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Motivation
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Figure 4: Left: 95% CL Upper limits by category for the LFV H ! µt decays. Right: best fit
branching fractions by category.
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Figure 5: Left: Distribution of Mcol for all categories combined, with each category weighted
by significance (S/(S + B)). The significance is computed for the integral of the bins in the
range 100 < Mcol < 150 GeV using B(H ! µt) = 0.84%. The simulated Higgs signal shown
is for B(H ! µt) = 0.84%. The bottom panel shows the fractional difference between the
observed data and the fitted background. Right: background subtracted Mcol distribution for
all categories combined.
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q CMS	reported	the	BR	for	ℎ → 𝜏𝜇	 to	be
𝐵𝑅 ℎ → 𝜇𝜏 = 0.84-../01../2 %
a	2.4	𝞼 deviation,	PLB749(15)

q ATLAS	did	not	see	 the	significant	excess,
𝐵𝑅 ℎ → 𝜏𝜇 < 1.85%

q We	study	the	implications	on	rare	tau	
decays,	muon	g-2,	𝑍 → 𝜇𝜏,	etc
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Figure 3. Post-fit combined mMMC
µτ distribution obtained by adding individual distributions

in SR1 and SR2. In the lower part of the figure, the data are shown after subtraction of the
estimated backgrounds. The grey band in the bottom panel illustrates the post-fit systematic
uncertainties on the background prediction. The statistical uncertainties for data and background
predictions are added in quadrature on the bottom part of the figure. The signal is shown assuming
Br(H → µτ)=0.77%, the central value of the best fit to Br(H → µτ). The last bin of the distribution
contains overflow events.

SR1 SR2 Combined

Expected limit on Br(H → µτ) [%] 1.60+0.64
−0.45 1.75+0.71

−0.49 1.24+0.50
−0.35

Observed limit on Br(H → µτ) [%] 1.55 3.51 1.85

Best fit Br(H → µτ) [%] −0.07+0.81
−0.86 1.94+0.92

−0.89 0.77±0.62

Table 3. The expected and observed 95% confidence level (CL) upper limits and the best fit values
for the branching fractions for the two signal regions and their combination.

data and background expectations in SR1. A small excess of the data over the predicted

background is observed in the 120GeV< mMMC
µτ <140GeV region in SR2. This small excess

in SR2 has a local significance of 2.2 standard deviations and a combined significance for

both signal regions of 1.3 standard deviations. This corresponds to a best fit value for

the branching fraction of Br(H → µτ)=(0.77 ± 0.62)%. Due to the low significance of

the observed excess, an upper limit on the LFV branching ratio Br(H → µτ) for a Higgs

boson with mH = 125GeV is set using the CLs modified frequentist formalism [61] with

the profile likelihood-ratio test statistics [62]. The observed and the median expected 95%

CL upper limits are 1.85% and 1.24+0.50
−0.35%, respectively. Table 3 provides a summary of

all results.
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What	has	been	done?
- S4 flavor	symmetry,		Campos	etal	arXiv:1408.1652
- 2HDM	type-III,	Sierra	etal,	arXiv:1409.7690
- DM	with	minimal	FV,	Lee	&	Tandean arXiv:1410.6803
- Abelian	&	non-Abelian	FS,	Heeck etal,	arXiv:1412.3671
- Gauged	𝐿: − 𝐿< in	a	2HDM,	Crivellin etal arXiv:1501.00993
- G2HDM,	Omura etal,	arXiv:1502.07824
- Horizontal	gauge	symmetries,	Crivellin etal arXIv:1503.03477
- Hidden	scalars,	Das	&	Kundun,	arXiv:1504.01125
- MFV,	He	etal arXiv:1507.02673
- Axion model,	Chiang	etal arXiv:1507.04354
- Leptoquark,	Cheung	etal arXiv:1508.01897
- SUSY	inverse	seesaw,	Arganda etal arXiv:1508.04623
- Leptoquark,	Baek etal arXiv:1509.07410
- R-parity,	Huang	&	Tang	arXiv:1509.08599
- Lepton-flavored	DM,	Baek etal arXiv:1510.00100
- SUSY,	Arganda arXiv:1510.04685
- MSSM,	Aloni arXiv:1511.00979
- More		….
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Why	is	LFV	interesting?

q Flavor	changing	neutral	currents	 (FCNCs)	appear	in	the	SM	via	the
charged	weak	interactions,	𝐷𝐷>,𝐾𝐾>, 𝐵A𝐵A, 𝑏 → 𝑠𝛾, 𝑒𝑡𝑐

q Most	of	these	processes	 involve	nonperturbative QCD	effects;	
It	is	difficult	to	distinguish	the	new	physics	from	the	SM	effects	
due	to	the	QCD	uncertainty

q LFV	can	be	induced	in	the	SM	and	is	irrelevant	to	QCD;	but	they	are	tiny,	
e. g. 	𝜏 → 𝜇𝛾 ∼ 𝑂 10-L.

q Unlike	the	hadronic	cases,	 if	any	LFV	signal	is	observed,	
it	is	certainly	strong	evidence	for	new	physics



Type I Type II Lepton-specific Flipped
ξuh cosα/ sinβ cosα/ sin β cosα/ sinβ cosα/ sin β
ξdh cosα/ sinβ − sinα/ cos β cosα/ sinβ − sinα/ cosβ
ξℓh cosα/ sinβ − sinα/ cos β − sinα/ cosβ cosα/ sin β
ξuH sinα/ sinβ sinα/ sin β sinα/ sinβ sinα/ sinβ
ξdH sinα/ sinβ cosα/ cosβ sinα/ sinβ cosα/ cos β
ξℓH sinα/ sinβ cosα/ cosβ cosα/ cosβ sinα/ sinβ
ξuA cot β cot β cotβ cot β
ξdA − cot β tanβ − cotβ tan β
ξℓA − cot β tanβ tanβ − cot β

Table 2: Yukawa couplings of u, d, ℓ to the neutral Higgs bosons h,H,A in the four
different models. The couplings to the charged Higgs bosons follow Eq. 16.

Standard-Model coupling times cos(α−β). The coupling of the pseudoscalar, A, to vector
bosons vanishes.

In this section, we will summarize some of the work done on these four models, and
will follow with a more detailed discussion in the following sections.

There are relatively few studies which directly compare all four models. One of the
earliest papers to mention all four models was by Barger, Hewett and Phillips [30], who
studied the charged-Higgs phenomenology but assumed fairly light top quarks. The fa-
mous Higgs Hunter’s Guide [47] mentions all four, but concentrates only on the type I and
type II 2HDMs. Grossman [31] also discusses all four models, but focuses on models with
more than two doublets, and concentrates on the on the charged Higgs sector. Akeroyd
has several papers in which all four models are discussed. In an early paper with Stir-
ling [32], the phenomenology of the charged Higgs boson at LEP2 was analysed in each
model, and this was followed [33] by a study of the neutral sector at LEP2. In addition,
he looked [49] at LHC phenomenology in all four models, focusing in particular on the
Higgs branching ratios to γγ and ττ . More recently, Barger, Logan and Shaughnessy [50]
performed a comprehensive analysis of the couplings in all models with natural flavour
conservation, including doublets and singlets; the four models appear as special cases.

There are two recent papers comparing Higgs decays in all four models. Aoki et al. [36]
study the decays of the Higgs bosons in each model, summarize current phenomenological
constraints and look at methods of distinguishing the models at colliders, although they
focus on the type II and lepton-specific models and assume that the heavy Higgs bosons
are not too heavy (typically with masses below 200 GeV). Arhrib et al. [51] study the
decays of the light Higgs in each model, although the main point of their work concerns
double-Higgs production at the LHC.

Recently, a new computer code was written by Eriksson et al. [52]. The code allows one
to input any of the different Z2 symmetries, or even more general couplings, and calculates
all two-body and some three-body Higgs boson decays, and the oblique parameters S, T
and U and other collider constraints.

The least studied model is the flipped model (the word was coined in Ref. [50]); even
works that discuss all four models generally focus less on this structure than the others.

12

Model ui
R diR eiR

Type I Φ2 Φ2 Φ2

Type II Φ2 Φ1 Φ1

Lepton-specific Φ2 Φ2 Φ1

Flipped Φ2 Φ1 Φ2

Table 1: Models which lead to natural flavour conservation. The superscript i is a gener-
ation index. By convention, the ui

R always couple to Φ2.

all tree-level FCNC, and gives three arbitrary proportionality constants. Note that this
assumption is ad hoc and, in general, is not radiatively stable [39] - one would obtain FCNC
couplings being generated radiatively, as was analysed recently in Ref. [40]. However,
Serôdio has recently proposed a UV completion of the Pich–Tuzón model [41]. And
Varzielas [42] has studied how family symmetries in multi-Higgs doublet models may give
a justification for the alignment hypothesis. Each of the four models (as well as the
Inert Doublet model discussed later) then arises as a specific choice of the proportionality
constant (and only these choices allow for a symmetry [39]). Another recent, very general,
formulation in which the various models are special cases is shown in Ref. [43]. One
should keep in mind that even if a 2HDM without FCNC is correct, it will take some
time to determine all of the couplings to determine which 2HDM it is, and the Pich-
Tuzon parametrization might be a valuable guide for phenomenologists. In addition, the
Pich-Tuzon parametrization might arise in other models; for example, the three doublet
model of Cree and Logan [44] reproduces the Pich-Tuzon model in its charged Higgs
Yukawa couplings. Of particular interest is the fact that if the proportionality constants
are complex, one has CP violating effects. It has been noted [38, 45] that loop corrections
induce flavour changing currents of the Minimal Flavour Violation form, and bounds
on the charged-Higgs mass were discussed. A similar approach was recently used by
Mahmoudi and Stal [46], who studied the constraints on the charged-Higgs mass from
meson decays and FCNC transitions, using a more general model-independent approach,
getting results in the four models as special cases.

The Yukawa couplings can now be determined. In the Standard Model, the coupling
of the fermion f to the Higgs boson is mf/v. Following the notation of Aoki et al. [36],
we define the parameters ξfh , ξ

f
H, ξ

f
A through the Yukawa Lagrangian

L2HDM
Yukawa = −

∑

f=u,d,ℓ

mf

v

(
ξfhffh+ ξfHffH − iξfAfγ5fA

)

−

{√
2Vud

v
u
(
muξ

u
APL +mdξ

d
APR

)
dH+ +

√
2mℓξℓA
v

νLℓRH
+ +H.c.

}

(16)

where PL/R are projection operators for left-/right-handed fermions, and the factors ξ are
presented in Table 2.

In all models, the coupling of the neutral Higgs bosons to the W and Z are the same:
the coupling of the light Higgs, h, to either WW or ZZ is the same as the Standard-Model
coupling times sin(β − α) and the coupling of the heavier Higgs, H , is the same as the

11
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Higgs	LFV	in	the	2HDM

q Simple	extension	to	the	SM	by	adding	a	second	Higgs	doublet;	originally	proposed	
for	spontaneous	CP	Violation	T.D.	Lee	PRD8(73);
resolution	of	the	strong	CP	problem	Peccei-Quinn	PRL38(77)	

q Studied	well	in	the	literature	and	classified	by	several	types	without	FCNCs	at	tree:	

2 Models with natural flavour conservation

The most serious potential problem facing all 2HDMs1 is the possibility of tree level
flavour-changing neutral currents(FCNC). For example, the Yukawa couplings of the Q =
−1/3 quarks will, in general, be

LY = y1ijψ̄iψjΦ1 + y2ijψ̄iψjΦ2, (9)

where i, j are generation indices. The mass matrix is then

Mij = y1ij
v1√
2
+ y2ij

v2√
2
. (10)

In the Standard Model, diagonalizing the mass matrix automatically diagonalizes the
Yukawa interactions, therefore there are no tree-level FCNC. In 2HDMs, however, in
general y1 and y2 will not be simultaneously diagonalizable, and thus the Yukawa couplings
will not be flavour diagonal. Neutral Higgs scalars φ will mediate FCNC of the form, for
example, dsφ.

These FCNC can cause severe phenomenological difficulties. The dsφ interaction, for
example, will lead to K–K mixing at tree level. If the coupling is as large as the b-quark
Yukawa coupling, the mass of the exchanged scalar would have to exceed 10 TeV [25, 26].
Nonetheless, under reasonable assumptions, models with these FCNC may still be viable.
They will be discussed in the next chapter. In this chapter, however, we will assume that
tree level FCNC are completely absent, due to a discrete or continuous symmetry.

It is easy to see that if all fermions with the same quantum numbers (which are thus
capable of mixing) couple to the same Higgs multiplet, then FCNC will be absent. This
was formalized by the Paschos-Glashow–Weinberg theorem [27, 28] which states that a
necessary and sufficient condition for the absence of FCNC at tree level is that all fermions
of a given charge and helicity transform according to the same irreducible representation
of SU(2), correspond to the same eigenvalue of T3 and that a basis exists in which they
receive their contributions in the mass matrix from a single source. In the Standard Model
with left-handed doublets and right-handed singlets, this theorem implies that all right-
handed quarks of a given charge must couple to a single Higgs multiplet. In the 2HDM,
this can only be ensured by the introduction of discrete or continuous symmetries.

Looking at the quark sector of the 2HDM, there are only two possibilities. In the
type I 2HDM, all quarks couple to just one of the Higgs doublets (conventionally chosen
to be Φ2). In the type II 2HDM, the Q = 2/3 right-handed (RH) quarks couple to one
Higgs doublet (conventionally chosen to be Φ2) and the Q = −1/3 RH quarks couple to
the other (Φ1). The type I 2HDM can be enforced with a simple Φ1 → −Φ1 discrete
symmetry, whereas the type II 2HDM is enforced with a Φ1 → −Φ1, diR → −diR discrete
symmetry. Note that the original Peccei–Quinn models as well as supersymmetric models
give the same Yukawa couplings as in a type II 2HDM, but do it by using continuous
symmetries.

We will in this chapter consider that there is no CP violation in the vacuum expectation
values (vevs) of the scalar doublets Φ1,2. This means that v1,2 will be assumed to be both

1All multi-Higgs-doublet models in general face this potential problem.

9

Branco etal Phys.Rept516.(12)
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Higgs	LFV	in	the	general	2HDM(Type-III)

q Higgs	doublet	of	SU(2)the second Pauli matrix, the Higgs doublets are represented by:

Hi =

⎛

⎝ φ+
i

(vi + φi + iηi)/
√
2

⎞

⎠ , (2)

and vi is the VEV of Hi. Equation (1) can recover the type II THDM if Y u
1 , Y

d
2 , and Y ℓ

2

vanish. Before EWSB, all Y f
1,2 are arbitrary 3 × 3 matrices and fermions are not physical

eigenstates; therefore, we have the freedom to choose Y u
1 , Y

d
2 , and Y ℓ

2 to have diagonal forms;

that is, Y u
1 = diag(yu1 , y

u
2 , y

u
3 ) and Y d,ℓ

2 = diag(yd,ℓ1 , yd,ℓ2 , ydℓ3 ).

The VEVs v1,2 are dictated by the scalar potential, where the gauge invariant form is

given by [42]:

V (Φ1,Φ2) = m2
1Φ

†
1Φ1 +m2

2Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 + h.c) +

1

2
λ1(Φ

†
1Φ1)

2

+
1

2
λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

[
λ5

2
(Φ†

1Φ2)
2 +

(
λ6Φ

†
1Φ1 + λ7Φ

†
2Φ2

)
Φ†

1Φ2 + h.c.

]
. (3)

Since we do not concentrate on CP violation, we set the parameters in Eq. (3) to be real

numbers. In addition, we also require the CP phase that arises from the ground state to

vanish [41]. By the scalar potential with CP invariance, we have nine free parameters. In

our approach, the independent parameters are taken as:

{mh , mH , mA , mH± , v , tanβ ,α ,λ6 ,λ7} (4)

with v =
√

v21 + v22.

With the nonvanished λ6,7 terms in the potential, not only the mass relations of scalar

bosons are modified but also the scalar triple and quartic couplings receive the changes.

Since the masses of scalar bosons are treated as free parameters, the direct contributions of

λ6,7 to the process h → γγ in this study are through the triple coupling h-H+-H−. By the

constraint from b → sγ, the mass of charged Higgs can not be lighter than 480 GeV; the

contribution of the charged Higgs loop to the decay h → γγ is small. That is, the influence

of λ6,7 on the constraint of parameter is not significant. Without loss of generality, in the

phenomenological analysis, we set λ6,7 ≪ 1. The detailed numerical study with λ6,7 ∼ O(1)

can be found elsewhere [43].

4

q Scalars:
The physical states for scalars are expressed by:

h = −sαφ1 + cαφ2 ,

H = cαφ1 + sαφ2 ,

H±(A) = −sβφ
±
1 (η1) + cβφ

±
2 (η2) (5)

with cα(sα) = cosα(sinα), cβ = cosβ = v1/v, and sβ = sin β = v2/v. In this study, h is the

SM-like Higgs while H , A, and H± are new particles in the THDM. Using Eqs. (1) and (2),

one can easily find that the fermion mass matrix is

Mf =
v√
2

(
cos βY f

1 + sin βY f
2

)
. (6)

If we introduce the unitary matrices V f
L and V f

R , the mass matrix can be diagonalized through

mf = V f
LMfV

f†
R . Accordingly, the scalar couplings to fermions could be formulated as:

−LY φ = ℓ̄L ϵφy
ℓ
φ ℓR φ+ ν̄L yℓ

H± ℓR H+ + h.c. , (7)

where φ = h,H,A is the possible neutral scalar boson, ϵh(H) = 1, ϵA = i, and the Yukawa

couplings yℓ
φ,H± are defined by:

(yℓ
h)ij = −

sα
cβ

mi

v
δij +

cβα
cβ

Xℓ
ij ,

(yℓ
H)ij =

cα
cβ

mi

v
δij −

sβα
cβ

Xℓ
ij ,

(yℓ
A)ij = − tanβ

mi

v
δij +

Xℓ
ij

cβ
, (8)

and yℓ
H± =

√
2yℓ

A with cβα = cos(β − α), sβα = sin(β − α) and

Xu = V u
L

Y u
1√
2
V u†
R , Xd = V d

L

Y d
2√
2
V d†
R , Xℓ = V ℓ

L

Y ℓ
2√
2
V ℓ†
R . (9)

From these formulations, it can be seen that the Yukawa couplings of Higgses to fermions

can return to the type II THDM when Y u
1 and Y d,ℓ

2 vanish. The FCNC effects are also

associated with Y u
1 and Y d,ℓ

2 , which can be chosen to be diagonal matrices, as mentioned

earlier. The detailed Yukawa couplings of H , A, and H± to up- and down-type quarks are

summarized in the appendix.

In principle, Y f
1,2 are arbitrary free parameters. In order to get more connections among

parameters and reduce the number of free parameters, the hermitian Yukawa matrices can

5

𝑣 = 𝑣NO + 𝑣OO
𝑠Q = 𝑠𝑖𝑛𝛼, 𝑐Q = 𝑐𝑜𝑠𝛼
𝑠V = 𝑠𝑖𝑛𝛽 = XY

X
,	

𝑐V = 𝑐𝑜𝑠𝛽 =
𝑣O
𝑣 	2	CP-even;	1	CP-odd;	2	charged	Higgs	𝐻±
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Type-III

the case in which each of the two Higgs doublets couples to all fermions simultaneously. As

a result, tree-level FCNCs in the quark and charged lepton sectors are induced. Considering

the strict experimental data, it is interesting to determine the impacts of the type III model

on the LFV.

If we assume no new CP-violating source from the scalar sector, such as the type II model

and MSSM, the main new free parameters are the masses of new scalars, tanβ = v2/v1

and angle α, where tan β is related to the ratio of the vacuum expectation values (VEVs)

of two Higgs fields and the angle α stands for the mixing effect of two CP-even scalars.

Basically, these two parameters have been strictly constrained by the current experimental

data, such as ρ-parameter, S, T , and U oblique parameters, Higgs searches through h →

(γγ,WW ∗, ZZ∗, ττ, bb̄), etc. In order to show the correlation of free parameters and these

experimental bounds, we revisit the constraints by adopting the χ-square fitting approach.

it can be seen that although the allowed values of cos(β − α) approach the decoupling limit

(i.e., α ∼ β − π/2) if cos β is sufficiently small, the BR for h → µτ could still be as large as

the measurements from ATLAS and CMS.

Besides the h → ℓiℓ̄j decays, the type III model has also significant effects on other lepton-

flavor-conserving and -violating processes, such as muon anomalous magnetic moment, µ →

3e, µ(τ) → e(µ, e)γ, Z → ℓiℓ̄j, etc. Although concrete signals for lepton-flavor-violating

processes have not been observed yet, the current experimental data with BR(µ → 3e) <

10−12 and BR(µ → eγ) < 5.7 × 10−13 [44] have put strict limits on µ → 3e and µ → eγ,

respectively. Combing the LHC data and the upper limits of the rare lepton decays, we

study whether the excess of muon g − 2 can be resolved and whether the BRs of the listed

lepton FCNC processes are consistent with current data in the type III THDM.

To indicate the scalar couplings to fermions in the type III model, we express the Yukawa

sector as:

−LY = Q̄LY
u
1 URH̃1 + Q̄LY

u
2 URH̃2

+ Q̄LY
d
1 DRH1 + Q̄LY

d
2 DRH2

+ L̄Y ℓ
1 ℓRH1 + L̄Y ℓ

2 ℓRH2 + h.c. , (1)

where we have hidden all flavor indices, QT
L = (u, d)L and LT = (ν, ℓ)L are the SU(2)L quark

and lepton doublets, respectively, Y f
1,2 are the Yukawa matrices, H̃i = iτ2H∗

i with τ2 being

3

q Yukawa	sector

q Fermion	mass	matrix

The physical states for scalars are expressed by:

h = −sαφ1 + cαφ2 ,

H = cαφ1 + sαφ2 ,

H±(A) = −sβφ
±
1 (η1) + cβφ

±
2 (η2) (5)

with cα(sα) = cosα(sinα), cβ = cosβ = v1/v, and sβ = sin β = v2/v. In this study, h is the

SM-like Higgs while H , A, and H± are new particles in the THDM. Using Eqs. (1) and (2),

one can easily find that the fermion mass matrix is

Mf =
v√
2

(
cos βY f

1 + sin βY f
2

)
. (6)

If we introduce the unitary matrices V f
L and V f

R , the mass matrix can be diagonalized through

mf = V f
LMfV

f†
R . Accordingly, the scalar couplings to fermions could be formulated as:

−LY φ = ℓ̄L ϵφy
ℓ
φ ℓR φ+ ν̄L yℓ

H± ℓR H+ + h.c. , (7)

where φ = h,H,A is the possible neutral scalar boson, ϵh(H) = 1, ϵA = i, and the Yukawa

couplings yℓ
φ,H± are defined by:

(yℓ
h)ij = −

sα
cβ

mi

v
δij +

cβα
cβ

Xℓ
ij ,

(yℓ
H)ij =

cα
cβ

mi

v
δij −

sβα
cβ

Xℓ
ij ,

(yℓ
A)ij = − tanβ

mi

v
δij +

Xℓ
ij

cβ
, (8)

and yℓ
H± =

√
2yℓ

A with cβα = cos(β − α), sβα = sin(β − α) and

Xu = V u
L

Y u
1√
2
V u†
R , Xd = V d

L

Y d
2√
2
V d†
R , Xℓ = V ℓ

L

Y ℓ
2√
2
V ℓ†
R . (9)

From these formulations, it can be seen that the Yukawa couplings of Higgses to fermions

can return to the type II THDM when Y u
1 and Y d,ℓ

2 vanish. The FCNC effects are also

associated with Y u
1 and Y d,ℓ

2 , which can be chosen to be diagonal matrices, as mentioned

earlier. The detailed Yukawa couplings of H , A, and H± to up- and down-type quarks are

summarized in the appendix.

In principle, Y f
1,2 are arbitrary free parameters. In order to get more connections among

parameters and reduce the number of free parameters, the hermitian Yukawa matrices can

5

q𝑌N
]	&	𝑌O

] cannot	be	diagonalized simultaneously;	Unless	𝑌N
]and	𝑌O

] are	correlated		

𝑌N
] ∝ 𝑌O

] :	Aligned	case,	Pich &	Tuzon PRD80(09)	

with a, b and c being arbitrary complex numbers. Multiplying the mass matrix of Eq. (8) by

Iij following Iijmdia
F I†ij , Iijm

dia
F Iij and Iijmdia

F ITij , one can find that the resulted new matrices

are still diagonal. For illustration, we explicitly express (m̄dia
F )ij ≡ Iijmdia

F ITij as

(m̄dia
F )00 =

⎛

⎜

⎜

⎜

⎝

a2mf1 0 0

0 b2mf2 0

0 0 c2mf3

⎞

⎟

⎟

⎟

⎠

, (m̄dia
F )12 =

⎛

⎜

⎜

⎜

⎝

a2mf2 0 0

0 b2mf1 0

0 0 c2mf3

⎞

⎟

⎟

⎟

⎠

,

(m̄dia
F )23 =

⎛

⎜

⎜

⎜

⎝

a2mf1 0 0

0 b2mf3 0

0 0 c2mf2

⎞

⎟

⎟

⎟

⎠

, (m̄dia
F )31 =

⎛

⎜

⎜

⎜

⎝

a2mf3 0 0

0 b2mf2 0

0 0 c2mf1

⎞

⎟

⎟

⎟

⎠

. (11)

We find that besides the diagonal form is obtained, the new matrices may not have the mass

hierarchy as shown in Eq. (8). Moreover, by the multiplications of Iij × Imn, more possible

patterns can be found. Consequently, a nontrivial and interesting relation between Y F
1(2) and

Y F
2(1) indeed exists and FCNC free at the tree level can be realized in the THDM without

imposing symmetry. In order to give a general expression, we formulate the new diagonal

matrix as

m̄dia
F ≡ Iρσm

dia
F Ĩρσ = V F

L ĪFLρσ
v√
2
Ȳ F
α
˜̄IFRρσV

F †
R , (12)

where Iρσ could be any one of the matrices shown in Eq. (10) or their combinations, Ĩρσ could

be I†ρσ, or Iρσ or ITρσ, Ī
F
χρσ = V F †

χ IρσV F
χ with χ = L(R) being the helicity projection operator.

Hence, if we set Ȳ F
2(1) = ĪFLρσȲ

F
1(2)

˜̄IFRρσ, our purpose to find the solution to diagonalizing Ȳ F
1(2)

and Ȳ F
2(1) simultaneously has been achieved. It is worth mentioning that although there are

no FCNCs at the tree level, however, due to no symmetry protection, the FCNCs could

be induced by radiative corrections, sketched in Fig. 1(a). Nevertheless, due to the soft Z2

or U(1) breaking term, the similar radiative corrections also occur in the type-II THDM,

illustrated in Fig. 1(b). Although the loop-suppressed FCNCs could have interesting impacts

on rare decays [5, 24], here we only pay attention to the leading effects on tree processes.

We now move forward to the charged Higgs interactions with fermions. Although the

elements in Eq. (11) do not show the regular hierarchy in masses of fermions, however, due

to a, b and c being arbitrary complex numbers, we can reparameterize m̄dia
F to be

m̄dia
F = ηFm

dia
F (13)

5

Ahn&Chen,	PLB690(10)
Chen&Nomura,	PLB749(15)

q Type-III:	𝑌Nℓ, 𝑌Oℓare	independent	 in	the	lepton	sector;	𝑌N
A, 𝑌O

A are	just	like	type-II	
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Higgs	LFV

The physical states for scalars are expressed by:

h = −sαφ1 + cαφ2 ,

H = cαφ1 + sαφ2 ,

H±(A) = −sβφ
±
1 (η1) + cβφ

±
2 (η2) (5)

with cα(sα) = cosα(sinα), cβ = cosβ = v1/v, and sβ = sin β = v2/v. In this study, h is the

SM-like Higgs while H , A, and H± are new particles in the THDM. Using Eqs. (1) and (2),

one can easily find that the fermion mass matrix is

Mf =
v√
2

(
cos βY f

1 + sin βY f
2

)
. (6)

If we introduce the unitary matrices V f
L and V f

R , the mass matrix can be diagonalized through

mf = V f
LMfV

f†
R . Accordingly, the scalar couplings to fermions could be formulated as:

−LY φ = ℓ̄L ϵφy
ℓ
φ ℓR φ+ ν̄L yℓ

H± ℓR H+ + h.c. , (7)

where φ = h,H,A is the possible neutral scalar boson, ϵh(H) = 1, ϵA = i, and the Yukawa

couplings yℓ
φ,H± are defined by:

(yℓ
h)ij = −

sα
cβ

mi

v
δij +

cβα
cβ

Xℓ
ij ,

(yℓ
H)ij =

cα
cβ

mi

v
δij −

sβα
cβ

Xℓ
ij ,

(yℓ
A)ij = − tanβ

mi

v
δij +

Xℓ
ij

cβ
, (8)

and yℓ
H± =

√
2yℓ

A with cβα = cos(β − α), sβα = sin(β − α) and

Xu = V u
L

Y u
1√
2
V u†
R , Xd = V d

L

Y d
2√
2
V d†
R , Xℓ = V ℓ

L

Y ℓ
2√
2
V ℓ†
R . (9)

From these formulations, it can be seen that the Yukawa couplings of Higgses to fermions

can return to the type II THDM when Y u
1 and Y d,ℓ

2 vanish. The FCNC effects are also

associated with Y u
1 and Y d,ℓ

2 , which can be chosen to be diagonal matrices, as mentioned

earlier. The detailed Yukawa couplings of H , A, and H± to up- and down-type quarks are

summarized in the appendix.

In principle, Y f
1,2 are arbitrary free parameters. In order to get more connections among

parameters and reduce the number of free parameters, the hermitian Yukawa matrices can

5

The physical states for scalars are expressed by:

h = −sαφ1 + cαφ2 ,

H = cαφ1 + sαφ2 ,

H±(A) = −sβφ
±
1 (η1) + cβφ

±
2 (η2) (5)

with cα(sα) = cosα(sinα), cβ = cosβ = v1/v, and sβ = sin β = v2/v. In this study, h is the

SM-like Higgs while H , A, and H± are new particles in the THDM. Using Eqs. (1) and (2),

one can easily find that the fermion mass matrix is

Mf =
v√
2

(
cos βY f

1 + sin βY f
2

)
. (6)

If we introduce the unitary matrices V f
L and V f

R , the mass matrix can be diagonalized through

mf = V f
LMfV

f†
R . Accordingly, the scalar couplings to fermions could be formulated as:

−LY φ = ℓ̄L ϵφy
ℓ
φ ℓR φ+ ν̄L yℓ

H± ℓR H+ + h.c. , (7)

where φ = h,H,A is the possible neutral scalar boson, ϵh(H) = 1, ϵA = i, and the Yukawa

couplings yℓ
φ,H± are defined by:

(yℓ
h)ij = −

sα
cβ

mi

v
δij +

cβα
cβ

Xℓ
ij ,

(yℓ
H)ij =

cα
cβ

mi

v
δij −

sβα
cβ

Xℓ
ij ,

(yℓ
A)ij = − tanβ

mi

v
δij +

Xℓ
ij

cβ
, (8)

and yℓ
H± =

√
2yℓ

A with cβα = cos(β − α), sβα = sin(β − α) and

Xu = V u
L

Y u
1√
2
V u†
R , Xd = V d

L

Y d
2√
2
V d†
R , Xℓ = V ℓ

L

Y ℓ
2√
2
V ℓ†
R . (9)

From these formulations, it can be seen that the Yukawa couplings of Higgses to fermions

can return to the type II THDM when Y u
1 and Y d,ℓ

2 vanish. The FCNC effects are also

associated with Y u
1 and Y d,ℓ

2 , which can be chosen to be diagonal matrices, as mentioned

earlier. The detailed Yukawa couplings of H , A, and H± to up- and down-type quarks are

summarized in the appendix.

In principle, Y f
1,2 are arbitrary free parameters. In order to get more connections among

parameters and reduce the number of free parameters, the hermitian Yukawa matrices can

5

FCNCs

The physical states for scalars are expressed by:

h = −sαφ1 + cαφ2 ,

H = cαφ1 + sαφ2 ,

H±(A) = −sβφ
±
1 (η1) + cβφ

±
2 (η2) (5)

with cα(sα) = cosα(sinα), cβ = cosβ = v1/v, and sβ = sin β = v2/v. In this study, h is the

SM-like Higgs while H , A, and H± are new particles in the THDM. Using Eqs. (1) and (2),

one can easily find that the fermion mass matrix is

Mf =
v√
2

(
cos βY f

1 + sin βY f
2

)
. (6)

If we introduce the unitary matrices V f
L and V f

R , the mass matrix can be diagonalized through

mf = V f
LMfV

f†
R . Accordingly, the scalar couplings to fermions could be formulated as:

−LY φ = ℓ̄L ϵφy
ℓ
φ ℓR φ+ ν̄L yℓ

H± ℓR H+ + h.c. , (7)

where φ = h,H,A is the possible neutral scalar boson, ϵh(H) = 1, ϵA = i, and the Yukawa

couplings yℓ
φ,H± are defined by:

(yℓ
h)ij = −

sα
cβ

mi

v
δij +

cβα
cβ

Xℓ
ij ,

(yℓ
H)ij =

cα
cβ

mi

v
δij −

sβα
cβ

Xℓ
ij ,

(yℓ
A)ij = − tanβ

mi

v
δij +

Xℓ
ij

cβ
, (8)

and yℓ
H± =

√
2yℓ

A with cβα = cos(β − α), sβα = sin(β − α) and

Xu = V u
L

Y u
1√
2
V u†
R , Xd = V d

L

Y d
2√
2
V d†
R , Xℓ = V ℓ

L

Y ℓ
2√
2
V ℓ†
R . (9)

From these formulations, it can be seen that the Yukawa couplings of Higgses to fermions

can return to the type II THDM when Y u
1 and Y d,ℓ

2 vanish. The FCNC effects are also

associated with Y u
1 and Y d,ℓ

2 , which can be chosen to be diagonal matrices, as mentioned

earlier. The detailed Yukawa couplings of H , A, and H± to up- and down-type quarks are

summarized in the appendix.

In principle, Y f
1,2 are arbitrary free parameters. In order to get more connections among

parameters and reduce the number of free parameters, the hermitian Yukawa matrices can

5

𝑌Oℓ = 𝑑𝑖𝑎𝑔(𝑦Nℓ, 𝑦Oℓ, 𝑦/ℓ)

𝑐VQ = cos 𝛽 − 𝛼
𝑠VQ = sin	(𝛽 − 𝛼)

q Flavor	conserving	parts	∝ 𝑚ℓ/𝑣 ,	H	and	A	couplings	have	tan𝛽 enhancement	

q Decoupling	limit		𝑐VQ → 0,	FCNCs	at	tree	still	exist	in	H	and	A	couplings

q Besides	 the	flavor	changing,	𝑋qq
ℓ also	affect	 the	flavor	conserving	couplings

Cheng&Sher PRD35	(87)
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Scalar	potential	for	2HD

the second Pauli matrix, the Higgs doublets are represented by:

Hi =

⎛

⎝ φ+
i

(vi + φi + iηi)/
√
2

⎞

⎠ , (2)

and vi is the VEV of Hi. Equation (1) can recover the type II THDM if Y u
1 , Y

d
2 , and Y ℓ

2

vanish. Before EWSB, all Y f
1,2 are arbitrary 3 × 3 matrices and fermions are not physical

eigenstates; therefore, we have the freedom to choose Y u
1 , Y

d
2 , and Y ℓ

2 to have diagonal forms;

that is, Y u
1 = diag(yu1 , y

u
2 , y

u
3 ) and Y d,ℓ

2 = diag(yd,ℓ1 , yd,ℓ2 , ydℓ3 ).

The VEVs v1,2 are dictated by the scalar potential, where the gauge invariant form is

given by [42]:

V (Φ1,Φ2) = m2
1Φ

†
1Φ1 +m2

2Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 + h.c) +

1

2
λ1(Φ

†
1Φ1)

2

+
1

2
λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

[
λ5

2
(Φ†

1Φ2)
2 +

(
λ6Φ

†
1Φ1 + λ7Φ

†
2Φ2

)
Φ†

1Φ2 + h.c.

]
. (3)

Since we do not concentrate on CP violation, we set the parameters in Eq. (3) to be real

numbers. In addition, we also require the CP phase that arises from the ground state to

vanish [41]. By the scalar potential with CP invariance, we have nine free parameters. In

our approach, the independent parameters are taken as:

{mh , mH , mA , mH± , v , tanβ ,α ,λ6 ,λ7} (4)

with v =
√

v21 + v22.

With the nonvanished λ6,7 terms in the potential, not only the mass relations of scalar

bosons are modified but also the scalar triple and quartic couplings receive the changes.

Since the masses of scalar bosons are treated as free parameters, the direct contributions of

λ6,7 to the process h → γγ in this study are through the triple coupling h-H+-H−. By the

constraint from b → sγ, the mass of charged Higgs can not be lighter than 480 GeV; the

contribution of the charged Higgs loop to the decay h → γγ is small. That is, the influence

of λ6,7 on the constraint of parameter is not significant. Without loss of generality, in the

phenomenological analysis, we set λ6,7 ≪ 1. The detailed numerical study with λ6,7 ∼ O(1)

can be found elsewhere [43].

4

The physical states for scalars are expressed by:

h = −sαφ1 + cαφ2 ,

H = cαφ1 + sαφ2 ,

H±(A) = −sβφ
±
1 (η1) + cβφ

±
2 (η2) (5)

with cα(sα) = cosα(sinα), cβ = cosβ = v1/v, and sβ = sin β = v2/v. In this study, h is the

SM-like Higgs while H , A, and H± are new particles in the THDM. Using Eqs. (1) and (2),

one can easily find that the fermion mass matrix is

Mf =
v√
2

(
cos βY f

1 + sin βY f
2

)
. (6)

If we introduce the unitary matrices V f
L and V f

R , the mass matrix can be diagonalized through

mf = V f
LMfV

f†
R . Accordingly, the scalar couplings to fermions could be formulated as:

−LY φ = ℓ̄L ϵφy
ℓ
φ ℓR φ+ ν̄L yℓ

H± ℓR H+ + h.c. , (7)

where φ = h,H,A is the possible neutral scalar boson, ϵh(H) = 1, ϵA = i, and the Yukawa

couplings yℓ
φ,H± are defined by:

(yℓ
h)ij = −

sα
cβ

mi

v
δij +

cβα
cβ

Xℓ
ij ,

(yℓ
H)ij =

cα
cβ

mi

v
δij −

sβα
cβ

Xℓ
ij ,

(yℓ
A)ij = − tanβ

mi

v
δij +

Xℓ
ij

cβ
, (8)

and yℓ
H± =

√
2yℓ

A with cβα = cos(β − α), sβα = sin(β − α) and

Xu = V u
L

Y u
1√
2
V u†
R , Xd = V d

L

Y d
2√
2
V d†
R , Xℓ = V ℓ

L

Y ℓ
2√
2
V ℓ†
R . (9)

From these formulations, it can be seen that the Yukawa couplings of Higgses to fermions

can return to the type II THDM when Y u
1 and Y d,ℓ

2 vanish. The FCNC effects are also

associated with Y u
1 and Y d,ℓ

2 , which can be chosen to be diagonal matrices, as mentioned

earlier. The detailed Yukawa couplings of H , A, and H± to up- and down-type quarks are

summarized in the appendix.

In principle, Y f
1,2 are arbitrary free parameters. In order to get more connections among

parameters and reduce the number of free parameters, the hermitian Yukawa matrices can

5

q If	we	assume	the	Yukawa	matrix	to	be	hermitian,	𝑉sℓ = 𝑉tℓ

𝑋qu
ℓ = 𝑋uq

ℓ
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Constraints:

Perturbativity:		𝜆q < 8𝜋

Vacuum	stability:

Unitarity:	𝜙q𝜙u → 𝜙q𝜙u

𝛿𝜌 = (4.0 ± 2.4)×10-L

Oblique	parameters:	𝑆 = 0.05 ± 0.11, 𝑇 = 0.09 ± 0.13, 𝑈 = 0.01 ± 0.01

Z
τ

τ µ

τ

h,H,A τ, ν

τ

µ

h(H), H+

A,H−

Z

µ

Z
Z

h(H)

τ

τ
Z

µ

τ

A, h(H)

h(H), H+

A,H−

FIG. 1: Representative Feynman diagrams for Z → µτ decay.

Before presenting the numerical analysis, we discuss the theoretical and experimental

constraints. The main theoretical constraints of THDM are the perturbative scalar potential,

vacuum stability, and unitarity. Therefore, in order to satisfy the perturbative requirement,

we set all quartic couplings of the scalar potential to obey |λi| ≤ 8π for all i. The conditions

for vacuum stability are [53, 54]:

λ1 > 0 , λ2 > 0 ,λ3 +
√

λ1λ2 > 0,
√
λ1λ2 + λ3 + λ4 − |λ5| > 0,

2|λ6 + λ7| ≤
1

2
(λ1 + λ2) + λ3 + λ4 + λ5 . (21)

Without losing the general properties, we set λ6,7 ≪ 1 in our numerical analysis. Effectively,

the scalar potential is similar to that in the type II THDM. Since the unitarity constraint

involves a variety of scattering processes, here we adopt the results of a previous study [52].

Next, we briefly state the experimental bounds. It is known that b → sγ is sensitive

to the mass of charged Higgs. According to a recent analysis [60], the lower bound in the

type II model is given to be mH± > 480 GeV at 95% CL. Due to the neutral and charged

Higgses involved in the self-energy of W and Z bosons, the precision measurements of the

ρ-parameter and the oblique parameters [55] can give constraints on the associated new

parameters. From the global fit, we know that ρ = 1.00040 ± 0.00024 [44] and the SM

prediction is ρ = 1. Taking mh = 125 GeV, mt = 173.3 GeV, and assuming U = 0, the

tolerated ranges for S and T are found to be [56]:

∆S = 0.06± 0.09 , ∆T = 0.10± 0.07 , (22)

where the correlation factor is ρ = +0.91, ∆S = S2HDM − SSM, ∆T = T 2HDM − T SM, and

9

global	fit	EPJC72(14)𝑏 → 𝑠𝛾 → 𝑚�± ≥ 480	𝐺𝑒𝑉

Parameters	used	for	analysis	are

the second Pauli matrix, the Higgs doublets are represented by:

Hi =

⎛

⎝ φ+
i

(vi + φi + iηi)/
√
2

⎞

⎠ , (2)

and vi is the VEV of Hi. Equation (1) can recover the type II THDM if Y u
1 , Y

d
2 , and Y ℓ

2

vanish. Before EWSB, all Y f
1,2 are arbitrary 3 × 3 matrices and fermions are not physical

eigenstates; therefore, we have the freedom to choose Y u
1 , Y

d
2 , and Y ℓ

2 to have diagonal forms;

that is, Y u
1 = diag(yu1 , y

u
2 , y

u
3 ) and Y d,ℓ

2 = diag(yd,ℓ1 , yd,ℓ2 , ydℓ3 ).

The VEVs v1,2 are dictated by the scalar potential, where the gauge invariant form is

given by [42]:

V (Φ1,Φ2) = m2
1Φ

†
1Φ1 +m2

2Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 + h.c) +

1

2
λ1(Φ

†
1Φ1)

2

+
1

2
λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

[
λ5

2
(Φ†

1Φ2)
2 +

(
λ6Φ

†
1Φ1 + λ7Φ

†
2Φ2

)
Φ†

1Φ2 + h.c.

]
. (3)

Since we do not concentrate on CP violation, we set the parameters in Eq. (3) to be real

numbers. In addition, we also require the CP phase that arises from the ground state to

vanish [41]. By the scalar potential with CP invariance, we have nine free parameters. In

our approach, the independent parameters are taken as:

{mh , mH , mA , mH± , v , tanβ ,α ,λ6 ,λ7} (4)

with v =
√

v21 + v22.

With the nonvanished λ6,7 terms in the potential, not only the mass relations of scalar

bosons are modified but also the scalar triple and quartic couplings receive the changes.

Since the masses of scalar bosons are treated as free parameters, the direct contributions of

λ6,7 to the process h → γγ in this study are through the triple coupling h-H+-H−. By the

constraint from b → sγ, the mass of charged Higgs can not be lighter than 480 GeV; the

contribution of the charged Higgs loop to the decay h → γγ is small. That is, the influence

of λ6,7 on the constraint of parameter is not significant. Without loss of generality, in the

phenomenological analysis, we set λ6,7 ≪ 1. The detailed numerical study with λ6,7 ∼ O(1)

can be found elsewhere [43].

4
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and 2 respectively stand for ggF+tth and VBF+Vh, and µf
1,2 are the results in the THDM.

The global χ-square is defined by

χ2 =
∑

f

χ2
f + χ2

ST , (25)

where χ2
ST is the χ2 for S and T parameters; its definition can be obtained from Eq.(24) by

using the replacements µf
1 → STHDM and µf

2 → TTHDM, and the corresponding values can

be determined from Eq. (22).

Besides the bounds from theoretical considerations, Higgs data, and upper limit BR(µ →

3e) < 1.0× 10−12, the schemes for the setting of parameters in this study are as follows: the

masses of SM Higgs and charged Higgs are fixed to be mh = 125.5 GeV and mH± = 500

GeV, respectively, and the regions of other involved parameters are chosen as:

mH,A ⊃ [126, 1000]GeV , m2
12 ⊃ [−1.0, 1.5]× 105GeV2 ,

tan β ⊃ [0.5, 50] , α = [−π/2, π/2] . (26)

Since our purpose is to show the impacts of THDM on LFV, to lower the influence of the

quark sector, we set Xq ∼ 0 in the current analysis; i.e., the Yukawa couplings of quarks

behave like the type II THDM. The influence of Xq ̸= 0 can be found elsewhere [43]. To

understand the small lepton FCNCs, we use the ansatz Xℓ
ij =

√
mimj/vχℓ

ij; thus, χ
ℓ
ij can

be on the order of one. Although h-ℓ+-ℓ− couplings also contribute to the h → 2γ process,

unless one makes an extreme tuning on χℓ
ii, their contributions to h → 2γ are small in the

THDM.

We now present the numerical analysis. Combining the theoretical requirements and

δρ = (4.0 ± 2.4) × 10−4, the allowed ranges of tanβ and cβα are shown by the yellow dots

in Fig. 2 , where the scanned regions of Eq. (26) were used. When the measurements of

oblique parameters are included, the allowed parameter space is changed slightly, as shown

by blue dots in Fig. 2. In both cases, data with 2σ errors are adopted. From the results, we

see that the constraint on cβα is loose and the favorable range for tan β is tan β < 20.

To perform the constraints from Higgs data listed in Table I, we use the minimum χ-square

approach. The best fit is taken at 68%, 95.5%, and 99.7% CLs; that is, the corresponding

errors of χ2 are ∆χ2 ≤ 2.3, 5.99, and 11.8, respectively. With the definitions in Eqs. (24)

and (25), we present the allowed values of parameters in Fig. 3(a), where the theoretical

requirements, δρ, oblique parameters, and Higgs data are all included. In the plots, blue,

11

Green:	theoretical	requirements	+	𝛿𝜌

Red:	Green	+	oblique	parameters

Basically,		the	constraint	on	cos	(𝛽 − 𝛼) is	not	strong
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Constraints:	 from	Higgs	measurements

their explicit expressions can be found elsewhere [57]. We note that in the limit mH± = mA

or mH± = mH , ∆T vanishes [58, 59].

Since the Higgs data approach the precision measurements, the relevant measurements

can give strict limits on cβα and sα. As usual, the Higgs measurement is expressed by the

signal strength, which is defined by the ratio of the Higgs signal to the SM prediction, given

by:

µf
i =

σi(h) · BR(h → f)

σSM
i (h) · BRSM(h → f)

≡ σ̄i · µf . (23)

σi(h) denotes the Higgs production cross section by channel i and BR(h → f) is the BR

for the Higgs decay h → f . Since several Higgs boson production channels are available

at the LHC, we are interested in the gluon fusion production (ggF ), tt̄h, vector boson

fusion (VBF) and Higgs-strahlung V h with V = W/Z; they are grouped to be µf
ggF+tt̄h and

µf
V BF+V h. The values of observed signal strengths are shown in Table. I, where we used

the notations µ̂f
ggF+tt̄h and µ̂f

V BF+V h to express the combined results of ATLAS [61] and

CMS [62].

TABLE I: Combined best-fit signal strengths µ̂ggF+tth and µ̂VBF+Vh and the associated correlation

coefficient ρ for corresponding Higgs decay mode [61, 62].

f µ̂f
ggF+tth µ̂f

VBF+Vh ± 1σ̂ggF+tth ± 1σ̂VBF+Vh ρ

γγ 1.32 0.8 0.38 0.7 -0.30

ZZ∗ 1.70 0.3 0.4 1.20 -0.59

WW ∗ 0.98 1.28 0.28 0.55 -0.20

ττ 2 1.24 1.50 0.59 -0.42

bb̄ 1.11 0.92 0.65 0.38 0

In order to study the influence of new free parameters and to understand their corre-

lations, we employ the minimum χ-square method with the experimental data considered.

For a given Higgs decay channel f = γγ,WW ∗, ZZ∗, ττ , we define the χ2
f as:

χ2
f =

1

σ̂2
1(1− ρ2)

(µf
1 − µ̂f

1)
2+

1

σ̂2
1(1− ρ2)

(µf
2 − µ̂f

2)
2−

2ρ

σ̂1σ̂2(1− ρ2)
(µf

1 − µ̂f
1)(µ

f
2 − µ̂f

2) , (24)

where µ̂f
1(2), σ̂1(2), and ρ are the measured Higgs signal strength, the one-sigma errors, and

the correlation, respectively. The corresponding values are shown in Table I. The indices 1
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and 2 respectively stand for ggF+tth and VBF+Vh, and µf
1,2 are the results in the THDM.

The global χ-square is defined by

χ2 =
∑

f

χ2
f + χ2

ST , (25)

where χ2
ST is the χ2 for S and T parameters; its definition can be obtained from Eq.(24) by

using the replacements µf
1 → STHDM and µf

2 → TTHDM, and the corresponding values can

be determined from Eq. (22).

Besides the bounds from theoretical considerations, Higgs data, and upper limit BR(µ →

3e) < 1.0× 10−12, the schemes for the setting of parameters in this study are as follows: the

masses of SM Higgs and charged Higgs are fixed to be mh = 125.5 GeV and mH± = 500

GeV, respectively, and the regions of other involved parameters are chosen as:

mH,A ⊃ [126, 1000]GeV , m2
12 ⊃ [−1.0, 1.5]× 105GeV2 ,

tan β ⊃ [0.5, 50] , α = [−π/2, π/2] . (26)

Since our purpose is to show the impacts of THDM on LFV, to lower the influence of the

quark sector, we set Xq ∼ 0 in the current analysis; i.e., the Yukawa couplings of quarks

behave like the type II THDM. The influence of Xq ̸= 0 can be found elsewhere [43]. To

understand the small lepton FCNCs, we use the ansatz Xℓ
ij =

√
mimj/vχℓ

ij; thus, χ
ℓ
ij can

be on the order of one. Although h-ℓ+-ℓ− couplings also contribute to the h → 2γ process,

unless one makes an extreme tuning on χℓ
ii, their contributions to h → 2γ are small in the

THDM.

We now present the numerical analysis. Combining the theoretical requirements and

δρ = (4.0 ± 2.4) × 10−4, the allowed ranges of tanβ and cβα are shown by the yellow dots

in Fig. 2 , where the scanned regions of Eq. (26) were used. When the measurements of

oblique parameters are included, the allowed parameter space is changed slightly, as shown

by blue dots in Fig. 2. In both cases, data with 2σ errors are adopted. From the results, we

see that the constraint on cβα is loose and the favorable range for tan β is tan β < 20.

To perform the constraints from Higgs data listed in Table I, we use the minimum χ-square

approach. The best fit is taken at 68%, 95.5%, and 99.7% CLs; that is, the corresponding

errors of χ2 are ∆χ2 ≤ 2.3, 5.99, and 11.8, respectively. With the definitions in Eqs. (24)

and (25), we present the allowed values of parameters in Fig. 3(a), where the theoretical

requirements, δρ, oblique parameters, and Higgs data are all included. In the plots, blue,
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q Blue:	Δ𝜒O = 2.3;	Green:	Δ𝜒O = 5.99;	Red:	Δ𝜒O = 11.8

q Higgs	data	give	a	strict	constraint	on	cos	(𝛽 − 𝛼),	approaching	to	decoupling	limit
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Flavor	conserving	&	violating	processes

ℎ → 𝜏𝜇:

be applied, where the hermiticity of the Yukawa matrix can be realized by symmetry, such as

global (gauged) horizontal SU(3)H symmetry [48] and left-right symmetry [49]. Therefore,

the equality V f
L = V f

R ≡ V f can be satisfied. With the diagonal Y u
1 and Y d,ℓ

2 , the Xs′ effects

in Eq. (9) can be expressed as Xf
ij = V f

ikV
f∗
jk y

f
k , where the index k is summed up. Since

no CP violation is observed in the lepton sector, it is reasonable to assume that Y ℓ
1,2 are

real numbers. Based on this assumption, Xℓ is a symmetric matrix, i.e., Xℓ
ij = Xℓ

ji. In the

decoupling limit of α = β − π/2, the Yukawa couplings in Eq. (8) become:

(yℓ
h)ij =

mi

v
δij ,

(yℓ
H)ij = −(yℓ

A)ij = tanβ
mi

v
δij −

1

cβ
Xℓ

ij . (10)

In such a limit, we see that the tree-level lepton FCNCs are suppressed in h decays; however,

they are still allowed in H and A decays.

Next, we discuss the scalar-mediated lepton-flavor-violating effects on the processes of

interest. Using the couplings in Eq. (7), the BR for h → τµ is given by:

BR(h → µτ) =
c2βα(|Xℓ

23|2 + |Xℓ
32|2)

16πc2βΓh
mh. (11)

With mh = 125 GeV, Γh ≈ 4.21 MeV, and Xℓ
32 = Xℓ

23, we can express Xℓ
23 as

Xℓ
23 = 3.77× 10−3

( cβ
0.02

)(0.01

cβα

)√
BR(h → µτ)

0.84× 10−2
, (12)

where BR(h → µτ) can be taken from the experimental data. If one adopts the ansatz

Xℓ
µτ =

√
mµmτ/vχℓ

µτ , χ
ℓ
µτ ∼ 2 fits the current CMS excess.

Moreover, we find that the same Xℓ
23 effects also contribute to the decay τ → 3µ at tree

level through the mediation of scalar bosons. The BR can be formulated as:

BR(τ → 3µ) =
ττm5

τ

3 · 29π3

|Xℓ
23|2

c2β

[∣∣∣∣
cβαyℓh22
m2

h

−
sβαyℓH22

m2
H

∣∣∣∣
2

+

∣∣∣∣
yℓA22

m2
A

∣∣∣∣
2
]

(13)

with ττ being the lifetime of a tauon. Equation (13) can be applied to µ → 3e when the

corresponding quantities are correctly replaced. If we set Xℓ
ij =

√
mimj/vχℓ

ij and assume

that χℓ
ij = χℓ are independent of lepton flavors, the ratio of BR(µ → 3e) to BR(τ → 3µ)

can be naively estimated as:

Rµ/τ ∼
τµ
ττ

m5
µ

m5
τ

m3
e

mτm2
µ

= 3.5× 10−8. (14)

6

ansatz	𝑋:<ℓ = ����
X�

𝜒:<ℓ
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with ττ being the lifetime of a tauon. Equation (13) can be applied to µ → 3e when the

corresponding quantities are correctly replaced. If we set Xℓ
ij =

√
mimj/vχℓ

ij and assume

that χℓ
ij = χℓ are independent of lepton flavors, the ratio of BR(µ → 3e) to BR(τ → 3µ)

can be naively estimated as:

Rµ/τ ∼
τµ
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m5
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6

𝜒:<ℓ ∼ 2 can	satisfy	the	central	value	of	CMS

q In	the	decoupling	limit,	𝑐VQ = 0 → 𝐵𝑅 ℎ → 𝜏𝜇 = 0

The physical states for scalars are expressed by:

h = −sαφ1 + cαφ2 ,

H = cαφ1 + sαφ2 ,

H±(A) = −sβφ
±
1 (η1) + cβφ

±
2 (η2) (5)

with cα(sα) = cosα(sinα), cβ = cosβ = v1/v, and sβ = sin β = v2/v. In this study, h is the

SM-like Higgs while H , A, and H± are new particles in the THDM. Using Eqs. (1) and (2),

one can easily find that the fermion mass matrix is

Mf =
v√
2

(
cos βY f

1 + sin βY f
2

)
. (6)

If we introduce the unitary matrices V f
L and V f

R , the mass matrix can be diagonalized through

mf = V f
LMfV

f†
R . Accordingly, the scalar couplings to fermions could be formulated as:

−LY φ = ℓ̄L ϵφy
ℓ
φ ℓR φ+ ν̄L yℓ

H± ℓR H+ + h.c. , (7)

where φ = h,H,A is the possible neutral scalar boson, ϵh(H) = 1, ϵA = i, and the Yukawa

couplings yℓ
φ,H± are defined by:

(yℓ
h)ij = −

sα
cβ

mi

v
δij +

cβα
cβ

Xℓ
ij ,

(yℓ
H)ij =

cα
cβ

mi

v
δij −

sβα
cβ

Xℓ
ij ,

(yℓ
A)ij = − tanβ

mi

v
δij +

Xℓ
ij

cβ
, (8)

and yℓ
H± =

√
2yℓ

A with cβα = cos(β − α), sβα = sin(β − α) and

Xu = V u
L

Y u
1√
2
V u†
R , Xd = V d

L

Y d
2√
2
V d†
R , Xℓ = V ℓ

L

Y ℓ
2√
2
V ℓ†
R . (9)

From these formulations, it can be seen that the Yukawa couplings of Higgses to fermions

can return to the type II THDM when Y u
1 and Y d,ℓ

2 vanish. The FCNC effects are also

associated with Y u
1 and Y d,ℓ

2 , which can be chosen to be diagonal matrices, as mentioned

earlier. The detailed Yukawa couplings of H , A, and H± to up- and down-type quarks are

summarized in the appendix.

In principle, Y f
1,2 are arbitrary free parameters. In order to get more connections among

parameters and reduce the number of free parameters, the hermitian Yukawa matrices can

5
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Tree	level	𝜏 → 3𝜇:
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FIG. 5: (a) Contour for BR(h → µτ) = 0.84% as function of cos(β − α) and tan β with χℓ
23 = 4

(solid) and 6 (dashed). (b) BR(h → µτ) as function of cos(β − α), where blue, green, and red

stand for the best fits at 68%, 95%, and 99.7% CLs, respectively.

plot BR(τ → 3µ) × 108 as a function of χℓ
23 and χℓ

22 in Fig. 6(b), where tan β = 6 and

mH(A) = 200(300) GeV. These parameter values are consistent with the constraints from

Higgs data.
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FIG. 6: Contours for BR(τ → 3µ) × 108 as function of (a) mH and tan β with χℓ
23(22) = 5(−2)

and (b) χℓ
23 and χℓ

22 with mH = 200 GeV and tan β = 6. In both plots, mA = 300 GeV and

cos(β − α) = −0.05.

From Eq. (A5), it can be seen that besides the parameters tanβ, mH,A and χℓ
23, τ →

14

be applied, where the hermiticity of the Yukawa matrix can be realized by symmetry, such as

global (gauged) horizontal SU(3)H symmetry [48] and left-right symmetry [49]. Therefore,

the equality V f
L = V f

R ≡ V f can be satisfied. With the diagonal Y u
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2 , the Xs′ effects
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In such a limit, we see that the tree-level lepton FCNCs are suppressed in h decays; however,

they are still allowed in H and A decays.
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where BR(h → µτ) can be taken from the experimental data. If one adopts the ansatz

Xℓ
µτ =

√
mµmτ/vχℓ

µτ , χ
ℓ
µτ ∼ 2 fits the current CMS excess.
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level through the mediation of scalar bosons. The BR can be formulated as:
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with ττ being the lifetime of a tauon. Equation (13) can be applied to µ → 3e when the

corresponding quantities are correctly replaced. If we set Xℓ
ij =

√
mimj/vχℓ

ij and assume

that χℓ
ij = χℓ are independent of lepton flavors, the ratio of BR(µ → 3e) to BR(τ → 3µ)

can be naively estimated as:
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µγ at the one-loop level is also dictated by χℓ
33. Since cβα has been limited to a narrow

region, like the τ → 3µ decay, τ → µγ is insensitive to cβα. We present the contours for

BR(τ → µγ)× 108 as a function of tan β and mH in Fig. 7(a), where we have included the

one- and two-loop contributions and cβα = −0.05, χℓ
23(33) = 5(0), and mA = 300 GeV. The

largest value on the curves is the current experimental upper limit. We see that with strict

constraints of Higgs data, BR(τ → µγ) in the typeIII THDM can still be compatible with

the current upper limit when the decay h → µτ matches CMS observation.
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FIG. 7: Contours for BR(τ → µγ) × 108 as function of (a) tan β and mH with χℓ
23(χ

ℓ
33) = 5(0)

and (b) χℓ
23 and χℓ

33 with tan β = 6 and mH(A) = 200(300) GeV. One- and two-loop effects are

included.

According to Eq. (15), we know that muon g − 2 strongly depends on χℓ
23, tanβ, and

mH,A. It is of interest to determine whether ∆aµ could be explained by the type III model

when the severe limits of involved parameters are imposed. With mA = 300 GeV, χℓ
23 = 5,

we plot the contours for ∆aµ × 109 as a function of tanβ and mH in Fig. 8(a), where the

shaded region (yellow) stands for the central value with 2σ errors. From the plot, it is clear

that these parameter values, which satisfy the Higgs data and BR(h → µτ) = 0.84% can

also make (g − 2)µ consistent with the discrepancy between the experimental data and SM

prediction. Based on Eq. (19), it is found that µ → eγ can be expressed by ∆aµ. With

the ansatz Xℓ
ij =

√
mimj/vχℓ

ij, we show the contours for BR(µ → eγ) as a function of ∆aµ

and χℓ
13/χ

ℓ
23 in Fig. 8(b), where the numbers on the curves are the BR for µ → eγ decay

obtained by multiplying 1013. Clearly, in order to satisfy the bound from the rare µ → eγ
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Muon	g-2	vs	𝜇 → 𝑒𝛾:

With the current upper limit BR(τ → 3µ) < 1.2 × 10−8 [45], we get BR(µ → 3e) <

4.2 × 10−16 in the type III model, which is far smaller than the current upper bound.

Nevertheless, the suppression factor of m3
e/(mτm2

µ) in Eq. (14) can be relaxed to be me/mτ

at the one-loop level, where the lepton pair is produced by virtual γ/Z in the SM. Since

the Xℓ
23 parameter also appears in the decays µ → eγ and τ → µγ, which have stronger

limits in experiments, in the following analysis we do not further discuss these processes.

Additionally, to remove the correlation between τ → 3µ and µ → 3e, χℓ
ij should be taken as

being flavor-dependent.

The discrepancy in muon g − 2 between experimental data and the SM prediction now

is ∆aµ = aexpµ − aSMµ = (28.8± 8.0)× 10−10 [44]. Although muon g− 2 is a flavor-conserving

process, Xℓ
23 andXℓ

21 also contribute to the anomaly through loops that are mediated by neu-

tral and charged Higgses. Thus, the muon anomaly in the type III model can be formulated

as [46, 64]:

∆aµ ≃
mµmτXℓ

23X
ℓ
32

8π2c2β
Zφ , (15)

Zφ =
c2βα
(
ln(m2

h/m
2
τ )− 3

2

)

m2
h

+
s2βα
(
ln(m2

H/m
2
τ )− 3

2

)

m2
H

−
ln(m2

A/m
2
τ )− 3

2

m2
A

,

where we have dropped the subleading terms associated with m2
µ. The following question is

explored below: when the current strict experimental data are considered, can the anomaly

of ∆aµ be explained in the type III model?

As mentioned earlier, the radiative lepton decays µ → eγ and τ → (µ, e)γ in the SM

are very tiny and sensitive to new physics effects. In the type III model, these radiative

decays can be generated by charged and neutral Higgses through the FCNC effects. For

illustration, we present the following effective interaction for µ → eγ:

Lµ→eγ =
emµ

16π2
ēσµν (CLPL + CRPR)µF

µν , (16)

where F µν is the electromagnetic field strength tensor, and the Wilson coefficients CL and

7
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µ τ µ

γ
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where we have dropped the subleading terms associated with m2
µ. The following question is

explored below: when the current strict experimental data are considered, can the anomaly

of ∆aµ be explained in the type III model?

As mentioned earlier, the radiative lepton decays µ → eγ and τ → (µ, e)γ in the SM

are very tiny and sensitive to new physics effects. In the type III model, these radiative

decays can be generated by charged and neutral Higgses through the FCNC effects. For

illustration, we present the following effective interaction for µ → eγ:

Lµ→eγ =
emµ

16π2
ēσµν (CLPL + CRPR)µF

µν , (16)

where F µν is the electromagnetic field strength tensor, and the Wilson coefficients CL and

7

CR from neutral and charged scalars are given by:

CL(R) = Cφ
L(R) + CH±

L(R) ,

Cφ
L =

Xℓ
32X

ℓ
13

2c2β

mτ

mµ
Zφ ,

CH±

L = −
1

12m2
H±

(
2Xℓ

23X
ℓ
13

c2β

)

, (17)

where Cφ
R = Cφ

L, C
H±

R = 0, and the BR for µ → eγ is:

BR(µ → eγ)

BR(µ → eν̄eνµ)
=

3αe

4πG2
F

(
|CL|2 + |CR|2

)
. (18)

It is clear that the factor Zφ in ∆aµ also appears in Cφ
L(R). In terms of ∆aµ in Eq. (15),

Cφ
L(R) can be expressed as:

Cφ
L(R) =

Xℓ
13

Xℓ
23

4π2∆aµ
m2

µ

. (19)

Since Cφ
L(R) has an enhancement factor of mτ/mµ, the contribution from charged Higgs

becomes the subleading effect. The formulas for τ → µγ can be found in the appendix.

From Eq. (17), we see that if flavor-changing effects Xℓ
ij = 0 with i ̸= j, the effective Wilson

coefficients CL,R vanish. That is, the contributions to the radiative lepton decays from other

types of THDM are suppressed. Therefore, any sizable signals of µ → eγ and τ → µγ will

be a strong support for the type III model.

The last process of interest is the decay Z → µτ . Other flavor-changing leptonic Z decays

also occur in the type III model; however, since the µτ mode is dominant, the present study

focuses on the µτ channel. Besides the Z coupling to charged leptons, in the THDM,

Z-h(H)-A and Z-Z-h(H) interactions are involved, in which the vertices are [50]:

Z − h(H)− A : −
gcβα(−sβα)

2 cos θW
(pA + ph(H))µ ,

Z −H+ −H− : − i
g cos 2θW
2 cos θW

(pH+ + pH−)µ ,

Z − Z − h(H) :
gmZ

cos θW
sβα(cβα)gµν (20)

where θW is Weinberg’s angle. The typical Feynman diagrams for Z → µτ are presented

in Fig. 1. Since many one-loop Feynman diagrams are involved in the process, we employ

the FormCalc package [51] to deal with the loop calculations. The lengthy formulas are not

shown here; instead, we directly show the numerical results.
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Muon	g-2	vs	𝜇 → 𝑒𝛾:

With the current upper limit BR(τ → 3µ) < 1.2 × 10−8 [45], we get BR(µ → 3e) <

4.2 × 10−16 in the type III model, which is far smaller than the current upper bound.

Nevertheless, the suppression factor of m3
e/(mτm2

µ) in Eq. (14) can be relaxed to be me/mτ

at the one-loop level, where the lepton pair is produced by virtual γ/Z in the SM. Since

the Xℓ
23 parameter also appears in the decays µ → eγ and τ → µγ, which have stronger

limits in experiments, in the following analysis we do not further discuss these processes.

Additionally, to remove the correlation between τ → 3µ and µ → 3e, χℓ
ij should be taken as

being flavor-dependent.

The discrepancy in muon g − 2 between experimental data and the SM prediction now

is ∆aµ = aexpµ − aSMµ = (28.8± 8.0)× 10−10 [44]. Although muon g− 2 is a flavor-conserving

process, Xℓ
23 andXℓ

21 also contribute to the anomaly through loops that are mediated by neu-

tral and charged Higgses. Thus, the muon anomaly in the type III model can be formulated

as [46, 64]:

∆aµ ≃
mµmτXℓ

23X
ℓ
32

8π2c2β
Zφ , (15)

Zφ =
c2βα
(
ln(m2

h/m
2
τ )− 3

2

)

m2
h

+
s2βα
(
ln(m2

H/m
2
τ )− 3

2

)

m2
H

−
ln(m2

A/m
2
τ )− 3

2

m2
A

,

where we have dropped the subleading terms associated with m2
µ. The following question is

explored below: when the current strict experimental data are considered, can the anomaly

of ∆aµ be explained in the type III model?

As mentioned earlier, the radiative lepton decays µ → eγ and τ → (µ, e)γ in the SM

are very tiny and sensitive to new physics effects. In the type III model, these radiative

decays can be generated by charged and neutral Higgses through the FCNC effects. For

illustration, we present the following effective interaction for µ → eγ:

Lµ→eγ =
emµ

16π2
ēσµν (CLPL + CRPR)µF

µν , (16)

where F µν is the electromagnetic field strength tensor, and the Wilson coefficients CL and

7

𝐵𝑅(𝜇 → 𝑒𝛾)��� < 5.7	×10-N/	

q 𝜒N/ℓ ≪ 𝜒O/ℓ

decay, χℓ
13 has to be less than O(10−3). As a result, we get:

BR(h → eτ) < 2× 10−4

(
χℓ
13/χ

ℓ
23

10−3

)2

BR(h → µτ). (27)

Hence, in the type III THDM, h → eτ at least is an order of 104 smaller than h → µτ .
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FIG. 8: (a) Contours for ∆aµ×109 as function of tan β and mH with mA = 300 GeV, χℓ
23 = 5, and

cos(β − α) = −0.05 and (b) contours for BR(µ → eγ) × 1013 as a function of ∆aµ and χℓ
13/χ

ℓ
23,

where relation in Eq. (19) is adopted.

Finally, we discuss the decay Z → µτ . Similar to rare τ decays, BR(Z → µτ) is sensitive

to tanβ, mH,A, and χℓ
23(33) in the type III model. Although we do not explicitly show the

formulas in this paper, we present the contours for BR(Z → µτ) × 107 as a function of

tan β and mH in Fig. 9(a), where mA = 300 GeV, χℓ
23(33) = 5(0), and cβα = −0.05 are

used. With the constrained parameters that fit the CMS results of h → µτ , we find that

BR for Z → µτ decay is BR(Z → µτ) < 10−6. The current experimental upper limit is

BR(Z → µτ)exp < 2.1 × 10−5. To understand the dependence of χℓ
23, we also show the

contours as a function of tanβ and χℓ
23 with mH = 200 GeV in Fig. 9(b).

In summary, we revisited the constraints for THDM. The bounds from theoretical

requirements, precision δρ, and oblique parameter measurements are shown in Fig. 2 and

the bounds from Higgs data with χ-square fit at 68%, 95.5%, and 99.7% CLs are given in

Fig. 3. We clearly show the tension of Higgs data on the parameters of new physics. With

the parameter values constrained by Higgs data, we find that the type III THDM can fit the

CMS result BR(h → µτ) = (0.84+0.39
−0.37)%. With the same set of parameters, the resultant
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Finally, we discuss the decay Z → µτ . Similar to rare τ decays, BR(Z → µτ) is sensitive

to tanβ, mH,A, and χℓ
23(33) in the type III model. Although we do not explicitly show the

formulas in this paper, we present the contours for BR(Z → µτ) × 107 as a function of

tan β and mH in Fig. 9(a), where mA = 300 GeV, χℓ
23(33) = 5(0), and cβα = −0.05 are

used. With the constrained parameters that fit the CMS results of h → µτ , we find that

BR for Z → µτ decay is BR(Z → µτ) < 10−6. The current experimental upper limit is

BR(Z → µτ)exp < 2.1 × 10−5. To understand the dependence of χℓ
23, we also show the

contours as a function of tanβ and χℓ
23 with mH = 200 GeV in Fig. 9(b).

In summary, we revisited the constraints for THDM. The bounds from theoretical

requirements, precision δρ, and oblique parameter measurements are shown in Fig. 2 and

the bounds from Higgs data with χ-square fit at 68%, 95.5%, and 99.7% CLs are given in

Fig. 3. We clearly show the tension of Higgs data on the parameters of new physics. With

the parameter values constrained by Higgs data, we find that the type III THDM can fit the

CMS result BR(h → µτ) = (0.84+0.39
−0.37)%. With the same set of parameters, the resultant
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Conclusions:

q We	revisit		the	constraints	on	the	2HDM	by	using	the	theoretical	requirements
+	𝛿𝜌 +	oblique	parameters	+	Higgs	measurements

q Higgs	data	give	strict	constraints	on	cos 𝛽 − 𝛼 and	𝑡𝑎𝑛𝛽

q With	the	values	of	parameters	 that	satisfy	CMS	𝐵𝑅 ℎ → 𝜏𝜇 ∼ 0.84%,

Ø 𝜏 → 3𝜇, 𝜏 → 𝜇𝛾 can	fit	the	upper	limits	of	current	data
Ø Δ𝑎: can	be	explained	
Ø Δ𝑎: has	a	strong	correlation	with	𝜇 → 𝑒𝛾
Ø

�t �→�<
�t �→:<

∼ 10-L

Ø 𝐵𝑅 𝑍 → 𝜇𝜏 < 10-�


