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Metastability v.s. Inflation
Metastable Electroweak Vacuum v.s. Chaotic Inflation
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• SM valid up to high energy scales
- Our vacuum: likely to be metastable? 
- λ<0 for μ>1010 GeV @ best-fit of top Yukawa.

• Chaotic Inflation
- Solve the initial condition problem.
- Large tensor-to-scalar ratio: r.
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Figure 2: Upper: RG evolution of � (left) and of �� (right) varying Mt, ↵3(MZ), Mh by
±3�. Lower: Same as above, with more “physical” normalisations. The Higgs quartic coupling
is compared with the top Yukawa and weak gauge coupling through the ratios sign(�)

p
4|�|/yt

and sign(�)
p

8|�|/g2, which correspond to the ratios of running masses mh/mt and mh/mW ,
respectively (left). The Higgs quartic �-function is shown in units of its top contribution, ��(top
contribution) = �3y4t /8⇡

2 (right). The grey shadings cover values of the RG scale above the
Planck mass MPl ⇡ 1.2⇥ 1019 GeV, and above the reduced Planck mass M̄Pl = MPl/

p
8⇡.
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Planck Collaboration: Constraints on inflation 55

Fig. 54. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck alone and in combination with its cross-
correlation with BICEP2/Keck Array and/or BAO data compared with the theoretical predictions of selected inflationary models.

further improving on the upper limits obtained from the different
data combinations presented in Sect. 5.

By directly constraining the tensor mode, the BKP likeli-
hood removes degeneracies between the tensor-to-scalar ratio
and other parameters. Adding tensors and running, we obtain

r0.002 < 0.10 (95 % CL, Planck TT+lowP+BKP) , (168)

which constitutes almost a 50 % improvement over the Planck
TT+lowP constraint quoted in Eq. (28). These limits on tensor
modes are more robust than the limits using the shape of the
CTT
` spectrum alone owing to the fact that scalar perturbations

cannot generate B modes irrespective of the shape of the scalar
spectrum.

13.1. Implications of BKP on selected inflationary models

Using the BKP likelihood further strengthens the constraints
on the inflationary parameters and models discussed in Sect. 6,
as seen in Fig. 54. If we set ✏3 = 0, the first slow-roll pa-
rameter is constrained to ✏1 < 0.0055 at 95 % CL by Planck
TT+lowP+BKP. With the same data combination, concave po-
tentials are preferred over convex potentials with log B = 3.8,
which improves on log B = 2 obtained from the Planck data
alone.

Combining with the BKP likelihood strengthens the con-
straints on the selected inflationary models studied in Sect. 6.
Using the same methodology as in Sect. 6 and adding the BKP
likelihood gives a Bayes factor preferring R2 over chaotic in-
flation with monomial quadratic potential and natural inflation
by odds of 403:1 and 270:1, respectively, under the assumption
of a dust equation of state during the entropy generation stage.
The combination with the BKP likelihood further penalizes the
double-well model compared to R2 inflation. However, adding

Table 17. Results of inflationary model comparison using the
cross-correlation between BICEP2/Keck Array and Planck. This
table is the analogue to Table 6, which did not use the BKP like-
lihood.

Inflationary Model ln B0X

wint = 0 wint , 0

R + R2/6M2 . . . +0.3
n = 2 �6.0 �5.6
Natural �5.6 �5.0
Hilltop (p = 2) �0.7 �0.4
Hilltop (p = 4) �0.6 �0.9
Double well �4.3 �4.2
Brane inflation (p = 2) +0.2 0.0
Brane inflation (p = 4) +0.1 �0.1
Exponential inflation �0.1 0.0
SB SUSY �1.8 �1.5
Supersymmetric ↵-model �1.1 +0.1
Superconformal (m = 1) �1.9 �1.4

BKP reduces the Bayes factor of the hilltop models compared
to R2, because these models can predict a value of the tensor-to-
scalar ratio that better fits the statistically insignificant peak at
r ⇡ 0.05. See Table 17 for the Bayes factors of other inflationary
models with the same two cases of post-inflationary evolution
studied in Sect. 6.

13.2. Implications of BKP on scalar power spectrum

The presence of tensors would, at least to some degree, require
an enhanced suppression of the scalar power spectrum on large
scales to account for the low-` deficit in the CTT

` spectrum. We
therefore repeat the analysis of an exponential cut-off studied
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Curvature coupling of Higgs:
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• Stabilize the EW vacuum during inflation @ ξ > O(0.1)

Metastability v.s. Inflation
⇠R h 2

�Lint(�, h) =
1
2
⇠Rh2
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• However, the “tachyonic resonance” can destabilize it afterwards!
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Our Scenario
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What we have discussed

6

Ingredients:
• Chaotic inflation

• Curvature coupling
- Stabilize the EW vacuum during inflation(s) + universally couples to the trace of energy-momentum

- Solve the initial condition problem + provide primordial density perturbations

Chaotic Reheating RD
Time

�

• However, the “resonance” can destabilize it afterwards!
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Ingredients:
• Chaotic inflation

• Curvature coupling

- Solve the initial condition problem + provide primordial density perturbations

Chaotic Reheating RD
Time

�

slow roll

• If the potential is flat near the origin,…

Our Scenario

- Stabilize the EW vacuum during inflation(s) + universally couples to the trace of energy-momentum
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Ingredients:
• Chaotic inflation

• Curvature coupling

- Solve the initial condition problem + provide primordial density perturbations

Chaotic Reheating RD
Time

�

slow roll

�ÓMpl

No Resonance

q ⇠ ⇠�
2

M 2
pl

Ó 1

• If the potential is flat near the origin,…

Our Scenario

- Stabilize the EW vacuum during inflation(s) + universally couples to the trace of energy-momentum
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Ingredients:
• Chaotic inflation

• Curvature coupling

- Solve the initial condition problem + provide primordial density perturbations

Chaotic Reheating RD
Time

�

�ÓMpl

CMB Formation of PBH P⇣
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CMB Formation of PBH

P⇣ ⇠ h⇣⇣i ; ⇣⇠ �⇢
⇢

Our Scenario

• If the potential is flat near the origin,…

- Stabilize the EW vacuum during inflation(s) + universally couples to the trace of energy-momentum
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Chaotic Reheating RD

�

�ÓMpl

CMB Formation of PBH P⇣
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CMB Formation of PBH

P⇣ ⇠ h⇣⇣i ; ⇣⇠ �⇢
⇢

Our Scenario

• If the potential is flat near the origin,…

• Chaotic inflation

• Curvature coupling
- Stabilize the EW vacuum during inflation(s) + universally couples to the energy density

- Solve the initial condition problem + provide primordial density perturbations
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�

�ÓMpl

CMB Formation of PBH P⇣
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Collapse!

Horizon

PBH formation

Our Scenario

• If the potential is flat near the origin,…

Chaotic Reheating RD

• Chaotic inflation

• Curvature coupling
- Stabilize the EW vacuum during inflation(s) + universally couples to the energy density

- Solve the initial condition problem + provide primordial density perturbations

Time
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• Chaotic inflation

• Curvature coupling

• New inflation
- (i) Avoid the resonance after inflation + (ii) produce PBHs as a candidate of DM!

'

- (0) Solve the initial condition problem + (ii) provide primordial density perturbations.

Ingredients:

Example: Double Inflation
Chaotic New Reheating RD
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- Stabilize     during chaotic inflation

- Potential in the flat regime (new inflation)

'

- Stabilize the EW vacuum during inflation(s) + universally couples to the trace of energy-momentum
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PBHs as whole Dark Matter
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Example: Double Inflation

• PBH is formed when the over-dense region enters the horizon.

⌦PBH, tot =⌦c
Hawking

Femtolensing
WD

EROS
FIRAS

WMAP3

Kepler

ΩPBH/Ωc

- Abundance of PBHs as a function of mass

✴ Constraints from Neutron Star capture are evaded for 
a conservative value of DM inside the globular clusters.

[See e.g. Kusenko+, 1310.8642; Carr+,1607.06077]

- PBH mass ∝ Horizon mass @ horizon reenter

Collapse!

Horizon

- PBH is formed if δρ/ρ > δc (=1/3).
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[Carr, Astrophys. J. 201, 1(1975)]

[Carr, Astrophys. J. 201, 1(1975);
Young et al., JCAP 1407 (2014) 045]



Kyohei Mukaida - Kavli IPMU

PBHs as whole Dark Matter
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Example: Double Inflation

- Abundance of PBHs as a function of mass

✴ Constraints from Neutron Star capture are evaded for 
a conservative value of DM inside the globular clusters.

[See e.g. Kusenko+, 1310.8642; Carr+,1607.06077]

- PBH mass ∝ Horizon mass @ horizon reenter

Collapse!

Horizon

- PBH is formed if δρ/ρ > δc (=1/3).
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[Carr, Astrophys. J. 201, 1(1975);
Young et al., JCAP 1407 (2014) 045]

⌦PBH, tot =⌦c
Hawking

Femtolensing
WD

Kepler
EROS
FIRAS

WMAP3
ΩPBH/Ωc

• PBH is formed when the over-dense region enters the horizon.

[Carr, Astrophys. J. 201, 1(1975)]
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Summary 
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Summary
Chaotic inflation v.s. Metastable EW Vacuum: 

Slight modification of inflaton potential can dramatically relax 
the tension. Moreover, it can generate PBHs as all DM!

16

⇠
Unstable during 

inflation
Unstable during 

resonance

⇠ 10

Depend on 
thermalization 

process…

[Ema, KM, Nakayama, 1602.00483]
⇠O (0.1)

CMB Formation of PBH

�
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No Resonance
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⌦PBH, tot =⌦c
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[Kawasaki, KM, Yanagida, 1605.04974]
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Back up
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- Stable: ξ = 10 - Unstable: ξ = 20

• To check                                      , we performed a classical lattice simulation.

Vacuum decay via Tachyonic Resonance: �Lint(�, h) =
1
2
⇠Rh2

Numerical Simulation
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[Ema, KM, Nakayama, 1602.00483]

Vacuum Decay!
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Gravitational Wave
GWs are produced via second order effects

19

• Large scalar perturbations act as a source term in equation of motion for GWs.

h 00i j +2H h 0i j �r2hi j =�4T̂i j ;k l Sk l

projection to transverse-traceless part

Si j ⌘ 4 @i @ j +2@i @ j � 4
3(1+w )

@i

Å
 0
H + 
ã
@ j

Å
 0
H + 
ã

Source term:

• Abundance of GWs is roughly given by…

[Saito, Yokoyama; Bugaev, Klimai]

• Perturbed metric:

ds

2 =�a

2(⌘)
ï
e

2�d⌘2� e

�2 
Å
�

i j

+
1
2

h

i j

ã
dx

i dx

j

ò

Scalar perturbs: Tensor perturb =� (neglect anisotropic stress)
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