Metastability, Chaotic Inflation, and Primordial Black Holes

Kyohei Mukaida

Kavli IPMU, Univ. of Tokyo

Based on I 605.04974 (PhysRevD.94.063509) In collaboration with M.Kawasaki, T.T.Yanagida

Introduction

Metastability v.s. Inflation

Metastable Electroweak Vacuum v.s. Chaotic Inflation

Metastability v.s. Inflation

during inflation stabilized for

- Curvature coupling of Higgs: $\xi R h^2$
- Stabilize the EW vacuum during inflation @ $\xi > O(0.1)$

 $-\mathscr{L}_{\text{int}}(\phi,h) = \frac{1}{2}\xi Rh^2 \qquad \qquad m_{H;h}^2 = 12\xi H_{\text{inf}}^2 \qquad \gtrsim H_{\text{inf}}^2$

• However, the "tachyonic resonance" can destabilize it afterwards!

Kyohei Mukaida - Kavli IPMU

What we have discussed

Ingredients:

• Chaotic inflation

- Solve the initial condition problem + provide primordial density perturbations

• Curvature coupling

- Stabilize the EW vacuum during inflation(s) + universally couples to the trace of energy-momentum

• However, the "resonance" can destabilize it afterwards!

• Chaotic inflation

- Solve the initial condition problem + provide primordial density perturbations

• Curvature coupling

- Stabilize the EW vacuum during inflation(s) + universally couples to the trace of energy-momentum

• If the potential is **flat** near the origin,...

Ingredients:

• Chaotic inflation

- Solve the initial condition problem + provide primordial density perturbations

• Curvature coupling

- Stabilize the EW vacuum during inflation(s) + universally couples to the trace of energy-momentum

• If the potential is **flat** near the origin,...

• Chaotic inflation

- Solve the initial condition problem + provide primordial density perturbations

• Curvature coupling

- Stabilize the EW vacuum during inflation(s) + universally couples to the trace of energy-momentum

• If the potential is **flat** near the origin,...

Example: Double Inflation

Ingredients:

Chaotic inflation

- (0) Solve the initial condition problem + (ii) provide primordial density perturbations.

• Curvature coupling

- Stabilize the EW vacuum during inflation(s) + universally couples to the trace of energy-momentum

- New inflation
 - (i) Avoid the resonance after inflation + (ii) produce PBHs as a candidate of DM!

- Stabilize ${\mathcal {\mathcal {V}}}$ during chaotic inflation

$$-\mathscr{L}_{\rm int} \propto \frac{V_{\rm ch}(\phi)}{M_{\rm pl}^2} \varphi^2$$

- Potential in the flat regime (new inflation)

$$V_{\rm new}(\varphi) = \left(v^2 - g\frac{\varphi^4}{M_{\rm pl}^2}\right)^2 - \kappa v^4 \frac{\varphi^2}{2M_{\rm pl}^2} - \epsilon v^4 \frac{\varphi}{M_{\rm pl}}$$

Example: Double Inflation

PBHs as whole Dark Matter

• PBH is formed when the over-dense region enters the horizon.

Example: Double Inflation

PBHs as whole Dark Matter

• PBH is formed when the over-dense region enters the horizon.

Chaotic inflation v.s. Metastable EW Vacuum:

 Slight modification of inflaton potential can dramatically relax the tension. Moreover, it can generate PBHs as all DM!
CMB Formation of PBH

Numerical Simulation

Vacuum decay via Tachyonic Resonance: $-\mathcal{L}_{int}(\phi,h) = \frac{1}{2}\xi Rh^2$

• To check $\xi \lesssim 10 \times \left[\frac{1}{\mu_{crv}}\right]^2 \left[\frac{\sqrt{2}M_{pl}}{\Phi_{ini}}\right]^2$, we performed a classical lattice simulation. - Stable: $\xi = 10$ - Unstable: $\xi = 20$ $a^{3} < \phi >^{2}$ $a^{3} (<\phi^{2} > - <\phi >^{2})$ $a^{3} < b^{2} >$ 10² a³(<\$\$ 10² 10^{0} $a^3 \langle \phi \rangle^2 \, {}^{10^{\iota}}$ 10⁻² 10⁻² 10⁻⁴ 10⁻⁴ 10⁻⁶ 10⁻⁶ $\frac{a^{3}\langle h^{2}\rangle}{10^{-8}}$ $\frac{a^{3}\langle \delta\phi^{2}\rangle}{10^{-10}}$ 10⁻⁸ 10⁻¹⁰ 10 15 20 25 15 25 30 20 ▶ m_d t m₀t $m_{\phi}t$ m_t Vacuum Decay!

Kyohei Mukaida - Kavli IPMU

[Ema, KM, Nakayama, 1602.00483]

Gravitational Wave

- GWs are produced via second order effects
 - Perturbed metric:

 $\mathrm{d}s^2 = -a^2(\eta) \left[e^{2\Phi} \mathrm{d}\eta^2 - e^{-2\Psi} \left(\delta_{ij} + \frac{1}{2} h_{ij} \right) \mathrm{d}x^i \mathrm{d}x^j \right]$

Scalar perturbs: $\Psi = \Phi$ (neglect anisotropic stress)

Tensor perturb

[Saito, Yokoyama; Bugaev, Klimai]

• Large scalar perturbations act as a source term in equation of motion for GWs.

$$h_{ij}'' + 2\mathcal{H}h_{ij}' - \nabla^2 h_{ij} = -4\hat{\mathcal{T}}_{ij;kl}S_{kl}$$

projection to transverse-traceless part

Source term:
$$S_{ij} \equiv 4\Psi \partial_i \partial_j \Psi + 2\partial_i \Psi \partial_j \Psi - \frac{4}{3(1+w)} \partial_i \left(\frac{\Psi'}{\mathscr{H}} + \Psi\right) \partial_j \left(\frac{\Psi'}{\mathscr{H}} + \Psi\right)$$

• Abundance of GWs is roughly given by...

$$\Omega_{\rm GW}(k) \sim 3 \times 10^{-8} \left(\frac{\mathscr{P}_{\zeta}(k)}{0.01}\right)^2$$