Neutrino masses from SUSY breaking in radiative seesaw models

(based on Eur. Phys. J. C 75 (2015) 3, 99)

António J. R. Figueiredo NCTS / NTHU

國立清華大學

National Tsing Hua University

3rd KIAS-NCTS Joint Workshop Jeongseon, South Korea – February 3, 2016

Introduction: m_{ν} from SUSY $\langle \hat{X} \rangle \sim \theta^2 F_X$

- Hard-SUSY terms and only MSSM visible fields:
 - \sim \tilde{L} -number breaking provided by hard-SUSY terms that respect R-parity

$$\lambda' \sim \left(\frac{m_{\text{soft}}}{M_X}\right)^{1 \text{ or } 2} \lambda: \quad (\tilde{L}H_u)^2 \subset \frac{1}{M_X^2} \int d^2\theta \hat{X} (\hat{L}\hat{H}_u)^2 \text{ or } \tilde{L}H_d^{\dagger} \tilde{L}H \subset \frac{1}{M_X^2} \int d^4\theta \hat{X}^{\dagger} \hat{X} \hat{L}\hat{H}_d^{\dagger} \hat{L}\hat{H}$$

Turned into L-number breaking via gaugino fermion-number violation

- But, if SUSY sector breaks L-number, why wouldn't generate $\frac{1}{M_V} \hat{L} \hat{H}_u \hat{H}_u \subset W_{\text{eff}}$?
- Suppose SUSY sector carries visible sector symmetries (e.g. forbid $H_{\mu}H_{d}$ so that $\mu \sim m_{\rm soft}$). May forbid RH neutrino masses/couplings to visible sector:
 - [Arkani-Hamed et al Majorana: '001 $\frac{1}{M_{\star}}\int d^4\theta \hat{X}^{\dagger}\hat{N}\hat{N} \supset m_{\rm soft}NN$ and $\frac{1}{M_{\star}}\int d^2\theta \hat{X}\hat{L}\hat{N}\hat{H}_u \supset \sqrt{\frac{m_{\rm soft}}{M_{\star}}}LNH_u \Rightarrow m_{\nu} \sim \frac{v^2}{M_{\star}}$
 - Dirac: $\frac{1}{M_{\chi}^2} \int d^4 \theta \hat{X}^{\dagger} \hat{L} \hat{N} \hat{H}_u \supset \frac{m_{\text{soft}}}{M_{\chi}} L N H_u \Rightarrow m_{\nu} \sim \frac{v m_{\text{soft}}}{M_{\chi}}$
- New visible sector symmetry may forbid unsuppressed terms & allow suppressed ones:
 - E.g. U(1)' gauge symmetry may forbid LH_uN and $m_{\text{soft}}\tilde{L}H_u\tilde{N}$ [Demir et al '07]
 - and allow $\frac{m_{\text{soft}}}{M_X}LH_d^{\dagger}N \subset \frac{1}{M_{\psi}^2}\int d^4\theta \hat{X}^{\dagger}\hat{L}\hat{H}_d^{\dagger}\hat{N}$ and $\frac{m_{\text{soft}}^2}{M_X}\tilde{L}H_d^{\dagger}\tilde{N} \subset \frac{1}{M_{\psi}^3}\int d^4\theta \hat{X}^{\dagger}\hat{X}\hat{L}\hat{H}_d^{\dagger}\hat{N}$

• Tree- and loop-level $LH_d^{\dagger}N \Rightarrow m_{\nu} \sim \frac{v m_{\text{soft}}}{M_{\nu}}$

[Frere et al '99]

Radiative m_{ν} in SUSY

 \bullet L-number breaking can be independent of SUSY and still $m_{\nu} \propto$ SUSY

- Not entirely obvious in component field calculations
- Examples in the literature:
 - Genuine radiative seesaw

Radiative m_{ν} in SUSY

Maybe Dark Matter

$$\left\{ \begin{array}{c} L \\ L \\ L \end{array} \right\} H^{*} \qquad \mathsf{OP}_{\nu} \subset \int d^{4}\theta \, \widehat{\mathsf{OP}}_{\nu}$$

- SUST sector needs not carry visible symmetries

• L-number breaking can be independent of SUSY and still $m_{\nu} \propto SUSY$

- Not entirely obvious in component field calculations
- Examples in the literature:
 - Genuine radiative seesaw
 - R-parity violation

Radiative m_{ν} in SUSY

 \hat{L}

 \bullet L-number breaking can be independent of SUSY and still $m_{\nu} \propto {\rm SUSY}$

- Can classify the SUSY contributions as:
 - Related to EWSB

$$\langle F^{\dagger} \rangle = \sum_{H} \mu_{H} \langle H \rangle + \sum_{H} \lambda_{H} \langle H H' \rangle \neq 0 \text{ or } \langle D \rangle = g \sum_{H} \langle H^{\dagger} \otimes_{H} H \rangle \neq 0$$

Otherwise: insertions of SUSY spurions into internal lines or vertices

Radiative seesaws in SUSY

Assume

- L-number broken by 2 units at SUSY level with a radiative seesaw at scale M
- Low energy Higgs sector of the MSSM

$$\begin{split} \langle F_{H_{u,d}}^{\dagger} \rangle &= \mu \langle H_{d,u} \rangle , \\ \langle D_{U(1)Y} \rangle &= \frac{g'}{2} \left(\left| \langle H_u \rangle \right|^2 - \left| \langle H_d \rangle \right|^2 \right) , \quad \langle D_{SU(2)L}^3 \rangle = \frac{g}{2} \left(- \left| \langle H_u \rangle \right|^2 + \left| \langle H_d \rangle \right|^2 \right) \end{split}$$

Expectations

$$rac{m_
u}{v^2} \propto rac{\mu}{M^2} \oplus rac{g^2 v^2}{M^3} \oplus rac{m_{
m soft}}{M^2}$$

• If $\frac{m_{\text{soft}}}{M}$ is small, supergraphs very convenient calculation tool

- Automatic component field cancellations
- Non-renormalisation theorem becomes manifest
- Simpler Lorentz structure
- Fewer diagrams

Radiative seesaws in SUSY: Understanding SUSY $L_{L \to D^2(\hat{L},\hat{L})\widehat{OP}}$

• In general
$$OP_{\nu} = LL \otimes Higgses \subset \int d^4\theta \, \widehat{OP}_{\nu}$$
:

$$\begin{split} \widehat{\mathsf{OP}}_{\nu} &\in \left[\hat{A} \, D^2(\hat{L}\hat{L}\hat{H}^k) \text{ or } \hat{B}^{\dagger} \, \hat{L} \hat{L} \right] \otimes \left\{ \hat{H}, \hat{H}^{\dagger}, D^2 Z, \bar{D}^2 \hat{Z}^{\dagger}, D\bar{D}^2 D \hat{V} \right\}^n \\ D\bar{D}^2 D \hat{V} &| = D \supset g \hat{H}^{\dagger} \otimes H, \quad \bar{D}^2 \hat{Z}^{\dagger} |= F_Z^{\dagger} \supset \mu H \text{ or } \lambda H \otimes H' \\ \int d^4 \theta \hat{A} \text{ and } \int d^2 \bar{\theta} \hat{B}^{\dagger} \sim \text{Constants and/or Higgses} \end{split}$$

- Pure-SUST_{EWSB} contributions $\hat{A} \sim \hat{V}$ or $\hat{B}^{\dagger}\hat{B}$ and $\hat{B}^{\dagger} \sim \hat{Z}^{\dagger}$ or $D^{2}\hat{V}$
- SUSY_{EWS} contributions

• Insertions of spurionic constants $D^2 \hat{X}$ and $ar{D}^2 \hat{X}^\dagger$

• Insertions of SUSY spurions \hat{X} and \hat{X}^{\dagger}

Radiative seesaws in SUSY: Understanding SUSY contributions

• In general
$$OP_{\nu} = LL \otimes Higgses \subset \int d^4\theta \, \widehat{OP}_{\nu}$$
:

$$\begin{split} \widehat{\mathsf{OP}}_{\nu} &\in \left[\hat{A} D^2 (\hat{L} \hat{L} \hat{H}^k) \text{ or } \hat{B}^{\dagger} \hat{L} \hat{L} \right] \otimes \left\{ \hat{H}, \hat{H}^{\dagger}, D^2 Z, \bar{D}^2 \hat{Z}^{\dagger}, D \bar{D}^2 D \hat{V} \right. \\ D \bar{D}^2 D \hat{V} &= D \supset g \hat{H}^{\dagger} \otimes H, \quad \bar{D}^2 \hat{Z}^{\dagger} \mid = F_Z^{\dagger} \supset \mu H \text{ or } \lambda H \otimes H' \\ \int d^4 \theta \hat{A} \text{ and } \int d^2 \bar{\theta} \hat{B}^{\dagger} \sim \text{Constants and/or Higgses} \end{split}$$

- Pure-SUSY_{EWSB} contributions $\hat{A} \sim \hat{V}$ or $\hat{B}^{\dagger}\hat{B}$ and $\hat{B}^{\dagger} \sim \hat{Z}^{\dagger}$ or $D^{2}\hat{V}$
- SUSY_{EWS} contributions
 - Insertions of spurionic constants $D^2 \hat{X}$ and $\bar{D}^2 \hat{X}^{\dagger}$
 - Insertions of SUSY spurions \hat{X} and \hat{X}^{\dagger}

Radiative seesaws in SUSY: SUSY_{EWS} superoperators

Identically zero topologies in SUSY limit can contribute through internal SUSY effects

Ask in general: which superoperators only contribute to OP_ν by insertions of SUSY spurions?

1.
$$\widehat{OP} = D^2(\widehat{L}\widehat{L}\widehat{H}^n) \otimes (a \text{ superoperator whose } D\text{-term is zero at } p_{ext} = 0)$$

2. $\widehat{OP} = \widehat{L}\widehat{L} \otimes (a \text{ superoperator whose } F^{\dagger}\text{-term is zero at } p_{ext} = 0)$

If in a radiative seesaw model all leading superoperators are of this type:

 $m_{\nu}^{\text{leading}} \propto \text{soft-SUSY}$ effects in seesaw mediators

• $m_{
u}^{\text{leading}} \propto \frac{m_{\text{soft}}}{M}$ without resorting to non-standard SUSY terms

Radiative seesaws in SUSY: SUSY $_{\rm EWS}$ one-loop topologies for LLHH

- 1 1PI + 4 based on radiative vertices:
 - $\blacktriangleright D^2(\hat{L}\hat{L})\hat{H}_u\hat{H}_u, \ \hat{L}\hat{L}D^2(\hat{H}_u\hat{H}_u), \ D^2(\hat{L}\hat{L})\hat{H}_d^{\dagger}\hat{H}_d^{\dagger} \ \text{and} \ \hat{L}\hat{L}\bar{D}^2(\hat{H}_d^{\dagger}\hat{H}_d^{\dagger})$
 - type-II without a chirality flip
 - $\hat{L}\hat{L}\hat{H}_{u}\hat{H}_{u}$ (1PR)
 - type-II with a chirality flip, type-I and -III

 - 14 based on self-energies

- Dimensional suppressions:
 - $\mu m_{\rm soft}/M^3$ or $m_{\rm soft}^2/M^3$ to $\mu^2 m_{\rm soft}/M^4$, $\mu m_{\rm soft}^2/M^4$ or $m_{\rm soft}^3/M^4$
 - Non-minimal least suppressions consequence of holomorphy: higher loops contain m_{soft}/M² contributions:

Radiative seesaws in SUSY: SUSY $_{\rm EWS}$ one-loop topologies for LLHH

- 1 1PI + 4 based on radiative vertices:
 - $\blacktriangleright D^2(\hat{L}\hat{L})\hat{H}_u\hat{H}_u, \ \hat{L}\hat{L}D^2(\hat{H}_u\hat{H}_u), \ D^2(\hat{L}\hat{L})\hat{H}_d^{\dagger}\hat{H}_d^{\dagger} \ \text{and} \ \hat{L}\hat{L}\bar{D}^2(\hat{H}_d^{\dagger}\hat{H}_d^{\dagger})$
 - type-II without a chirality flip
 - $\hat{L}\hat{L}\hat{H}_{u}\hat{H}_{u}$ (1PR)
 - type-II with a chirality flip, type-I and -III

 - 14 based on self-energies

- Dimensional suppressions:
 - $\mu m_{\rm soft}/M^3$ or $m_{\rm soft}^2/M^3$ to $\mu^2 m_{\rm soft}/M^4$, $\mu m_{\rm soft}^2/M^4$ or $m_{\rm soft}^3/M^4$
 - Non-minimal least suppressions consequence of holomorphy: higher loops contain m_{soft}/M² contributions

Construction of models

- Pick a symmetry that forbids undesired leading topologies and allow desired
- General criterion: radiative seesaw either couples to \hat{H}_u or to \hat{H}_d^{\dagger} , but not both
- However, this structure is not respected by
 - Higher-loop contributions to operators of leading dimension
 - Operators of higher dimension

Base topology

 $\hat{\rho}^{\dagger}\hat{\Delta}^{\dagger}\hat{H}_{u}\hat{H}_{u} \rightarrow \langle \rho^{\dagger}\rangle\hat{\Delta}^{\dagger}\hat{H}_{u}\hat{H}_{u} + \hat{\rho}^{\dagger}\hat{\Delta}^{\dagger}\hat{H}_{u}\hat{H}_{u}$

Charges

	$SU(2)_L \otimes U(1)_Y$	$U(1)_X$	$U(1)_L$
Â	(3, 1)	0	-2
$\hat{ ho}$	(1,0)	0	2
\hat{X}_1	(2 , -1/2)	1	1
\hat{X}_2	(2 , -1/2)	$^{-1}$	1
Ŷ3	(1, 0)	1	$^{-1}$
$\hat{\overline{X}}_3$	(1, 0)	-1	$^{-1}$

Superpotential

$$\mathcal{W} = \mathcal{W}_{\text{MSSM}} + M_{\Delta} \hat{\Delta} \hat{\overline{\Delta}} + \sum_{i=1}^{2} M_{X_i} \hat{X}_i \hat{\overline{X}}_i + \lambda_{\hat{\rho}} \hat{X}_3 \hat{\overline{X}}_3 + \hat{H}_u \left(\lambda_1 \hat{X}_1 \hat{\overline{X}}_3 + \lambda_2 \hat{X}_2 \hat{X}_3 \right) + \hat{\Delta} \left(\lambda_L \hat{L} \hat{L} + \lambda_X \hat{X}_1 \hat{X}_2 \right) + \bar{\lambda}_X \hat{\overline{\Delta}} \hat{\overline{X}}_1 \hat{\overline{X}}_2$$

- L-number recovered if any in $\{\lambda_1, \lambda_2, \lambda_L\}$, or both λ_X and any in $\{\overline{\lambda}_X, M_{\Delta}, M_{X_1}, M_{X_2}\}$ goes to zero
 - Contribution to neutrino masses proportional to either $\lambda_1 \lambda_2 \lambda_L \lambda_X^*$ or $\lambda_1 \lambda_2 \lambda_L \overline{\lambda}_X M_\Delta M_{X_1} M_{X_2}$
 - Leading perturbation theory contributions:

Leading LLHH in the absence of SUSY spurions:

$$\int d^{4}\theta D^{2}(\hat{L}\hat{L})\hat{H}_{u}\hat{H}_{u} = -\Box(\tilde{L}\tilde{L})\left[\tilde{H}_{u}\tilde{H}_{u} + 2F_{H_{u}}H_{u}\right] - \Box(H_{u}H_{u})\left[LL + 2F_{L}\tilde{L}\right] + 4\left(p_{L} + p_{\tilde{L}}\right)^{2}L\tilde{H}_{u}\tilde{L}H_{u} \int d^{4}\theta \hat{L}\hat{L}\hat{H}_{u}\hat{H}_{u} = 0 \quad (\text{or} \quad \int d^{4}\theta \,\hat{\overline{\Delta}}\hat{H}_{u}\hat{H}_{u} = 0)$$

 $m_{
u}^{\text{leading}} = 0$ in the absence of SUSY spurions

- L-number recovered if any in $\{\lambda_1, \lambda_2, \lambda_L\}$, or both λ_X and any in $\{\overline{\lambda}_X, M_{\Delta}, M_{X_1}, M_{X_2}\}$ goes to zero
 - Contribution to neutrino masses proportional to either $\lambda_1 \lambda_2 \lambda_L \lambda_X^*$ or $\lambda_1 \lambda_2 \lambda_L \overline{\lambda}_X M_\Delta M_{X_1} M_{X_2}$
 - Leading perturbation theory contributions:

Leading LLHH in the absence of SUSY spurions:

Leading soft-SUSY effects

- $\tfrac{\mu^*A^*}{M^3}LLH_uH_d^{\dagger}\oplus \tfrac{A^*A\oplus m_{\text{soft}}^2\oplus B^*}{M^3}LLH_uH_u\subset \mathcal{L}_{\text{eff}}$
- Or up to order 3

$$\frac{1}{64\pi^2 M_{\Delta}^2} \left(\mathbf{a} \left[\frac{2m_{\text{soft}}^2}{M_X} + \frac{2A}{M_X} \left(A_X^* - \frac{B_{\Delta}}{M_{\Delta}} \right) - \frac{A_X^* B_X}{M_X^2} \right] + \mathbf{b} M_{\Delta} \frac{B_X}{M_X^2} \right) LL H_u H_u$$
$$-\frac{\mathbf{a}}{32\pi^2 M_{\Delta}^2} \left(\frac{\mu^*}{M_X} \right) \left[A_X^* \left(1 - \frac{m_{\text{soft}}^2}{M_X^2} - \frac{(m_{\text{soft}}^2)_{\Delta}}{M_{\Delta}^2} \right) - \frac{B_{\Delta}}{M_{\Delta}} \right] LL H_u H_d^{\dagger}$$
$$-\frac{\mathbf{a}}{192\pi^2 M_{\Delta}^2} \left(\frac{\mu^*}{M_X} \right)^2 \frac{A_X^* B_X}{M_X^2} LL H_d^{\dagger} H_d^{\dagger}$$

$$\frac{1}{M^3} D^2(\hat{L}\hat{L}) \hat{H}_u \hat{H}_u \hat{V}_{U(1)_Y, SU(2)_L}, \quad \frac{1}{M^5} D^2(\hat{L}\hat{L}) \hat{H}_u \hat{H}_u \hat{H}_u^{\dagger} \hat{H}_u, \quad \frac{1}{M^4} \hat{L}\hat{L}\hat{H}_u \hat{H}_u \hat{H}_u^{\dagger} \hat{H}_u$$

At one-loop order SUSY_{EWSB} contributions have dimension-7: g^{'2}⊕g²/M³, |µ|²/M⁵, µ/M⁴
 At higher-loops there are contributions to dimension-5 operators that are not proportional to SUSY effects involving the seesaw mediators

Conclusions

- L-number breaking can take place at SUSY level and still $m_{
 m v} \propto$ SUSY
- There are models in which m^{leading} is proportional to soft-SUSY involving the seesaw mediators, say m. Schematically

$$rac{m_
u^{
m leading}}{v^2} \propto rac{\mu \, m \oplus m^2}{M^3}$$

- In these models the smallness m can be partially responsible for the smallness of $m_{
 u}$
- Ballpark figure

$$M\sim 10 \; {
m TeV} \;, \; \lambda\sim 0.1 \;, \; \mu\sim 2 \; {
m TeV} \; : \quad m\lesssim 100 \; {
m GeV} \;, \; m_
u\lesssim 1 \; {
m eV}$$

- Explicative power of small m is limited by the size of next-to-leading order contributions that are independent of m
- Caveat: how small can *m* be does depend on the amount of hierarchy in soft-SUSY terms, i.e. on how small is *m*/*m*_{SM-sparticles}. Complete understanding would require an actual model of SUSY
- Phenomenological virtues:
 - Small m_{ν} generated by new physics near the TeV scale
 - No need for small superpotential couplings
 - No need for large hierarchies in superpotential mass scales

Looking for low scale SUSY seesaws signals in cLFV

In addition to LFV mediated by radiative seesaw mediators, there will in general be the traditional contributions from slepton-EWino/Higgisno loops

[Borzumati and Masiero '86]

$$\beta_{m_{L}^{2}}^{(1)} \supset 6\left(m_{\text{soft}}^{2}\right)_{\Delta} \lambda_{L}^{*} \lambda_{L} + 6A_{L}^{*} A_{L} + 3m_{L}^{2} \lambda_{L}^{*} \lambda_{L} + 3\lambda_{L}^{*} \lambda_{L} m_{L}^{2} + 6\lambda_{L}^{*} m_{L}^{2*} \lambda_{L}$$

Sleptonic LFV ratios:

[Kim *et al* '98] [Hisano and Tobe

$$\frac{\mathsf{BR}(\ell \to 3\ell')}{\mathsf{BR}(\ell \to \ell'\gamma)} \simeq \frac{\alpha}{3\pi} \left(\log \frac{m_{\ell}^2}{m_{\ell'}^2} - \frac{11}{4} \right), \qquad \frac{\mathsf{CR}(\mu - e, \mathsf{Ti})}{\mathsf{BR}(\mu \to e\gamma)} \approx 5 \times 10^{-3}$$

Deviations would suggest the existence of other low-lying states with lepton-flavour

Thank you

Work in progress

$$\begin{aligned} \mathcal{W}_{1} &:= & M_{N}\hat{N}\hat{\overline{N}} + \sum_{i=1}^{2}\lambda_{i}\hat{\rho}_{i}\hat{X}_{i}\hat{\overline{X}}_{i} + M_{X_{3}}\hat{X}_{3}\hat{\overline{X}}_{3} \\ & + \hat{L}\left(Y^{N}\hat{N}\hat{H}_{u} + Y^{X}\hat{X}_{1}\hat{X}_{3}\right) + \hat{\overline{N}}\left(\bar{\lambda}_{X}\hat{\overline{X}}_{1}\hat{\overline{X}}_{2} + \lambda_{X}\hat{X}_{1}\hat{X}_{2}\right) + \lambda_{H}\hat{H}_{u}\hat{X}_{2}\hat{\overline{X}}_{3} \,. \end{aligned}$$

$$\mathcal{W}_{1\mathsf{Pl}} \quad := \quad \frac{1}{2} M_{X_1} \hat{X}_1^2 + \lambda \hat{\rho} \hat{X}_2 \hat{\overline{X}}_2 + \frac{1}{2} M_{X_3} \hat{X}_3^2 + \lambda_L \hat{L} \hat{X}_1 \hat{X}_2 + \lambda_H \hat{H}_u \hat{\overline{X}}_2 \hat{X}_3 \,.$$

$$\mathcal{W}_{\Pi_d} := M_{\Delta} \hat{\Delta} \hat{\Delta} + \sum_{i=1}^2 M_{X_i} \hat{X}_i \hat{X}_i + \lambda \hat{\rho} \hat{X}_3 \hat{X}_3 \\ + \hat{L} \left(\lambda_3 \hat{X}_1 \hat{X}_3 + \bar{\lambda}_3 \hat{X}_2 \hat{X}_3 \right) + \hat{\Delta} \left(\lambda_H \hat{H}_d \hat{H}_d + \lambda_X \hat{X}_1 \hat{X}_2 \right) \\ + \hat{\Delta} \left(\bar{\lambda}_X \hat{X}_1 \hat{X}_2 + \bar{\lambda}_H \hat{H}_u \hat{H}_u \right).$$

- 3 models to span the different topologies:
 - type-II :: $D^2(\hat{L}\hat{L})\hat{H}_u\hat{H}_u$
 - type-I/III :: $\hat{L}\hat{H}_{u}\hat{H}_{u}$
 - ► 1PI :: $\hat{L}\hat{L}\hat{H}_u\hat{H}_u$
- Plus the especially suppressed version of type-II:
 - $\blacktriangleright \hat{L}\hat{L}\bar{D}^2(\hat{H}_d^{\dagger}\hat{H}_d^{\dagger})$
- Model scheme:

 ${\sf Seesaw}/{\sf flavour}\ {\sf Mediator}$

 \oplus

- Involved in the effective tree-level topology
- Reponsible for flavour structure

- Involved in the fundamental topology
- The source of soft-SUSY effects for m_{ν}

Model	Seesaw Mediator	Flavour Mediator	Â's	$m_ u/v^2$
II _u	Â	$\oplus \hat{\overline{\Delta}}$		$\frac{B_X \oplus (m_{\rm soft}^2)_X}{M^3}$
ll _d	$\hat{\Delta}\oplus\hat{\overline{\Delta}}$	$\hat{X}_3 \oplus \hat{\overline{X}}_3$	$\hat{X}_{1,2,3}\oplus\hat{\overline{X}}_{1,2,3}$	$\frac{\mu B_X \oplus A_H B_X}{M^4}$
I	$\hat{N}\oplus \widehat{\overline{N}}$	$\hat{N} \oplus \hat{\overline{N}}, \hat{X}_1 \oplus \hat{\overline{X}}_1$		B _X
1PI		\hat{X}_1	$\hat{X}_1, \hat{X}_2 \oplus \hat{\overline{X}}_2, \ \hat{X}_3$	M ³

$$\begin{split} \mathsf{II}_{u}: & \frac{m_{\nu}}{\nu^{2}} \sim \frac{\lambda_{L}\lambda^{2}s_{\beta}^{2}}{16\pi^{2}M^{3}} \Big(\bar{\lambda}_{X}B_{X}^{*} \oplus \lambda_{X}(m_{\mathsf{soft}}^{2})_{X}\Big) \\ \mathsf{II}_{d}: & \frac{m_{\nu}}{\nu^{2}} \sim \frac{(\lambda\lambda^{T})\lambda_{H_{d}}^{*}\lambda_{X}B_{X}^{*}c_{\beta}}{16\pi^{2}M^{4}} \Big(\mu s_{\beta} \oplus A_{H_{d}}^{*}c_{\beta}\Big) \\ \mathsf{I} \& 1\mathsf{PI}: & \frac{m_{\nu}}{\nu^{2}} \sim \frac{(\lambda\lambda^{T})\lambda^{2}B_{X}^{*}s_{\beta}^{2}}{16\pi^{2}M^{3}} \end{split}$$

 $\begin{array}{l} \text{Minimal choices:} \\ \text{II}_d \colon 1 \times (\hat{X}_3 \oplus \hat{\overline{X}}_3) \\ \text{I:} \quad 1 \times (\hat{N} \oplus \hat{\overline{N}}) + 1 \times (\hat{X}_1 \oplus \hat{\overline{X}}_1) \\ \text{1PI:} \quad 2 \times \hat{X}_1 \end{array}$

$$\begin{aligned} \mathsf{II}_{d}: \qquad (\boldsymbol{\lambda}\boldsymbol{\lambda}^{\mathsf{T}}) &= \left(\boldsymbol{\Lambda}_{3} \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array}\right) \boldsymbol{\Lambda}_{3}^{\mathsf{T}}\right), \qquad \boldsymbol{\Lambda}_{3}:= \left(\begin{array}{c} \begin{vmatrix} & & \\ \lambda_{3} & \lambda_{3} \\ & & \end{vmatrix}\right) \\ \mathsf{I}: \qquad (\boldsymbol{\lambda}\boldsymbol{\lambda}^{\mathsf{T}}) &= \left(\boldsymbol{Y}^{\nu} \left(\begin{array}{c} 1 & 1 \\ 1 & 0 \end{array}\right) \boldsymbol{Y}^{\nu T}\right), \qquad \boldsymbol{Y}^{\nu}:= \frac{1}{\sqrt{\kappa_{1}}} \left(\begin{array}{c} & & \\ \kappa_{1} \mathbf{Y}^{\mathsf{N}} & \kappa_{2} \mathbf{Y}^{\mathsf{X}} \\ & & \end{vmatrix}\right) \\ \mathsf{1PI:} \qquad (\boldsymbol{\lambda}\boldsymbol{\lambda}^{\mathsf{T}}) &= \boldsymbol{\Lambda}_{L} \boldsymbol{\Lambda}_{L}^{\mathsf{T}}, \qquad \boldsymbol{\Lambda}_{L}:= \left(\begin{array}{c} & & \\ \kappa_{1} (\boldsymbol{\lambda}_{L})_{i1} & \kappa_{2} (\boldsymbol{\lambda}_{L})_{i2} \\ & & \end{vmatrix}\right) \end{aligned}$$

Some preliminary comments

- Take SUSY at some input scale M_{SUSY} > M := M_{seesaw} ~ M_X
- ▶ Running will generate $(m_{soft})_{seesaw}(M_Z) \neq (m_{soft})_{seesaw}(input)$
 - This means that

$$rac{m_
u M^3}{c_{
m loop} v^2} \sim (m_{
m soft}^2)_{
m seesaw}$$

is sensitive at leading order running to EWinos masses $M_{1,2}$. Example (for Model 1PI):

$$\begin{split} \beta_{B_{X_1}}^{(1)} &= 2 \Big(2A_L^T \lambda_L^* M_{X_1} + 2M_{X_1} \lambda_L^{\dagger} A_L + B_{X_1} \lambda_L^{\dagger} \lambda_L + \lambda_L^T \lambda_L^* B_{X_1} \Big) \\ \beta_{B_{X_2}}^{(1)} &= \frac{2}{5} M_{X_2} \Big(15g_2^2 M_2 + 3g_1^2 M_1 + 5\lambda_H A_H + 5 \text{Tr} \Big(\lambda_L^{\dagger} A_L \Big) \Big) + B_{X_2} (\dots) \\ \beta_{B_{X_3}}^{(1)} &= 4\lambda_H \Big(2M_{X_3} A_H + \lambda_H B_{X_3} \Big) \end{split}$$

It will also imprint LFV in the slepton soft-SUSY sector. [Borzumati and Example (for Model II_u): Masiero '86]

$$\beta_{m_L^2}^{(1)} \supset 6\left(m_{\text{soft}}^2\right)_{\Delta} \lambda_L^* \lambda_L + 6A_L^* A_L + 3m_L^2 \lambda_L^* \lambda_L + 3\lambda_L^* \lambda_L m_L^2 + 6\lambda_L^* m_L^{2*} \lambda_L$$

- In addition to LFV mediated by radiative seesaw mediators, there will in general be the traditional contributions from slepton-EWino/Higgisno loops
- Sleptonic LFV ratios: $\frac{\mathsf{BR}(\ell \to 3\ell')}{\mathsf{BR}(\ell \to \ell'\gamma)} \simeq \frac{\alpha}{3\pi} \left(\log \frac{m_{\ell}^2}{m_{\ell'}^2} \frac{11}{4} \right), \quad \frac{\mathsf{CR}(\mu e, \mathsf{Ti})}{\mathsf{BR}(\mu \to e\gamma)} \approx 5 \times 10^{-3} \quad \begin{array}{c} [\mathsf{Kim} \ et \ al' \ 98] \\ [\mathsf{Hisano \ and \ Tobe} \\ 01] \end{array} \right)$

Deviations would suggest the existence of other low-lying states with lepton-flavour number

E.g. of a feature of II_u model

Model II_u vs ordinary SUSY type-II model:

$$\frac{m_{\nu}}{v^2} \sim \frac{\lambda_F \lambda^3}{16\pi^2} \frac{m_{\rm soft}^2}{M_{\rm Seesaw}^3} \ \, {\rm vs} \ \, \frac{m_{\nu}}{v^2} \sim \frac{\lambda_F \lambda}{M_{\rm Seesaw}}$$

 $\hat{L}\hat{L}\hat{\Delta}$ coupling (as in Mode II $_u$) may enhance $\ell o 3\ell'$ compared to $\ell o\ell'\gamma$

Backup

 Π_u

$$\begin{split} \mathcal{W}_{\Pi_{u}} &:= & M_{\Delta} \hat{\Delta} \hat{\overline{\Delta}} + \sum_{i=1}^{2} M_{X_{i}} \hat{X}_{i} \hat{\overline{X}}_{i} + \lambda_{\hat{\rho}} \hat{X}_{3} \hat{\overline{X}}_{3} \\ &+ \hat{H}_{u} \left(\lambda_{1} \hat{X}_{1} \hat{\overline{X}}_{3} + \lambda_{2} \hat{X}_{2} \hat{X}_{3} \right) + \hat{\Delta} \left(\lambda_{L} \hat{L} \hat{L} + \lambda_{X} \hat{X}_{1} \hat{X}_{2} \right) + \bar{\lambda}_{X} \hat{\overline{\Delta}} \hat{\overline{X}}_{1} \hat{\overline{X}}_{2} \,. \end{split}$$

In the absence of the last term the model acquires the R-symmetry shown in the last column of the table. The broken L-number phase corresponds to

	$SU(2)_L \otimes U(1)_Y$	$U(1)_X$	$U(1)_L$	$U(1)_R$
Â	(3 , 1)	0	-2	4
ρ	(1,0)	0	2	0
\hat{X}_1	(2 , -1/2)	1	1	-2
\hat{X}_2	(2 , -1/2)	-1	1	0
Â ₃	(1,0)	1	-1	0
$\hat{\overline{X}}_3$	(1,0)	-1	-1	2

$$\lambda \hat{\rho} \hat{X}_3 \hat{\overline{X}}_3 \to M_{X_3} \hat{X}_3 \hat{\overline{X}}_3 + \lambda \hat{\rho} \hat{X}_3 \hat{\overline{X}}_3 , \quad M_{X_3} := \lambda \langle \rho \rangle .$$

Table: Extension of the MSSM in model II_u. We omitted the conjugates of $\hat{\Delta}$ and $\hat{X}_{1,2}$. $U(1)_R$ stands for an *R*-symmetry acquired as $\bar{\lambda}_X \to 0$.

 $||_d$

$$\mathcal{W}_{\Pi_d} := M_{\Delta} \hat{\Delta} \hat{\Delta} + \sum_{i=1}^2 M_{X_i} \hat{X}_i \hat{\overline{X}}_i + \lambda \hat{\rho} \hat{X}_3 \hat{\overline{X}}_3$$

$$+ \hat{L} \left(\lambda_3 \hat{\overline{X}}_1 \hat{X}_3 + \overline{\lambda}_3 \hat{\overline{X}}_2 \hat{\overline{X}}_3 \right) + \hat{\Delta} \left(\lambda_H \hat{H}_d \hat{H}_d + \lambda_X \hat{X}_1 \hat{X}_2 \right)$$

$$+ \hat{\overline{\Delta}} \left(\overline{\lambda}_X \hat{\overline{X}}_1 \hat{\overline{X}}_2 + \overline{\lambda}_H H_u \hat{H}_u \right).$$

	$SU(2)_L \otimes U(1)_Y$	$U(1)_X$	$U(1)_L$	$U(1)_R$	R _p
Â	(3,1)	0	0	4	+1
ρ	(1,0)	0	2	0	+1
\hat{X}_1	(2 , -1/2)	1	0	-2	+1
\hat{X}_2	(2 , -1/2)	-1	0	0	+1
$n imes \hat{X}_3$	(1,0)	1	-1	0	-1
$n \times \hat{\overline{X}}_3$	(1,0)	-1	-1	2	-1

Table: Extension of the MSSM in model II_d . We omitted the conjugates of $\hat{\Delta}$ and $\hat{X}_{1,2}$. We assume an $U(1)_R$ symmetry (with charges as in the last column) that is broken in such a way that the last two terms are negligible.

II_d (cont'd)

We will take n = 1. Then,

$$\begin{split} &(\lambda_3)_i(\bar{\lambda}_3)_j + (\lambda_3)_j(\bar{\lambda}_3)_i = \left(\Lambda_3 \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)\Lambda_3^T\right)_{ij}, \quad \Lambda_3 := \left(\begin{array}{cc} | & | \\ \lambda_3 & \bar{\lambda}_3 \\ | & | \end{array}\right), \\ &\hat{m}_\nu = U^T m_\nu U = v^2 \kappa \, U^T \left(\Lambda_3 \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)\Lambda_3^T\right) U \\ &\Rightarrow \Lambda_3 = \frac{1}{\sqrt{2} v \sqrt{\kappa}} U^* \sqrt{\hat{m}_\nu} R^T \left(\begin{array}{cc} e^{-i\pi/4} & e^{i\pi/4} \\ e^{i\pi/4} & e^{-i\pi/4} \end{array}\right), \end{split}$$

where R is a general 2 × 2 complex orthogonal matrix. We can check that this parameterisation does in fact span the 10 independent real parameters of the matrix $\lambda_3 \bar{\lambda}_3^T + \bar{\lambda}_3 \lambda_3^T$.

$$\mathcal{W}_{1} := M_{N}\hat{N}\hat{\overline{N}} + \sum_{i=1}^{2} \lambda_{i}\hat{\rho}_{i}\hat{X}_{i}\hat{\overline{X}}_{i} + M_{X_{3}}\hat{X}_{3}\hat{\overline{X}}_{3}$$

$$+ \hat{L}\left(Y^{N}\hat{N}\hat{H}_{u} + Y^{X}\hat{X}_{1}\hat{X}_{3}\right) + \hat{\overline{N}}\left(\bar{\lambda}_{X}\hat{\overline{X}}_{1}\hat{\overline{X}}_{2} + \lambda_{X}\hat{X}_{1}\hat{X}_{2}\right) + \lambda_{H}\hat{H}_{u}\hat{X}_{2}\hat{\overline{X}}_{3} .$$

(One can show that there exists no $U(1)_R$ symmetry that would forbid either $\bar{\lambda}_X$ or λ_X , while retaining the rest of the superpotential.) We take n = n' = 1. Then:

$$\begin{split} \kappa_1 Y_i^N Y_j^N + \kappa_2 \left(Y_i^X Y_j^N + Y_j^X Y_i^N \right) &= \left(Y^{\nu} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} Y^{\nu T} \right)_{ij}, \\ Y^{\nu} &:= \frac{1}{\sqrt{\kappa_1}} \begin{pmatrix} & | & | \\ \kappa_1 Y^N & \kappa_2 Y^X \\ | & | \end{pmatrix}, \\ \hat{m}_{\nu} &= U^T m_{\nu} U = v^2 \kappa U^T \left(Y^{\nu} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} Y^{\nu T} \right) U \\ \Rightarrow Y^{\nu} &= \frac{1}{v \sqrt{\kappa}} U^* \sqrt{\hat{m}_{\nu}} R^T \begin{pmatrix} 1 & 0 \\ -i & i \end{pmatrix}, \\ \Rightarrow Y_i^N &= \frac{1}{\sqrt{\kappa_1}} Y_{i1}^{\nu}, \quad Y_i^X = \frac{\sqrt{\kappa_1}}{\kappa_2} Y_{i2}^{\nu}. \end{split}$$

I (cont'd)

	$SU(2)_L \otimes U(1)_Y$	$U(1)_X$	$U(1)_L$	R _p
$n imes \hat{N}$	(1,0)	0	-1	-1
$\hat{ ho}_1$	(1,0)	0	2/3	+1
$\hat{\rho}_2$	(1,0)	0	4/3	+1
$n' imes \hat{X}_1$	(1,0)	1	-1	-1
$n' imes \hat{\overline{X}}_1$	(1,0)	-1	1/3	-1
\hat{X}_2	(1,0)	-1	0	+1
$\hat{\overline{X}}_2$	(1,0)	1	-4/3	+1
Â ₃	(2 , 1/2)	-1	0	+1
$\hat{\overline{X}}_3$	(2, -1/2)	1	0	+1

Table: Extension of the MSSM in model I. We omitted the conjugate of \hat{N} .

 $1\mathsf{PI}$

$$\mathcal{W}_{\rm 1Pl} \quad := \quad \frac{1}{2} M_{X_1} \hat{X}_1^2 + \lambda \hat{\rho} \hat{X}_2 \bar{\hat{X}}_2 + \frac{1}{2} M_{X_3} \hat{X}_3^2 + \lambda_L \hat{L} \hat{X}_1 \hat{X}_2 + \lambda_H \hat{H}_u \bar{\hat{X}}_2 \hat{X}_3 \,.$$

	$SU(2)_L \otimes U(1)_Y$	Z_2^X	$U(1)_L$	R _p
$n imes \hat{X}_1$	(1,0)	-1	0	-1
\hat{X}_2	(2 ,1/2)	-1	-1	+1
$\hat{\overline{X}}_2$	(2 , -1/2)	-1	0	+1
Â ₃	(1,0)	-1	0	+1
$\hat{ ho}$	(1,0)	1	1	+1

Table: Extension of the MSSM in model 1PI. All MSSM superfields are even under the Z_2 .

1PI (cont'd)

We take n = 2. Then:

$$\begin{split} \hat{m}_{\nu} &= U^{T} m_{\nu} U = v^{2} \kappa U^{T} \left(\Lambda_{L} \Lambda_{L}^{T} \right) U, \qquad \Lambda_{L} = \left(\begin{array}{cc} | & | \\ \kappa_{1} (\lambda_{L})_{i1} & \kappa_{2} (\lambda_{L})_{i2} \\ | & | \end{array} \right), \\ \Rightarrow & \Lambda_{L} = \frac{1}{v \sqrt{\kappa}} U^{*} \sqrt{\hat{m}_{\nu}} R^{T}, \\ \Rightarrow & (\lambda_{L})_{ij} = \frac{1}{\kappa_{j}} (\Lambda_{L})_{ij}. \end{split}$$

Observable	Old Bound	Current bound	Future sensitivity
$BR(\mu o e\gamma)$	$1.2 imes 10^{-11}$	$5.7 imes10^{-13}$	$6 imes 10^{-14}$
$BR(au o e \gamma)$	$3.3 imes10^{-8}$	_	$\mathcal{O}(10^{-9})$
$BR(au o \mu \gamma)$	$4.4 imes10^{-8}$	_	$\mathcal{O}(10^{-9})$
$BR(\mu o 3e)$	$1.0 imes10^{-12}$		$\mathcal{O}(10^{-16})$
BR(au o 3 e)	$2.7 imes10^{-8}$	_	$\mathcal{O}(10^{-9})$
$BR(au o 3\mu)$	$2.1 imes10^{-8}$	_	$\mathcal{O}(10^{-9})$
$CR(\mu - e, Ti)$	$4.3 imes10^{-12}$	_	$\mathcal{O}(10^{-18})$
$CR(\mu - e, Au)$	$7 imes 10^{-13}$	_	_
$CR(\mu - e, AI)$		_	$\mathcal{O}(10^{-16})$

Table: Bounds and future sensitivities for several cLFV observables.