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* EW scale hierarchy problem of the Standard Model (SM)
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If the SM cutoff (= Higgs mass cutoff) scale Agy >> weak scale,
this causes a fine-tuning problem.

* Possible solutions:

- New physics to regulate the quadratic divergence near the weak scale

SUSY, Composite Higgs, Extra Dim, ...

- Anthropic selection with multiverse

- Cosmological relaxation

- N -Naturalness, ...



Cosmological relaxation of the EW scale Graham, kaplan, Rajendran '15

A pseudo-Nambu-Goldstone boson (=relaxion) ¢ scans the Higgs mass?

from Afy > v* (v=246 GeV) to —(90 GeV)*:
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Another key component of the scheme is to stop the rolling relaxion

at the right position by a barrier potential:

, q
V = H|M cos (—) (1
|H| 7 SM77 F;

Sliding potential
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Possible origin of the barrier potential:
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* New Physics (NP) around TeV:
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Price to pay:
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= Needs i) cosmological energy dissipation

ii) long relaxion excursion f. > f



How long excursion? V()
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* QCD-induced barrier: 1 ~ 0.1 GeV =

* NP-induced barrier: j < 1 TeV =

Relaxion excursion in angle unit

& Dissipation time in Hubble unit
(for energy dissipation by the Hubble friction)
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Relaxion converts the weak scale hierarchy to a much bigger hierarchy
in relaxion scales:

Weak scale hierarchy ~ =»  Relaxion scale hierarchy
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The key point is that [ < .z is stable against radiative corrections,
thus technically natural, which can be assured by means of a discrete
axionic shift symmetry.

Yet, the minimal QCD-induced barrier potential requires a too long time
of energy dissipation and also a too big axion scale hierarchy:
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= NP-induced barrier potential appears to be more attractive



Hierarchical axion couplings with multiple axions

A simple model to generate hierarchical axion scales:
U(n) gauge theory with softly broken SUSY

* Add an elementary axion with sub-Planckian decay constant f1 < Mp
at UV scales well above the SU(n) confinement scale Aqy, :
apir s J'
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* At scales ~ Aqyn, gaugino condensation is formed, producing a composite
axion ¢, with a decay constant fa ~ Agy,
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=>» Two axions ¢, and ¢, at scales around Agyp



Axion potential at scales ~ Agyy

A YM-instanton-induced bare gaugino mass
multi-gaugino vertex MmAAA + h.c

(A\) ~ A oi02/ f2 (ma < Adyn) stringy instanton
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At scales << Agy,, the massive ¢, is integrated out, yielding a low energy
effective potential of ¢, :
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= Single axion ¢,, but with two split axion scales in the low energy limit:

f1 and fer = nfy



Energy scales
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a light axion with sub-Planckian decay constant f, < MP

SU(n) confinement with gaugino condensation at Aqyy

two axions (one is composite) with
a particular form of mass mixing

2 < Adyn - Ve = _m)\Agyn (?;) mSMUV cos (?1)

a light axion with split axion decay constants: f; and f. . =n f;




Alignment Kim, Nilles, Peloso, 05

To get the axion scale hierarchy fex/f > 1, one may take the limit n > 1,
which corresponds to the Kim-Nilles-Peloso alignment of the axion couplings:
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For n > 1, the two axion couplings , and F, are aligned to be nearly parallel.

=» Hierarchical axion couplings in the light axion direction.

Heavy axion direcion




Clockwork «c, kim, Yun '14; KC, Im, 1511.00132; Kaplan, Rattazzi,1511.01827

. ) 01 05 @ — S 01
V = — Afhn ( +n—1—m )\Ad‘,n os [ L= ) — ¢ Oins ﬂ-[év cos | — | +
J1 J2 J2 1

Field range enhanced by clockwork: Ads = 27fs = A¢; = 27nf;

To generate a big axion scale hierarchy, one may repeat the clockwork
with additional axions, while keeping n = O(1), rather than taking the
limit: n >>1 for which the left wheel is much bigger than the right wheel.



Exponentially big axion scale hierarchy with multiple axions

Clockwork between nearby axions:
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=» Light axion ¢ with an exponentially enhanced field range
Ad = 2mning..nn_1f1 ~ 2me™ fi (n; = O(1))

and the hierarchical decay constants in the low energy limit:
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Known schemes to generate foi/f > 1:

1) Alignment (two axions): Kim, Nilles, Peloso ‘05

Aligned axion couplings which might be achieved with n >> 1, which
requires a large number of gauge or charged matter fields:

Nﬁelds =0 (feﬁ/f)

2) Monodromy (single axion): Silverstein, Westphal '08; Kaloper, Sorbo '09

Flux or brane-induced axion potential which amounts to the energy
density of a large flux or brane-charge Q ~ fu/f:
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The scheme assumes that the effective theory remains valid under a large
change of the flux or brane-charge, AQ ~ fu/f .

Typically the back-reaction completely changes the effective theory.
McAllister et. al. 1610.05320



3) Clockwork (N axions): KC, Kim, Yun "14; KC, Im, 1511.00132; Kaplan, Rattazzi,1511.01827
Clockwork between nearby axions with  Naxion ~ 1 (fes/ f)

The scheme requires a specific form of the global charge assignment of
N axions.

The clockwork scheme can be generalized to generate an exponentially small

coupling of s=1/2 fermion, s=1 gauge boson, s=2 graviton, providing
a new tool for model building. Giudice & McCullough, 1610.07962
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UV completed SUSY clockwork relaxion model «c, im, 1511.00132

* Multiple axions

N global U(1) symmetries spontaneously broken at f ~ msysy or v/msusy Mp

by soft SUSY-breaking mass:
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* Dynamically generated clockwork

Hidden YM sector with gauge group: G = Hf;l SU (k;)

Charged matter superfields: ¥; + V¢ &, + &7 (i=1,2,..,.N—1;a=1,2,...,n;)
N-1
with Wy = ) (XiWlf + X1 ®5,95,)

i=1
For f 2 Agyn 2 msusy (Aaqyn = confinement scale of G) ,

threshold corrections to the holomorphic gauge kinetic functions:
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* Higgs mass scanning by relaxion & the sliding potential
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* Barrier potential

Another hidden color which confines at Ayc ~ weak scale

with hidden colored matter L + L°, N + N° having
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Cosmological relaxion windows «c, im, 1610.00680
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Relaxion mass & decay constant
classified by the required
inflationary e-folding number e
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Colored regions are excluded by ¢

EDMs

Rare meson decays

Beam dump experiments

Astrophysics &
LEP

5th force

KC & Im, 1610.00680
Flacke et al, 1610.02025
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These regions can be probed by the SHiP

or the improved EDM experiments.




Further issues

Coincidence problem

Viarrier = p2|H|? cos (%) (O(v) < p < O(4dmv))

Why new physics near v = 246 GeV to generate the barrier potential?

One may avoid this problem through a double-scanning mechanism
with a barrier generated at Asy : Espinosa et al, 1506.09217; Evans et al, 1602.04812
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But this assumes the three phase parameters take the same value,
which may cause a fine-tuning problem:
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= Too long period of inflation:
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One can avoid this problem by dissipating the relaxion energy through
particle production: Hook & Marques-Tavares, 1607.01786

This scheme requires three hierarchical axion scales
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which again can be achieved through the clockwork mechanism.

= Compatible with high reheating temperature?

Can be done with a relaxion coupling to the dark photon:

(Talk by Hyungjin Kim)
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Conclusion

« Cosmological relaxation of the Higgs mass is a new approach to
the EW scale hierarchy problem.

» It requires a big hierarchy between the two axion scales, one for
the Higgs mass scanning and another for the barrier potential:

feff Asur ) .
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Such a big axion scale hierarchy can be generated by the clockwork
mechanism with multiple axions, yielding

for/f ~ e (N = number of axions)

« Relaxion mass & decay constant are constrained by a variety of
observational data, which exclude most of the region with my 2 100V



« There are yet many issues to be clarified:

* Coincidence problem
* Other ways of relaxion energy dissipation
* UV completion

* Compatibility with inflation, baryogenesis, dark matter, ...

(high reheating temperature)



