{O}_{01}(x_1) \dots \mathcal{O}_{0k}(x_k) \delta S_{CS} e^{-S_E} \\ &= \frac{k}{8\pi^2} \operatorname{Tr} \left[\omega(x) \oint_{S_x^4} F \wedge F \right] \langle \mathcal{I}_n(x) \mathcal{O}_{01}(x_1) \dots \mathcal{O}_{0k}(x_k) \rangle \end{split}$$

and one needs to understand the properties of

$$Q_I = \frac{1}{8\pi^2} \oint_{S_x^4} F \wedge F$$

Could this play a similar role to $Q_M = \frac{1}{2\pi} \oint_{S^2} F$ in GNO?

For the single instanton irreducible case

$$Q_I = \frac{1}{6} \sum_{i=1}^{3} T_i^2 = \frac{1}{6} (N^2 - 1) \, \mathbf{1}_{N \times N}$$

and Q_I is gauge invariant.

Introducing a basis t_a of full gauge group Lie algebra with metric $\kappa_{ab} = \text{Tr}(t_a t_b)$ and symmetric tensor

$$d_{abc} = \operatorname{Tr}(t_{(a}t_{b)}t_{c})$$

so more generally we have

$$\delta \mathcal{I}_n = k d_{abc} Q_I^{ab} \omega^c \mathcal{I}_n$$

Application: Lorentz symmetry enhancement

The (2,0) SCFT is completely described in terms of operator spectrum and OPE coefficients.

Consider

$$\langle \hat{\mathcal{O}}_1(\hat{x}_1)\hat{\mathcal{O}}_2(\hat{x}_2)\rangle = \frac{c_{12}}{|\hat{x}_1 - \hat{x}_2|^{\Delta_1 + \Delta_2}}$$

 \Rightarrow Use instanton operators to relate 6D to 5D $\mathcal{N}=2$ correlators by compactifying on S^1

Implement this by viewing S^1 as orbifold \mathbb{R}/Γ and

$$\Gamma: (x, y) \mapsto (x, y + 2\pi Rn)$$
 with $n \in \mathbb{Z}$

For an operator on $\mathbb{R}^5\times S^1$ write

$$\mathcal{O}(x,y) := \sum_{n \in \mathbb{Z}} \hat{\mathcal{O}}(x, y + 2\pi Rn) = \sum_{m \in \mathbb{Z}} e^{imy/R} \mathcal{O}_m(x)$$

where \mathcal{O}_m are Fourier modes

 \Rightarrow Not all operators can be related in this way as they have to satisfy linear equations

Starting from the two-point function $\langle O_1(x_1, y_1)O_2(x_2, y_2)\rangle$, using these facts and the identification $R = g^2/4\pi^2$ one arrives at the following:

For the zero modes (pertubative)

$$\langle \mathcal{O}_0(x_1)\mathcal{O}_0(x_2)\rangle = -\frac{c_{12}\pi^{\frac{3}{2}}}{g^2} \frac{\Gamma(\frac{\Delta_1+\Delta_2-1}{2})}{\Gamma(\frac{\Delta_1+\Delta_2}{2})} \frac{1}{|x_{12}|^{\Delta_1+\Delta_2-1}}$$

For the non-zero modes (non-pertubative)

$$\langle \mathcal{O}_n(x_1)\mathcal{O}_{-n}(x_2) \rangle \\ = -\frac{c_{12}\pi^{\frac{\Delta_1+\Delta_2}{2}}}{2|n|\Gamma(\frac{\Delta_1+\Delta_2}{2})} \left(\frac{2\pi|n|}{g^2|x_{12}|}\right)^{\frac{\Delta_1+\Delta_2}{2}} e^{-\frac{4\pi^2}{g^2}|n||x_{12}|} \left(1 + \mathcal{O}\left(\frac{g^2}{|n||x_{12}|}\right)\right)$$

We propose that the non-zero modes are related to instanton operators

$$\mathcal{O}_n(x) := \mathcal{I}_n(x)\mathcal{O}_0(x)$$

Compatible with:

- \diamond Momentum conservation on S^1
- Lack of susy
- $\diamond\,$ The characteristic e^{-S_n} dependence of the non-zero mode correlators with

$$S_n = \frac{4\pi^2}{g^2} |n| |x_1 - x_2|$$

Momentum Conservation

We have that

$$S_I = \frac{4\pi^2 |n|}{g^2} R$$

where $R \to \infty$. Therefore the action blows up unless n = 0.

This implies that for correlators

$$\langle \mathcal{O}_{n_11}(x_1)\mathcal{O}_{n_22}(x_2)...\mathcal{O}_{n_kk}(x_2)\rangle = 0$$

unless

$$\sum_{i=1}^{k} n_i = 0$$

 \Rightarrow Momentum conservation on S^1

Supersymmetry

Consider a BPS operator in 6D satisfying $[Q, \hat{O}] = 0$.

Introduce a superspace with

$$Q = \frac{\partial}{\partial \theta} + i\bar{\theta}\Gamma^m \partial_m$$

Then using

$$\mathcal{O}_m(x) = \frac{1}{2\pi R} \int_0^{2\pi R} dy \ e^{-imy/R} \sum_{n \in \mathbb{Z}} \hat{\mathcal{O}}(x, y + 2\pi Rn)$$

we find that

$$[Q, \mathcal{O}_n] = \frac{n}{2\pi R^2} \bar{\theta} \Gamma^y \mathcal{O}_n \neq 0$$

Non-perturbative dependence

Finally, consider a correlator involving insertions of two instanton operators at x_1 and x_2 with charges n and -n.

By dimensional analysis the minimum action is:

$$S_{min} = \frac{1}{4g^2} \int d^5 x F_{\mu\nu} F^{\mu\nu} = \frac{K}{g^2} |x_1 - x_2|$$

The coefficient K can be pinned down by taking the second point to ∞ and comparing with $S_I = \frac{4\pi^2 |n|}{q^2} R$ as $R \to \infty$

We get:
$$S_{min} = rac{4\pi^2}{g^2} |n| |x_1 - x_2| = S_n$$
 as required

Summary

- Introduced instanton operators in 5D gauge theories
- Looked at some properties
- $\diamond~$ These are non-BPS in \mathbb{R}^5
- ♦ Application: Relating correlators of (2,0) theory on $\mathbb{R}^5 \times S^1$ and $\mathcal{N} = 2$ SYM in 5D

- Q: Can the instanton operators be made supersymmetric?
- ⇒ Yes, by employing an R-symmetry twist [Rodríguez-Gómez, Schmude]
- Q: Application: Flavour symmetry enhancement in UV of $\mathcal{N} = 1$ 5D SYM?
- ⇒ The fermionic zero-modes of the instanton operators would seem to account for this [Tachikawa]