# Diphoton Excess at 750 GeV in leptophobic U(1)' model inspired by $E_6$ GUT

#### Chaehyun Yu



1

Collaboration with P. Ko (KIAS) and Yuji Omura (Nagoya U.) Based on JHEP 1506, 034 (2015); arXvi:1601.00568

KIAS-NCTS Joint Workshop on Particle Physics, String Theory and Cosmology, High1, Jan 31, 2016

### **Diphoton excess Run-II**



CMS: local 2.6 $\sigma$  for narrow width <2 $\sigma$  for wide width (global <1.2 $\sigma$ )

ATLAS: local 3.6 $\sigma$  (global 2.0 $\sigma$ )

 $\sigma(pp \rightarrow \gamma \gamma) \sim 6$  fb with  $\Gamma \sim 45$  GeV

### CMS Run-I



### Run-I constraints

| final               | $\sigma$ at $\sqrt{s} = 8 \text{TeV}$ |                         |          | implied bound on                                          |  |  |
|---------------------|---------------------------------------|-------------------------|----------|-----------------------------------------------------------|--|--|
| state $f$           | observed                              | expected                | ref.     | $\Gamma(S \to f) / \Gamma(S \to \gamma \gamma)_{\rm obs}$ |  |  |
| $\gamma\gamma$      | < 1.5  fb                             | $< 1.1~{\rm fb}$        | [6, 7]   | $< 0.8 \ (r/5)$                                           |  |  |
| $e^+e^-+\mu^+\mu^-$ | < 1.2  fb                             | $< 1.2~{\rm fb}$        | [8]      | $< 0.6 \ (r/5)$                                           |  |  |
| $\tau^+\tau^-$      | < 12  fb                              | < 15  fb                | [9]      | < 6 (r/5)                                                 |  |  |
| $Z\gamma$           | $< 4.0 {\rm ~fb}$                     | $< 3.4 {\rm ~fb}$       | [10]     | < 2 (r/5)                                                 |  |  |
| ZZ                  | < 12  fb                              | $< 20 {\rm ~fb}$        | [11]     | < 6 (r/5)                                                 |  |  |
| Zh                  | $< 19 {\rm ~fb}$                      | $< 28 {\rm ~fb}$        | [12]     | $< 10 \ (r/5)$                                            |  |  |
| hh                  | $< 39 {\rm ~fb}$                      | < 42  fb                | [13]     | $< 20 \ (r/5)$                                            |  |  |
| $W^+W^-$            | $< 40 {\rm ~fb}$                      | $<70~{\rm fb}$          | [14, 15] | $< 20 \ (r/5)$                                            |  |  |
| $t\bar{t}$          | $< 550 { m ~fb}$                      | -                       | [16]     | $< 300 \ (r/5)$                                           |  |  |
| invisible           | $< 0.8 \ { m pb}$                     | -                       | [17]     | $< 400 \ (r/5)$                                           |  |  |
| $b\overline{b}$     | $\lesssim 1\mathrm{pb}$               | $\lesssim 1\mathrm{pb}$ | [18]     | $< 500 \ (r/5)$                                           |  |  |
| jj                  | $\lesssim 2.5 \text{ pb}$             | -                       | [5]      | $< 1300 \ (r/5)$                                          |  |  |

Franceschini et al., arXiv:1512.04933

SM-like spin-0 resonance



Decay width [GeV]

$$\sigma(gg \to H \to \gamma\gamma) \sim \frac{C_{gg}}{sm_{H}\Gamma_{\text{tot}}} \Gamma[H \to gg] \Gamma[H \to \gamma\gamma]$$

$$C_{gg} = \frac{\pi^2}{8} \int_{\tau}^{1} \frac{dx}{x} g\left(x, m_{\Phi}^2\right) g\left(\frac{\tau}{x}, m_{\Phi}^2\right)$$

Diphoton excess requires  $\Gamma[H \rightarrow gg]\Gamma[H \rightarrow \gamma\gamma] \sim 10^{-2} \,\text{GeV}^2$ 

$$\Gamma_{\rm tot} \sim 246 {\rm ~GeV}$$
  
 $\sigma(gg \rightarrow H \rightarrow \gamma\gamma) \le 10^{-4} {\rm ~fb}$ 



Spin-0 with vector-like q's



$$\Gamma[\Phi \to gg] = \frac{\alpha_s^2 m_{\Phi}^3}{128\pi^3 v_{\Phi}^2} \left| \sum_{q'} A_{1/2}^H(\tau_{q'}) \right|^2 \qquad \Gamma[\Phi \to \gamma\gamma] = \frac{\alpha^2 m_{\Phi}^3}{256\pi^3 v_{\Phi}^2} \left| \sum_{q'} N_c Q_{q'}^2 A_{1/2}^H(\tau_{q'}) \right|^2$$

$$\sigma(gg \to \Phi \to \gamma\gamma) \sim \frac{C_{gg}}{sm_{\Phi}\Gamma_{tot}} \Gamma[\Phi \to gg] \Gamma[\Phi \to \gamma\gamma] \propto n_{q'}^4$$

$$n_{q'}$$
  $\uparrow$ 

Spin-0 with vector-like q's



$$\Gamma[\Phi \to gg] = \frac{\alpha_s^2 m_{\Phi}^3}{128\pi^3 v_{\Phi}^2} \left| \sum_{q'} A_{1/2}^H(\tau_{q'}) \right|^2 \qquad \Gamma[\Phi \to \gamma\gamma] = \frac{\alpha^2 m_{\Phi}^3}{256\pi^3 v_{\Phi}^2} \left| \sum_{q'} N_c Q_{q'}^2 A_{1/2}^H(\tau_{q'}) \right|^2$$

$$\sigma(gg \to \Phi \to \gamma\gamma) \sim \frac{C_{gg}}{sm_{\Phi}\Gamma_{tot}} \Gamma[\Phi \to gg] \Gamma[\Phi \to \gamma\gamma] \propto n_{q'}^4, \ y_{q'}^4$$

$$n_{q'}$$
  $\uparrow$ ,  $y_{q'}$   $\uparrow$ 

Spin-0 with vector-like q's



$$\Gamma[\Phi \to gg] = \frac{\alpha_s^2 m_{\Phi}^3}{128\pi^3 v_{\Phi}^2} \left| \sum_{q'} A_{1/2}^H(\tau_{q'}) \right|^2 \qquad \Gamma[\Phi \to \gamma\gamma] = \frac{\alpha^2 m_{\Phi}^3}{256\pi^3 v_{\Phi}^2} \left| \sum_{q'} N_c Q_{q'}^2 A_{1/2}^H(\tau_{q'}) \right|^2$$

$$\sigma(gg \to \Phi \to \gamma\gamma) \sim \frac{C_{gg}}{sm_{\Phi}\Gamma_{tot}} \Gamma[\Phi \to gg] \Gamma[\Phi \to \gamma\gamma] \propto n_{q'}^4, y_{q'}^4, v_{\Phi}^{-4}$$

$$n_{q'}$$
  $\uparrow$ ,  $y_{q'}$   $\uparrow$ ,  $v_{\Phi}$   $\downarrow$ 

Spin-0 with vector-like q's



$$\Gamma[\Phi \to gg] = \frac{\alpha_s^2 m_{\Phi}^3}{128\pi^3 v_{\Phi}^2} \left| \sum_{q'} A_{1/2}^H(\tau_{q'}) \right|^2 \qquad \Gamma[\Phi \to \gamma\gamma] = \frac{\alpha^2 m_{\Phi}^3}{256\pi^3 v_{\Phi}^2} \left| \sum_{q'} N_c Q_{q'}^2 A_{1/2}^H(\tau_{q'}) \right|^2$$

$$\sigma(gg \to \Phi \to \gamma\gamma) \sim \frac{C_{gg}}{sm_{\Phi}\Gamma_{\text{tot}}} \Gamma[\Phi \to gg] \Gamma[\Phi \to \gamma\gamma] \propto n_{q'}^4, y_{q'}^4, v_{\Phi}^{-4}, Q_{q'}^4$$

$$n_{q'}$$
  $\uparrow$ ,  $y_{q'}$   $\uparrow$ ,  $v_{\Phi}$   $\downarrow$ ,  $Q_{q'}$   $\uparrow$ 

#### Spin-0 with vector-like q's



$$n_{q'} = 3, \ Q_{q'} = -\frac{1}{3}$$

$$v_{\Phi} = 600 \text{ GeV}$$

$$n_{q'} = 3, \ Q_{q'} = \frac{2}{3}$$

$$n_{q'} = 6, \ Q_{q'} = -\frac{1}{3} \text{ or } \frac{2}{3}$$

#### Spin-0 with vector-like q's



$$n_{q'} = 3, \ Q_{q'} = -\frac{1}{3}$$

$$n_{q'} = 3, \ Q_{q'} = \frac{2}{3}$$

$$n_{q'} = 6, \ Q_{q'} = -\frac{1}{3} \text{ or } \frac{2}{3}$$

#### Spin-0 with vector-like q's



$$n_{q'} = 3, \quad Q_{q'} = -\frac{1}{3}$$

$$n_{q'} = 3, \quad Q_{q'} = \frac{2}{3}$$

$$n_{q'} = 6, \quad Q_{q'} = -\frac{1}{3} \text{ or } \frac{2}{3}$$

### The model

• Type-II two Higgs doublet model where  $Z_2$  symmetry is replaced by U(1) gauge symmetry

- contains extra vector-like fermions, but chiral under new U(1)
- scalar: two doublet+one singlet
- mixing of doublets and singlet is suppressed by SM-like Higgs boson data
- the extra singlet may be the candidate for the diphoton excess

 no tree-level coupling to SM particles, but decays to non-SM particles may enhance the total decay width

### Type-II 2HDM with U(1)

$$V_{y} = y_{ij}^{U} \overline{Q}_{Li} \tilde{H}_{1} U_{Rj} + y_{ij}^{D} \overline{Q}_{Li} H_{2} D_{Rj} + y_{ij}^{E} \overline{L}_{i} H_{2} E_{Rj} + y_{ij}^{N} \overline{L}_{i} \tilde{H}_{1} N_{Rj}$$

| chiral fermions | SU(3) | SU(2) | $U(1)_Y$ | $U(1)_H$ | $Z_2$ |   |                             |
|-----------------|-------|-------|----------|----------|-------|---|-----------------------------|
| $u_{Ri}$        | 3     | 1     | 2/3      | 1        | +     | ſ | SM particles w              |
| $\nu_{Ri}$      | 1     | 1     | 0        | 1        | +     |   | Sivi particles, $v_{\rm R}$ |
| $U_{Li}$        | 3     | 1     | 2/3      | 1        | _     | Ţ | extra quarks                |
| $U_{Ri}$        | 3     | 1     | 2/3      | 0        | _     | J |                             |
| $N_{Li}$        | 1     | 1     | 0        | 1        | _     | ſ | extra singlet               |
| $N_{Ri}$        | 1     | 1     | 0        | 0        | _     | 5 | fermions                    |
| $H_1$           | 1     | 2     | 1/2      | 1        | +     |   |                             |
| $\Phi$          | 1     | 1     | 0        | 1        | +     |   |                             |
| X               | 1     | 1     | 0        | 1        | _     |   |                             |

### Type-II 2HDM with U(1)

• type-II 2HDM with U(1) inspired by the  $E_6$  GUT

 $E_6 \to SO(10) \times U(1)_{\psi} \to SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$ 

|         | SU(3) | SU(2) | $U(1)_Y$ | $U(1)_b$ | $U(1)_{\psi}$ | $U(1)_{\chi}$ | $U(1)_{\eta}$ |
|---------|-------|-------|----------|----------|---------------|---------------|---------------|
| $Q^i$   | 3     | 2     | 1/6      | -1/3     | 1             | -1            | -2            |
| $U_R^i$ | 3     | 1     | 2/3      | 2/3      | -1            | 1             | 2             |
| $D_R^i$ | 3     | 1     | -1/3     | -1/3     | -1            | -3            | -1            |
| $L_i$   | 1     | 2     | -1/2     | 0        | 1             | 3             | 1             |
| $E_R^i$ | 1     | 1     | -1       | 0        | -1            | 1             | 2             |
| $N_R^i$ | 1     | 1     | 0        | 1        | -1            | 5             | 5             |
| $H_1$   | 1     | 2     | 1/2      | 0        | 2             | 2             | -1            |
| $H_2$   | 1     | 2     | 1/2      | 1        | -2            | 2             | 4             |

 $Q_{\eta} = \frac{3}{4}Q_{\chi} - \frac{5}{4}Q_{\psi}$ 

 $Q_b = \frac{1}{5}(Q_\eta + 2Q_Y) \implies \text{leptophobic}$ 

Only one U(1) symmetry remains at low energy while the other symmetry is spontaneously broken at the high energy scale.

### Z-Z<sub>H</sub> mixing

tree-level mixing



## Type-II 2HDM with U(1)

Extra fermions (required by anomaly-free conditions)



The SM fermions and extra chiral fermions can be embedded into three-family 27 representations of the E6 group.

Singlet scalar required for U(1)<sub>H</sub> breaking and masses for extra fermions

|        | SU(3) | SU(2) | $U(1)_Y$ | $U(1)_b$ | $U(1)_{\psi}$ | $U(1)_{\chi}$ | $U(1)_{\eta}$ |
|--------|-------|-------|----------|----------|---------------|---------------|---------------|
| $\Phi$ | 1     | 1     | 0        | 1        | -4            | 0             | 5             |

### **Higgs Potential**

$$V_{\text{scalar}} = \tilde{m}_{1}^{2} H_{1}^{\dagger} H_{1} + \tilde{m}_{2}^{2} H_{2}^{\dagger} H_{2} + \frac{\lambda_{1}}{2} \left( H_{1}^{\dagger} H_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left( H_{2}^{\dagger} H_{2} \right)^{2} + \lambda_{3} H_{1}^{\dagger} H_{1} H_{2}^{\dagger} H_{2} + \lambda_{4} H_{1}^{\dagger} H_{2} H_{2}^{\dagger} H_{1} + V_{\Phi}, \quad \text{no } \lambda_{5} \text{ terms!}$$

$$V_{\Phi} = \tilde{m}_{\Phi}^2 \Phi^{\dagger} \Phi + \frac{\lambda_{\Phi}}{2} \left( \Phi^{\dagger} \Phi \right)^2 - \left( \mu_{\Phi} H_1^{\dagger} H_2 \Phi + \text{h.c.} \right) + \tilde{\lambda}_1 H_1^{\dagger} H_1 \Phi^{\dagger} \Phi + \tilde{\lambda}_2 H_2^{\dagger} H_2 \Phi^{\dagger} \Phi$$

$$H_i = \begin{pmatrix} \phi_i^+ \\ \frac{1}{\sqrt{2}}(v_i + h_i) + i\chi_i) \end{pmatrix} \qquad \Phi = \frac{1}{\sqrt{2}}(v_{\Phi} + h_{\Phi}) + i\chi_{\Phi})$$

three CP-even scalars mix with each other

$$\tilde{\mathcal{M}}^2 = \begin{pmatrix} \tilde{\mathcal{M}}_{11}^2 & \tilde{\mathcal{M}}_{12}^2 & \tilde{\mathcal{M}}_{1\Phi}^2 \\ \tilde{\mathcal{M}}_{12}^2 & \tilde{\mathcal{M}}_{22}^2 & \tilde{\mathcal{M}}_{2\Phi}^2 \\ \tilde{\mathcal{M}}_{1\Phi}^2 & \tilde{\mathcal{M}}_{2\Phi}^2 & \tilde{\mathcal{M}}_{\Phi\Phi}^2 \end{pmatrix}$$

 $h_{\Phi}$  does not mix with h1 and h2 by  $\tilde{M}_{1\Phi}^2 = \tilde{M}_{2\Phi}^2 = 0$ 

### **Relic density**



#### **Diphoton excess**



 $y \approx 5 - 10$  for  $m_f > 400$  GeV

### Fermionic dark matter

• the Yukawa interactions which respect all the U(1)' symmetries

 $V^{\text{ex}} = y_{ij}^D \overline{D_R^j} \Phi D_L^i + y_{ij}^H \overline{\widetilde{H}_R^j} \Phi \widetilde{H}_L^i + y_{IJ}^N \overline{N_L^c} H_1^{\dagger} i \sigma_2 \widetilde{H}_L^i + y_{IJ}^{\prime N} \overline{\widetilde{H}_R^i} H_2 N_L^j + H.c.$ 

Charged fermions get masses from nonzero  $\langle \Phi \rangle$  while neutral fermions from  $\langle \Phi \rangle$  and  $\langle H_{1,2} \rangle$ .



### Scalar dark matter

• introduce new Z<sub>2</sub>-odd scalar X with quantum number (1,1,0,-1)

$$\mathcal{L}_X = D_{\mu} X^{\dagger} D^{\mu} X - (m_{X0}^2 + \lambda_{H_1 X} H_1^{\dagger} H_1 + \lambda_{H_2 X} H_2^{\dagger} H_2) X^{\dagger} X - \lambda_X (X^{\dagger} X)^2 - \left( \lambda_{\Phi X}^{''} (\Phi^{\dagger} X)^2 + H.c. \right) - \lambda_{\Phi X} \Phi^{\dagger} \Phi X^{\dagger} X - \lambda_{\Phi X}^{'} |\Phi^{\dagger} X|^2 - \left( y_{dX}^D \overline{d_R} D_L X + y_{LX}^{\tilde{H}} \overline{L} \widetilde{H}_R X^{\dagger} + H.c. \right)$$

- new Z<sub>2</sub> forbids dangerous terms  $\Phi^{\dagger}X$ ,  $H_{1}^{\dagger}H_{1}\Phi^{\dagger}X$
- X could be stable if <X>=0



• might be a dominant decay channel

### $Z\gamma$ production

•The bound at 8 TeV is  $\sigma(gg \rightarrow h_{\Phi} \rightarrow Z\gamma) \lesssim 3.8 ~{
m fb}$ 



### Constraints at 8 TeV

• The bound on the dijet production at 8TeV is about 2 pb

 $\sigma(gg \to h_\Phi \to gg) \lesssim 2~{\rm pb}$ 

The mass of exotic quarks must be larger than 400 GeV for y=5 and 600 GeV for y=10

• The bound on the Higgs pair production is about 10 fb

 $\sigma(gg \to h_{\Phi} \to hh) \lesssim 10 \text{ fb}$ 

depends on the model parameters and BR( $h_{\Phi} \rightarrow hh$ )<0.01

diboson production

$$\sigma(gg \to h_{\Phi} \to WW) \lesssim 40 \text{ fb}$$
  
$$\sigma(gg \to h_{\Phi} \to ZZ) \lesssim 10 \text{ fb}$$

No tree-level coupling and loop diagrams of SU(2) doublet lepton would be dominant

### Constraints at 8 TeV

• The monojet search gives constraints on the invisible decay

 $\sigma(gg \rightarrow h_{\Phi}) \sim 2 \mathrm{pb}$ 

From the naïve dimensional analysis,  $\sigma(gg \rightarrow h_{\Phi}g) \sim \frac{\alpha_s}{4\pi} \sigma(gg \rightarrow h_{\Phi}) \sim 0.02 \text{ pb} < 0.8 \text{ pb}$ 

•  $h_{\Phi} \rightarrow Hh$ , HH, AA decays are not well constrained

The main decay channel would be the 4b channel

would be one of promising decay channels for large decay width

### O(1) Yukawa coupling

- introduce two singlet scalars  $\Phi_1$  and  $\Phi_2$  which have the same U(1)' charge
- Yukawa interaction of extra quarks

 $V^{ex} = (y_1 \Phi_1 + y_2 \Phi_2) \overline{D}_R D_L + H.c.$ 

•  $\Phi_1$  contains the CP-even scalar for 750 GeV excess, but

$$\langle \Phi_1 \rangle = 0, \quad \langle \Phi_2 \rangle = v_{\Phi}$$

•  $\Phi_1$  is decoupled from U(1)' breaking and  $y_2$  could be a free parameter

### Conclusions

• Type-II 2HDM with local U(1) gauge symmetry: leptophobic U(1)' inspired by E6

- 750 GeV diphoton excess may be possible
- The model will meet more constraints with run-II data
- The model may be improved by adding new scalar