Vector and Axial-vector Resonances in composite models of the Higgs boson

Haiying Cai

IPNL, Universite Lyon 1

D.Buarque Franzosi, G.Cacciapaglia, H.Cai, A.Deandra, M.Frandsen arXiv:1605.01363

The 2nd Durham-KEK-KIPMU-KIAS Joint Workshop 24-28 October, 2016, South Korea

Outline

- A brief review of Composite Higgs Models
- Model implementation of Spin-1 resonances in SU(4)/Sp(4)
- Phenomenology at LHC and 100 TeV Collider
- Conclusion and future outlooks

Composite Higgs Model

What is Composite Higgs? > PNGB from strong dynamics Original one: SU(5)/SO(5) gives 14 pNGBs; Higgs mass protected by "shift symmetry"; EWSB triggered by vacuum misalignment.

[Georgi, Kaplan 1984]

Global symmetry broken at TeV scale with f >> v, EWPT vs "Naturalness" Top quark mass can be generated via partial compositeness *SM fermion couples to strong sector:* $\lambda \psi_{SM} \mathcal{O}_{CFT}$ [Contino, Nomura, Pomarol 2003; Agashe, Contino, Pomarol, 2004]

Minimal CHM based on fundamental dynamics requires SU(4)/Sp(4)

Give rise to one Higgs doublet plus one singlet

Fundamental Theory

Underlying dynamics is $Sp(2N_c)_{TC}$ gauge theory with 4 Weyl techni-quarks:

[Galloway, Evans, Luty, $\mathcal{L} = -\frac{1}{4}F^{a}_{\mu\nu}F^{a\mu\nu} + \bar{Q}_{j}(i\sigma^{\mu}D_{\mu})Q_{j} - M^{ij}Q_{i}Q_{j} + h.c.$ Minimal choice : Tacchi, 2010 ; Cacciapaglia, Sannino, $M_{Q} = \begin{pmatrix} \mu_{L} i\sigma_{2} & 0 \\ 0 & \mu_{R} i\sigma_{2} \end{pmatrix}$, techni-quark mass $Sp(2) \sim SU(2)$ 2014]

Bound states will form in the IR:

$$(\pi^a, \sigma) : \langle QQ \rangle = \mathbf{6}_{SU(4)} \to \mathbf{5}_{Sp(4)} \oplus \mathbf{1}_{Sp(4)}$$
 composite scalars

$$(\rho^i_\mu, a^k_\mu) : \langle Q \sigma^\mu Q \rangle = \mathbf{15}_{SU(4)} \to \mathbf{10}_{Sp(4)} \oplus \mathbf{5}_{Sp(4)}$$
 composite vectors

For $N_c \ge 2$, add 6 techni-quarks $\chi_j \Rightarrow coloured \ pNGBs$ plus top partners.

[Barnard, Gherghetta, Ray, 2014; Ferretti, 2014; Cacciapaglia, Cai, Deandra, Flacke, Lee, Parolini, 2015] [Belyaeav, Cacciapaglia, Cai, Flacke, Parolini, Serodio, 2015]

How to implement vector resonances in EFT ?

Hidden Symmetry

Using Hidden symmetry techniques, one can extend the global symmetry to be:

$$SU(4)_0 \times SU(4)_1 \to Sp(4)$$

 π_0^a, π_1^a, k^i : 20 Nambu-Goldstone bosons, 15 eaten by V^i, A^a 3 eaten by W, Z, two physical scalars remain: h, η .

Model Setup

We adopt the CCWZ formalism and define 2 sets of pions for enhanced global symmetry:

[Coleman, Wess, Zumino,
$$U_0 = \exp\left[\frac{i\sqrt{2}}{f_0}\sum_{a=1}^5(\pi_0^aY^a)\right]$$

1969; Callan, Coleman, Wess, Zumino, 1969; Bando, Kugo, Yamawaki, 1988] $U_1 = \exp\left[\frac{i\sqrt{2}}{f_1}\sum_{a=1}^5(\pi_1^aY^a)\right]$

Project Maurer-Cartan forms into:

broken direction
$$\Rightarrow p_{\mu i} = 2 \sum_{a} Tr(Y_a U_i^{\dagger} D_{\mu} U_i) Y_a$$

unbroken direction $\Rightarrow v_{\mu i} = 2 \sum_{a} Tr(V_a U_i^{\dagger} D_{\mu} U_i) V_a$

Thus $v_{\mu,i}$ transform like gauge bosons and $p_{\mu,i}$ transform homogeneously.

Effective Lagrangian

 $K = \exp\left[ik^{i}V^{i}/f_{K}\right], \quad D_{\mu}K = \partial_{\mu}K - iv_{0\mu}K + iKv_{1\mu}$

The K field is to break $Sp(4)_0 \times Sp(4)_1$ into the diagonal final Sp(4).

Physical Pions

Due to the r term, we need to rotate 2 sets of pions into orthogonal unitary basis,

$$\begin{aligned} \pi_0^a &= & \pi_P^a \frac{1}{\sqrt{1 - r^2 f_1^2 / f_0^2}} \\ \pi_1^a &= & \pi_U^a - \pi_P^a \frac{r f_1 / f_0}{\sqrt{1 - r^2 f_1^2 / f_0^2}} \end{aligned}$$

 π_P is associated with physical scalars and π_U is NG boson eaten by x_0^{μ} and \tilde{x}_0^{μ} .

Unitary basis \Rightarrow no bilinear mixing in terms of $\partial_{\mu}h x_0^{\mu}$ and $\partial_{\mu}\eta \tilde{x}_0^{\mu}$

Since $v^2 = (f_0^2 - r^2 f_1^2) \sin^2 \theta$, with EWSB, there is no divergence in the pion rotation.

Model Spectrum

One charged state of exact mass M_V does not mix with \tilde{W} and \tilde{B} ; Neutral Sector gives a massless photon.

$$\begin{split} M_{W^+}^2 &= \frac{1}{4} g^2 v^2 + \mathcal{O}\left(\frac{g}{\tilde{g}}\right)^4, \quad M_{S^+} = M_V^2 & M_Z^2 &= \frac{1}{4} (g^2 + g'^2) v^2 + \mathcal{O}\left(\frac{g}{\tilde{g}}\right)^4 \\ M_{A^+}^2 &= M_A^2 \left(1 + \frac{r^2 \left(\frac{g}{\tilde{g}}\right)^2 s_{\theta}^2}{2}\right) + \mathcal{O}\left(\frac{g}{\tilde{g}}\right)^4 & M_{A^0}^2 &= M_A^2 \left(1 + \frac{r^2 \left(\frac{g^2 + g'^2}{\tilde{g}^2}\right) s_{\theta}^2}{2}\right) + \mathcal{O}\left(\frac{g}{\tilde{g}}\right)^4 \\ M_{V^+} &= \frac{1}{4} M_V^2 \left(\frac{g^2 (\cos(2\theta) + 3)}{\tilde{g}^2} + 4\right) + \mathcal{O}\left(\frac{g}{\tilde{g}}\right)^4 & M_{V^0,S^0} &= M_V^2 \left[1 + \frac{g^2 + g'^2}{4\tilde{g}^2} \left(1 + c_{\theta}^2 \pm \mathcal{O}(1)\right)\right] + \mathcal{O}\left(\frac{g}{\tilde{g}}\right)^4 \end{split}$$

There are additional no mixing states $\tilde{s}^{\pm,0}_{\mu}$, \tilde{v}^0_{μ} , x^0_{μ} and \tilde{x}^0_{μ} , with masses:

$$M_{\widetilde{s}} = M_{\widetilde{v}^0} = M_V$$
 and $M_{x^0} = M_{\widetilde{x}^0} = M_A$.

$$\overbrace{c_{hW+W-}}^{\text{Typical HVV couplings:}} c_{hW+W-} \simeq \frac{2M_W^2}{v} c_{\theta} = c_{hW+W-}^{\text{SM}} c_{\theta} , \quad c_{hZZ} \simeq \frac{2M_Z^2}{v} c_{\theta} = c_{hZZ}^{\text{SM}} c_{\theta}$$

Electroweak Precision Tests

The S-T is exploited to exclude the unfavored region in the parameter space.

$$S = -\frac{4s_W^2}{\alpha_{EW}} \frac{g^2 (r^2 - 1) s_\theta^2}{2\tilde{g}^2 + g^2 [2 + (r^2 - 1)s_\theta^2]}$$
$$+ \frac{1}{6\pi} s_\theta^2 \log\left(\frac{\Lambda}{m_h}\right)$$
$$T = -\frac{3}{8\pi \cos^2 \theta_W} s_\theta^2 \ln \frac{\Lambda}{m_h}$$

 $r \simeq 1$: a partial cancellation occurs in S parameter, in certain range of \tilde{g} , there is no bound for the θ angle.

r < 1: EWPT typically requires $\theta < 0.2$.

stronger than Higgs coupling constraint !

Fermion Currents

Field	Fermion currents	P	С	G	GP			
Massive spin-1 \mathcal{V}_{μ} (unbroken generators)								
v^+	$\overline{D}\gamma^{\mu}U$							
v^0	$rac{1}{\sqrt{2}}\left(\overline{U}\gamma^{\mu}U-\overline{D}\gamma^{\mu}D ight)$	_	_	_	+			
v^-	$\overline{U}\gamma^\mu D$							
\tilde{v}^0	$\sqrt{2}\cos\theta\Im\left(U^T C\gamma^{\mu}D\right) + \frac{1}{\sqrt{2}}\sin\theta\left(\overline{U}\gamma^{\mu}U + \overline{D}\gamma^{\mu}D\right)$	_	—	+	-			
s^+	$\cos\theta \left(\overline{D}\gamma^{\mu}\gamma^{5}U\right) + \frac{i}{2}\sin\theta \left(U^{T}C\gamma^{\mu}\gamma^{5}U - \overline{D}\gamma^{\mu}C\gamma^{5}\overline{D}^{T}\right)$							
s^0	$-\frac{1}{\sqrt{2}}\cos\theta \left(\overline{U}\gamma^{\mu}\gamma^{5}U - \overline{D}\gamma^{\mu}\gamma^{5}D\right) - \sqrt{2}\sin\theta\Im\left(U^{T}C\gamma^{\mu}\gamma^{5}D\right)$	+	+	+	+			
s^-	$\cos\theta \left(\overline{U}\gamma^{\mu}\gamma^{5}D\right) + \frac{i}{2}\sin\theta \left(\overline{U}\gamma^{\mu}C\gamma^{5}\overline{U}^{T} - D^{T}C\gamma^{\mu}\gamma^{5}D\right)$							
\tilde{s}^+	$rac{i}{2}\left(U^T C \gamma^\mu \gamma^5 U + \overline{D} \gamma^\mu C \gamma^5 \overline{D}^T ight)$							
\tilde{s}^0	$\sqrt{2}\Re\left(U^T C \gamma^\mu \gamma^5 D ight)$	+	_	_	_			
\tilde{s}^-	$rac{i}{2}\left(\overline{U}\gamma^{\mu}C\gamma^{5}\overline{U}^{T}+D^{T}C\gamma^{\mu}\gamma^{5}D ight)$							
Massive spin-1 \mathcal{A}_{μ} (broken generators)								
a^+	$\frac{i}{2}\cos\theta \left(U^T C \gamma^{\mu} \gamma^5 U - \overline{D} \gamma^{\mu} C \gamma^5 \overline{D}^T \right) - \sin\theta \left(\overline{D} \gamma^{\mu} \gamma^5 U \right)$							
a^0	$-\sqrt{2}\cos\theta\Im\left(U^T C \gamma^\mu \gamma^5 D\right) + \frac{1}{\sqrt{2}}\sin\theta\left(\overline{U}\gamma^\mu \gamma^5 U - \overline{D}\gamma^\mu \gamma^5 D\right)$	+	+	+	+			
<i>a</i> ⁻	$\frac{i}{2}\cos\theta \left(\overline{U}\gamma^{\mu}C\gamma^{5}\overline{U}^{T} - D^{T}C\gamma^{\mu}\gamma^{5}D\right) - \sin\theta \left(\overline{U}\gamma^{\mu}\gamma^{5}D\right)$							
x^0	$\sqrt{2} \Re \left(U^T C \gamma^\mu D \right)$	_	+	_	+			
$ ilde{x}^0$	$\frac{1}{\sqrt{2}}\cos\theta \left(\overline{U}\gamma^{\mu}U + \overline{D}\gamma^{\mu}D\right) - \sqrt{2}\sin\theta\Im\left(U^{T}C\gamma^{\mu}D\right)$	_	_	+	-			

P-Parity :
$$U \xrightarrow{P} i\gamma^0 U$$
, $D \xrightarrow{P} i\gamma^0 D$
C-Parity : $U \xrightarrow{C} -i\gamma^2 U^*$, $D \xrightarrow{C} -i\gamma^2 D^*$
G-Parity : $U \xrightarrow{G} -\gamma^2 D^*$, $D \xrightarrow{G} \gamma^2 U^*$

Under the parity operation: a vector fermioncurrent has CP = +; and a pseudo-vector fermion-current has CP = -.

The GP is a good symmetry and being selection rule for decays. Only the tilded fields and η are odd under this parity.

Cross Section @ LHC Run II

The benchmark point: $M_A = 3$ TeV, $\tilde{g} = 3.0, r = 0.6$ and $\theta = 0.2$.

No S^+ state can be directly produced since it is purely composite.

For $M_V = M_A$, cross sections of axial resonances turn out to be zero.

One Feynrule Model is implemented for this SU(4)/Sp(4) model, available at http://hepmdb.soton.ac.uk/hepmdb:0416.0200

we consider normal VBF topology + t-channel radiation diagrams as a gauge invariant set.

In LHC Run-II, VBF is subdominant and the cross section decreases with \tilde{g} .

$M_V < M_A$ Scenario

 V^0 mainly decays into SM fermions and dibosons and Higgs.

Cascade decay: $A^0 \to \eta \tilde{S}^0 \to 2\eta + Z, \ \eta \to t\bar{t}$. multi-tops events.

$M_A < M_V$ Scenario

 A^0 mainly decays into SM fermions and dibosons and Higgs.

Direct Bounds - LHC Run II

Recasted from ATLAS measurement, with dilepton bound in solid line and WZ bound in dashed line.

The l^+l^- and WZ are complementary to each other.

The dilepton exclusion imposes quite strong bound $\Rightarrow M_V \gtrsim 2.5$ TeV !

Future 100 TeV Collider

Using Lattice benchmark point: $M_V = 3.2/\sin\theta$ TeV, $M_A = 3.5/\sin\theta$ TeV. [Arthur, Drach, Hansen, Pica, Sannino 2016]

 $\sigma_R \lesssim \mathcal{O}(1)$ fb for $\theta \sim 0.2$, with an integrated luminosity $3 - 30ab^{-1}$ per year. [Richter, 2014; Rizzo, 2015]

At 100 TeV, Vector Boson Fusion plays an important role due to the collinear enhancement, with $\sigma_{VBF} > \sigma_{Drell-Yan}$ for $V^{\pm,0}$ and $A^{\pm,0}$ resonances.

Conclusion and Outlook

- Spin-I resonances are implemented in a SU(4)/Sp(4) CHM using Hidden symmetry techniques; Composite fermions not included yet.
- S parameter can be well protected due to a partial cancellation.
- The CP parities are illustrated in terms of fermion currents from a fundamental gauge theory.
- At LHC Run-II, the Drell-Yan process imposes a stringent bound. However at 100 TeV collider, some VBF channels become dominant.
- Searching for signatures related to such resonances is possible to unveil EWSB mechanism.

Back up Slides

UV theory and IR Bound States

	$Sp(2N_c)$	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	SU(4)	SU(6)	U(1)
Q		1	2	1	А	0	-3(N - 1)a
Q^{\dagger}		1	1	$\begin{array}{c c} 1/2 \\ -1/2 \end{array}$		0	$S(N_c +)q_{\chi}$
χ		3	1	x	1	6	a
χ^{\dagger}		3	1	-x		5	Ψχ

	spin	$SU(4) \times SU(6)$	$Sp(4) \times SO(6)$	names	
QQ	0	(6 , 1)	(1 , 1) $(1,1)$		
			(5,1)	π	
$\chi\chi$	0	(1,21)	(1,1)	σ_{c}	
			(1, 20)	π_c	
χQQ	1/2	(6,6)	(1,6)	ψ_1^1	
			(5,6)	ψ_1^5	
$\chi \bar{Q} \bar{Q}$	1/2	(6,6)	(1,6)	ψ_2^1	
			(5,6)	ψ_2^5	
$Q\bar{\chi}\bar{Q}$	1/2	$(1, \mathbf{ar{6}})$	(1,6)	ψ_{3}	
$Q\bar{\chi}\bar{Q}$	1/2	(15, ō)	(5,6)	ψ_4^5	
			(10,6)	ψ_4^{10}	
$Q \sigma^{\mu} Q$	1	(15, 1)	(5 , 1)	а	
			(10,1)	ρ	
$\bar{\chi}\sigma^{\mu}\chi$	1	(1, 35)	(1, 20)	a _c	
			(1, 15)	$ ho_{c}$	

$$\frac{1}{\Lambda^2}\bar{t}_L\chi QQ$$

Top partial compositeness