Recent stop search in the Natural SUSY

Chengcheng Han

Kavli IPMU

Based on: arXiv:1609.02361, with J. Ren, L. Wu, J. M. Yang and M. Zhang arXiv:1609.09303, with M. M. Nojiri, M. Takeuchi and T. T. Yanagida

The 6th KIAS Workshop on Particle Physics and Cosmology and 2nd Durham-KEK-KIPMU-KIAS Joint Workshop

Outline

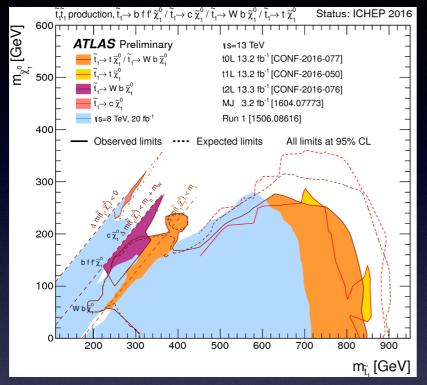
- Brief introduction and motivation
- Status of stop in Natural SUSY
- ATLAS 1-lepton excess in Natural SUSY
- Summary and conclusion

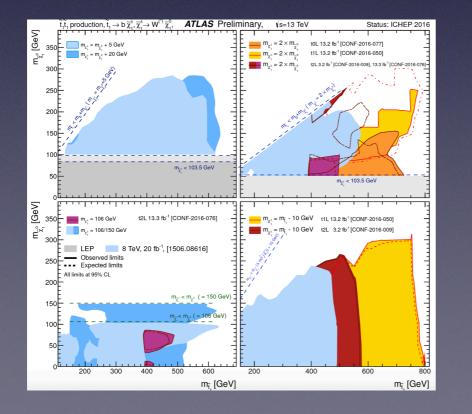
The status of LHC

- 13fb-1 luminosity data disclosed at the 13 TeV LHC. (Maybe accumulated 25 fb-1 up to now)
- No evidence of new particles (sadly, 750 GeV di-photon excess disappears)
- Fortunately, Higgs is still there.
- What is the next?

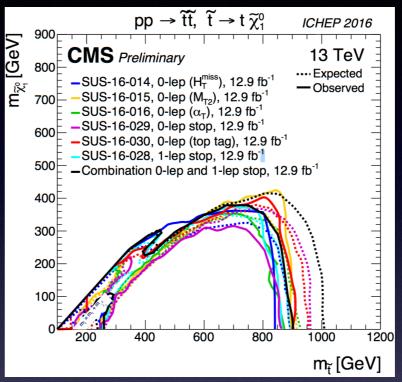
Naturalness say: New particles might exist at TeV scale!

A natural SUSY model


From the minimization of the Higgs potential:

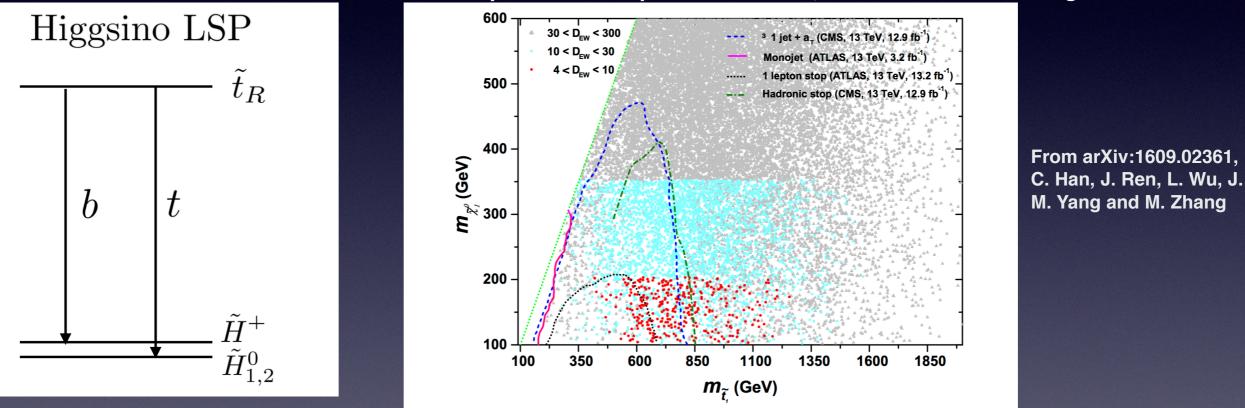

$$\frac{M_Z^2}{2} = \frac{(m_{H_d}^2 + \Sigma_d) - (m_{H_u}^2 + \Sigma_u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2$$

$$\simeq -(m_{H_u}^2 + \Sigma_u) - \mu^2,$$


To avoid large cancelation(fine tuning),

Light stop and Higgsino!

Stop searches at the LHC



- 1. Stop mass limit around 900 GeV for very light neutralino. For compressed spectrum, much weaker.
- 2. Based on Simplified model branching ratio 100%.
- 3. If stop decays into chargino+b, weaker limit(based on assumptions)

Stop searches in natural SUSY

Assuming right hand like stop and higgsino is the LSP

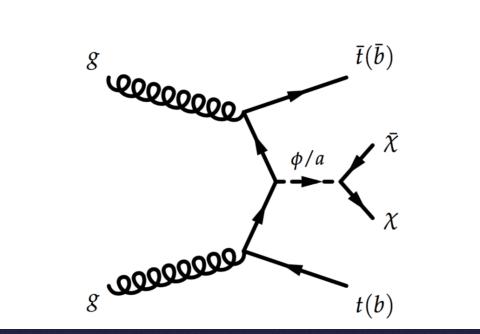
Re-interpreted the stop search results, more details see Zhang's talk

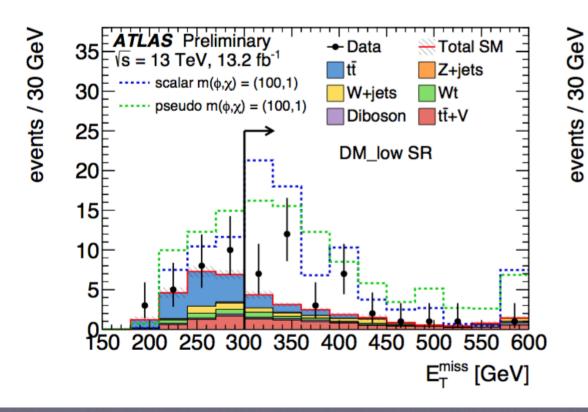
- 1. A stop mass around 850 GeV with 100 GeV higgsino has been excluded.
- 2. For a compressed spectrum, only 320 GeV(see Michihisa's talk)
- 3. A not so fine-tuned stop mass around 600-900GeV

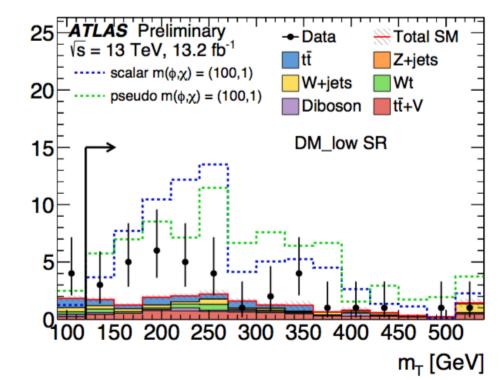
Possible signature of stop?

ATLAS 1-lepton stop search results(13fb-1):

ATLAS-CONF-2016-050


-	Signal region	SR1	${ m tN_high}$	bC2x_diag	bC2x_med	bCbv	DM_low	DM_high
-	(n_j,n_b)	$(\geq 4, \geq 1)$	$(\geq 4, \geq 1)$	$(\geq 4, \geq 2)$	$(\geq 4, \geq 2)$	$(\geq 2, = 0)$	$(\geq 4, \geq 1)$	$(\geq 4, \geq 1)$
	$E_T [\text{GeV}]$	260	450	230	210	360	300	330
	$m_T \; [{ m GeV}]$	170	210	170	140	200	120	220
-	am_{T2} [GeV]	175	175	170	210	-	140	170
-	Total background	24 ± 3	3.8 ± 0.8	22 ± 3	13 ± 2	7.8 ± 1.8	17 ± 2	15 ± 2
-	Observed	37	5	37	14	7	35	21
-	$p_0(\sigma)$	0.012(2.2)	0.26(0.6)	0.004(2.6)	0.40(0.3)	0.50(0)	0.0004(3.3)	0.09(1.3)
-	$N_{\rm obs.}^{\rm limit}(95\%~{ m CL})$	26.0	7.2	27.5	9.9	7.2	28.3	15.6


3 signal regions more than 2sigma excess, DM_low 3.3sigma No excess in CMS same channel, same cuts not available

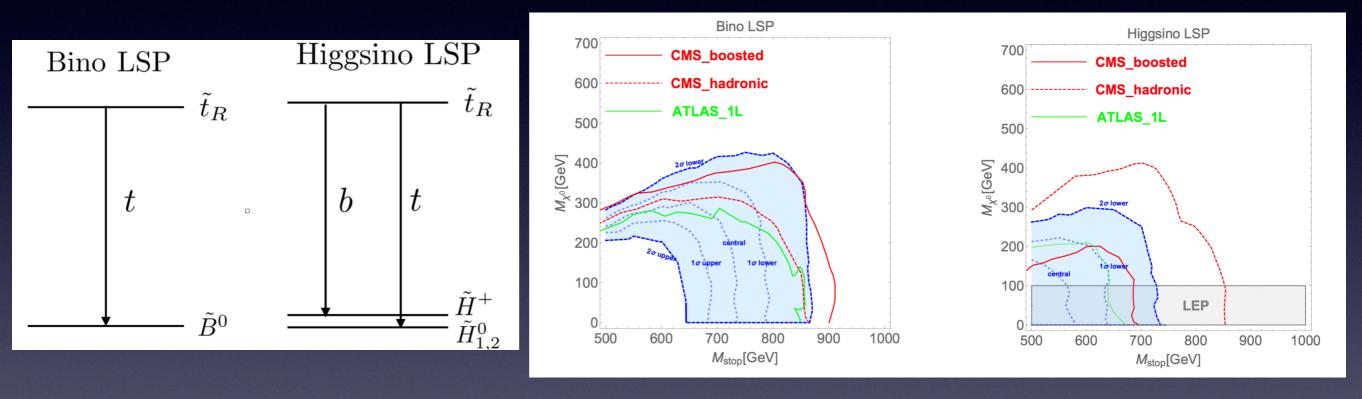

DM_low from ATLAS

Aiming at simplified top-philic models

$$\mathcal{L}_{\phi} = -(g_t \bar{t}t + g_{\chi} \bar{\chi}\chi)\phi$$
$$\mathcal{L}_a = -i(g_t \bar{t}\gamma^5 t + g_{\chi} \bar{\chi}\gamma^5\chi)a$$

Interpreting the excess by stop pair production

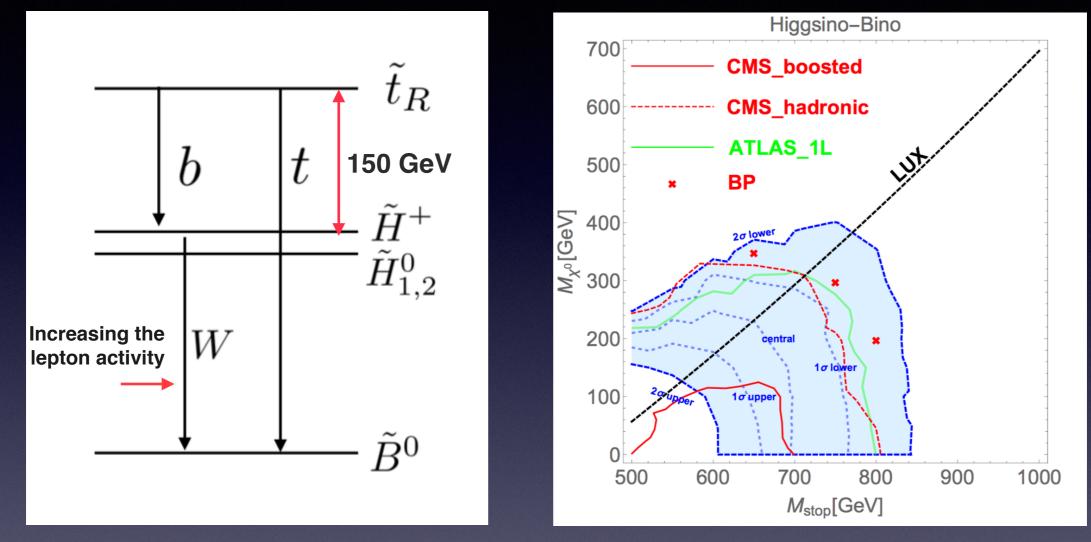
1. Only focus on DM_low. Needed signal event in our analysis


Signal region	2σ upper	1σ upper	central	1σ lower	2σ lower
DM_low	32.6	24.7	18.0	12.2	7.4

- 2. Assuming right hand like stop.
- 3. other searches (95% C.L. limit)
 - CMS boosted top (top tagging) channel.
 - CMS hadronic channel (2b+jets+missing).
 - ATLAS 1-lepton other channels (1I+2b+jets+missing).
 - No CMS 1-lepton limit(similar limit with ATLAS 1-lepton channel).

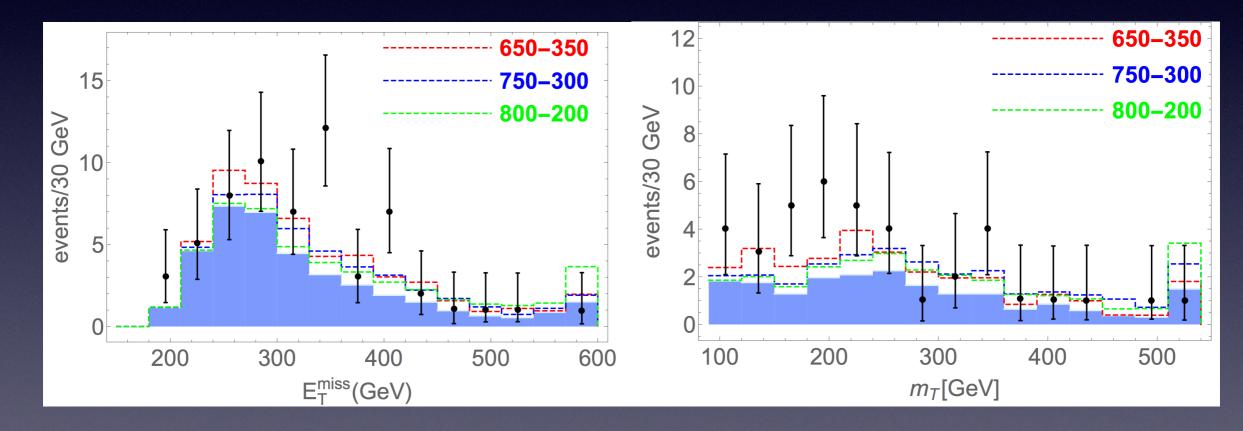
Two simplified models

Decay mode


parameter space

1. Bino LSP suffers from CMS boosted search(2 top tagging).

2. Higgsino LSP can effective reduce CMS boosted limit, at the same time reduce the lepton signal. CMS_hadronic is still very strong.


More complicate spectrum

- 1. Still some parameter space explaining the signal at 2sigma level.
- 2. Inserting the slepton with a mass close to bino will not essentially change the topology. (Higgsino-H-Bino coupling)
- 3. Dark matter direct search can also help to probe this scenario. But for opposite sign of higgsino and bino, a blind spot region exist.
- 4. To explain the excess, a low fine-tuned stop is favored(600-850 GeV)

Kinematics distribution for different BPs

Different mass parameters can be distinguished by kinematics variable distribution

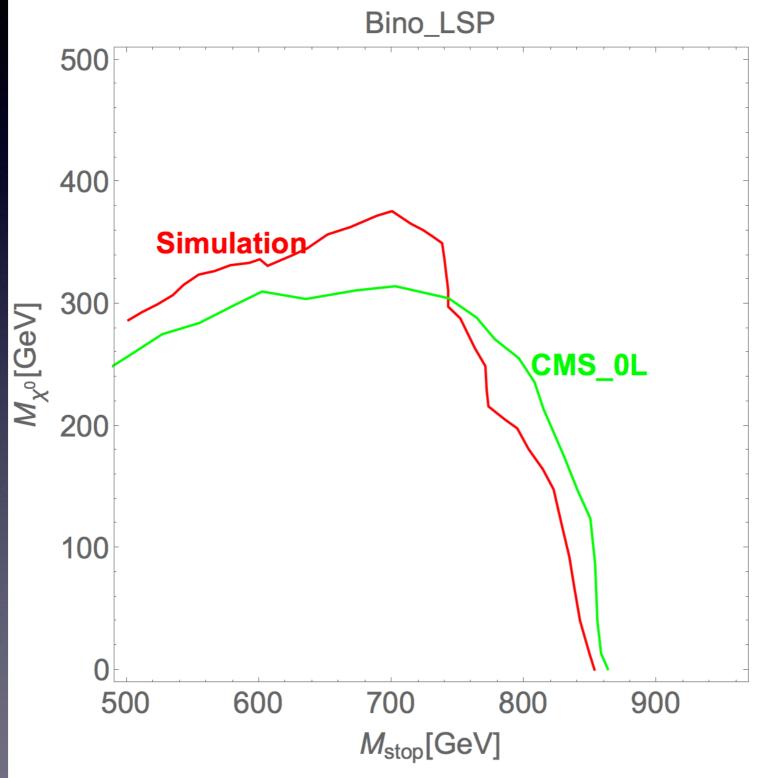
Lower missing ET and MT is preferred!

Other possibilities

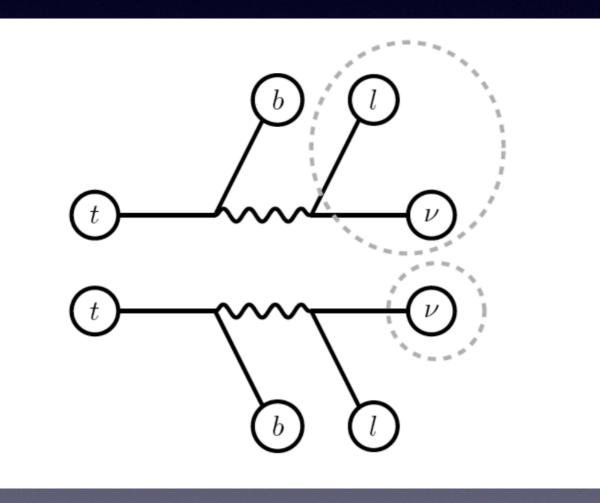
Stop-LSP

Model	LSP	comments
Α	\tilde{B}	
В	$ ilde{H}$	
С	ilde W	Not favored by right hand stop decay

Stop-NLSP-LSP


Model	Model NLSP		comments	
D	\tilde{H}	\tilde{B}		
Е	\tilde{H}	\tilde{W}		
F	\tilde{B}	\tilde{H}	similar to model B	
Н	\tilde{B}	Ŵ		ŀ
Ι	Ŵ	\tilde{B}	similar to model A	
J	Ŵ	\tilde{H}	similar to model B	

LSP Wino mass >270 GeV(8TeV) Long-lived chargino search


Summary and Conclusion

- To explain the excess by stop, we need a natural SUSY frame, and the stop mass is just around the low-fined preferred region.
- If the signal confirmed, future dark matter direct search can also cross check it.
- Let us wait for the new data!

Simulation consistency

aMT2

Common event selection						
Trigger	$E_{\rm T}^{\rm miss}$ trigger					
Lepton	exactly one signal lepton (e, μ) , no additional baseline leptons					
Jets	at least two signal jets, and $ \Delta \phi(\text{jet}_i, \vec{p}_T^{\text{miss}}) > 0.4$ for $i \in \{1, 2\}$					
Hadronic τ veto*	veto events with a hadronic τ decay and $m_{T2}^{\tau} < 80 \text{ GeV}$					
Variable	SR1	tN_high				
Number of (jets, <i>b</i> -tags)	(≥ 4, ≥ 1)	(≥ 4, ≥ 1)				
Jet $p_{\rm T} > [{\rm GeV}]$	(80 50 40 40)	(120 80 50 25)				
$E_{\rm T}^{\rm miss}$ [GeV]	> 260	> 450				
$E_{T,\perp}^{\text{miss}}$ [GeV]	-	> 180				
$H_{\mathrm{T,sig}}^{\mathrm{miss}}$	> 14	> 22				
$m_{\rm T}$ [GeV]	> 170	> 210				
am_{T2} [GeV]	> 175	> 175				
topness	> 6.5	_				
$m_{\rm top}^{\chi}$ [GeV]	< 270	-				
$\Delta R(b,\ell)$	< 3.0	< 2.4				
Leading large-R jet $p_{\rm T}$ [GeV]	-	> 290				
Leading large-R jet mass [GeV]	_	> 70				
$\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, 2^{\rm nd} {\rm large-R jet})$	-	> 0.6				
Variable	bC2x_diag	bC2x_med	bCbv			
Number of (jets, <i>b</i> -tags)	(≥ 4, ≥ 2)	(≥ 4, ≥ 2)	(≥ 2, = 0)			
Jet $p_{\rm T} > [{\rm GeV}]$	(70 60 55 25)	(170 110 25 25)	(120 80)			
<i>b</i> -tagged jet $p_{\rm T} > [{\rm GeV}]$	(25 25)	(105 100)	-			
E ^{miss} _T [GeV]	> 230	> 210	> 360			
$H_{\mathrm{T,sig}}^{\mathrm{miss}}$	> 14	> 7	> 16			
m _T [GeV]	> 170	> 140	> 200			
am_{T2} [GeV]	> 170	> 210	-			
$ \Delta \phi(\text{jet}_i, \vec{p}_T^{\text{miss}}) (i=1)$	> 1.2	> 1.0	> 2.0			
$ \Delta \phi(\text{jet}_i, \vec{p}_{\text{T}}^{\text{miss}}) (i=2)$	> 0.8	> 0.8	> 0.8			
Leading large-R jet mass [GeV]	_	_	[70, 100]			
$\Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	-	-	> 1.2			
Variable	DM_low	DM_high				
Number of (jets, b-tags)	(≥ 4, ≥ 1)	(≥ 4, ≥ 1)				
Jet $p_{\rm T} > [{\rm GeV}]$	(60 60 40 25)	(50 50 50 25)				
$E_{\rm T}^{\rm miss}$ [GeV]	> 300	> 330				
$H_{\mathrm{T,sig}}^{\mathrm{miss}}$	> 14	> 9.5				
$m_{\rm T}$ [GeV]	> 120	> 220				
am_{T2} [GeV]	> 140	> 170				
$\min(\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet}_i))(i \in \{1-4\})$	> 1.4	> 0.8				
$\Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	> 0.8	_				

- These seven signal regions are not exclusive. SR1, bC2x_diag and DM_low, where the excesses are observed, could share the same signal events.
- (2) The DM_low and DM_high applies similar cuts except a lower m_T cut and a tighter $\Delta \phi(\not\!\!\!E_T^{miss}, j_i)$ cut in DM_low. Since no excess is observed in the DM_high, hard m_T events are not preferred.
- (3) The bC2x_med requires very high p_T bottoms compared with the bC2x_diag. Since no excess is observed in the bC2x_med, presence of hard bottoms is not preferred.

SM Higgs invisible decay?

ttH production with H decay invisible

From our simulation, we find 100% branching ratio needed!