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Gravitino problem

Supersymmetry, gravitino, and cosmology

Supersymmetry (SUSY) is a well-motivated candidate of
physics beyond the Standard Model.

Supergravity (SUGRA) is its local version.

Gravitino is the SUSY partner of graviton, and it is the
gauge fermion field of SUSY with spin 3/2.

Basically, its interaction is gravitational strength, and
gravitino is long-lived. In general, long-lived particles affect
cosmology.
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Gravitino problem

Cosmological gravitino problem

Stable gravitino

It may exceed the observed dark matter abundance.
(The annihilation cross-section is small.)

Unstable gravitino

Its decay products alters light element abundance by
affecting big-bang nucleosynthesis (BBN).

They also affect cosmic spectrum including cosmic
microwave background (CMB), and γ-ray background etc.

The abundance of lightest SUSY particle (LSP) from
gravitino decay must also satisfy the dark matter bound.

It’s very important to estimate the gravitino abundance!
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Gravitino problem

BBN bound on gravitino abundance

Figure: BBN constraints on the gravitino yield [Kawasaki et al., 2008].

Fitting formula for the gravitino yield Y3/2 in [Kawasaki et al., 2008]:

Y3/2 ≡
n3/2

s
' 2.3× 10−14 ×

(
TR

108GeV

)
+ . . . (1)
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Context of our work

Production mechanisms of gravitino

Thermal production

Production by scattering processes in a thermal bath.

Nonthermal production

Productions other than thermal production.
Typically, from decay of heavier particles like inflaton or
moduli.

Reheating: perturbative decay of the inflaton around the
minimum of the inflaton potential

Preheating: non-perturbative production of particles at the
early stage of inflaton oscillation

7 / 55



Introduction Lagrangian case w/o stabilizer case w/ stabilizer Conclusion Appendix

Context of our work

Production mechanisms of gravitino

Thermal production

Production by scattering processes in a thermal bath.

Nonthermal production

Productions other than thermal production.
Typically, from decay of heavier particles like inflaton or
moduli.

Reheating: perturbative decay of the inflaton around the
minimum of the inflaton potential

Preheating: non-perturbative production of particles at the
early stage of inflaton oscillation

7 / 55



Introduction Lagrangian case w/o stabilizer case w/ stabilizer Conclusion Appendix

Context of our work

Production mechanisms of gravitino

Thermal production

Production by scattering processes in a thermal bath.

Nonthermal production

Productions other than thermal production.
Typically, from decay of heavier particles like inflaton or
moduli.

Reheating: perturbative decay of the inflaton around the
minimum of the inflaton potential

Preheating: non-perturbative production of particles at the
early stage of inflaton oscillation

7 / 55



Introduction Lagrangian case w/o stabilizer case w/ stabilizer Conclusion Appendix

Context of our work

Production mechanisms of gravitino

Thermal production

Production by scattering processes in a thermal bath.

Nonthermal production

Productions other than thermal production.
Typically, from decay of heavier particles like inflaton or
moduli.

Reheating: perturbative decay of the inflaton around the
minimum of the inflaton potential

Preheating: non-perturbative production of particles at the
early stage of inflaton oscillation

7 / 55



Introduction Lagrangian case w/o stabilizer case w/ stabilizer Conclusion Appendix

Context of our work

Production mechanisms of gravitino

Thermal production

Production by scattering processes in a thermal bath.

Nonthermal production

Productions other than thermal production.
Typically, from decay of heavier particles like inflaton or
moduli.

Reheating: perturbative decay of the inflaton around the
minimum of the inflaton potential

Preheating: non-perturbative production of particles at the
early stage of inflaton oscillation

7 / 55



Introduction Lagrangian case w/o stabilizer case w/ stabilizer Conclusion Appendix

Context of our work

Earlier works and their problems

Gravitino production at preheating [∼ 2000]
[Maroto and Mazumdar, 2000, Kallosh et al., 2000a, Giudice et al., 1999,

Kallosh et al., 2000b, Nilles et al., 2001c, Nilles et al., 2001b]

Inflation sector was a toy model.

SUSY breaking by Polonyi model → Polonyi problem.

Does not correspond to the late-time gravitino abundance.

Lack of analytical understanding.

Gravitino from perturbative heavy scalar decay [∼ 2006]
[Endo et al., 2006a, Nakamura and Yamaguchi, 2006,

Kawasaki et al., 2006a, Asaka et al., 2006, Dine et al., 2006] and more.

Not so trivial (mixing between inflaton/moduli φ and SUSY
breaking field z is important).

Not applicable to Z2-symmetric large-field models because
the decay rate of inflaton/moduli is proportional to its
VEV 〈φ〉.
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Context of our work

Problems of steepness and negativity for inflaton potential

An exponential factor and a negative contribution.

V = eK
(
gij̄DiWD̄j̄W̄−3|W |2

)
+

1

2
fR
ABD

ADB, (2)

where DiW = ∂iW + ∂iKW .

Shift symmetry to obtain a flat potential,

φ→φ+ c, K(φ, φ̄) = K(i(φ− φ̄)), (3)

tends to make the potential negative, V < 0 at a large-field
region of the inflaton.
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Context of our work

Two solutions to the steepness/negativity problem

More fields
A stabilizer field X is introduced which satisfies 〈X〉 ' 0.

W =Xf(φ), V '|f(φ)|2. (4)

Sometimes, a stabilization term for X is needed,

K = −1

2
(φ− φ̄)2 + |X|2 − 1

Λ2
|X|4. (5)

[Kawasaki et al., 2000, Kallosh and Linde, 2010, Kallosh et al., 2011]

More terms
Non-minimal terms are introduced.

K =ic(φ− φ̄)− 1

2
(φ− φ̄)2 − 1

Λ2
(φ− φ̄)4 + . . . , (6)

W =eicφf(φ), (7)

with |c| &
√

3. [Ketov and Terada, 2014b, Ketov and Terada, 2014a]
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Context of our work

Our work

A shift-symmetric inflaton with or without a stabilizer field
→ Realistic large-field model.

Strongly-stabilized Polonyi field → No Polonyi problem.

Taking into account time-dependent mixing between
gravitino and a fermion. → True gravitino abundance.

Analytic estimation → Parametric dependence is clearer.

Reproduces results of perturbative decay
→ Consistent with earlier works.
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Abstract of analyses

Analysis procedure

1 Start from the supergravity Lagrangian.

2 Rewrite it in terms of physical degrees of freedom.
(Transverse and longitudinal modes of the gravitino.)

3 Canonically normalize them.

4 Remove mixing with other fermions. (diagonalization)

5 The form of the Lagrangian reduces to that of Majorana
spinors.
Apply the formula of fermion production by preheating.
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Abstract of analyses

Production of Majorana fermion by preheating

The production rate is estimated by the background field
method. Suppose that the fermion mass m(t) oscillates with its
amplitude m̃ and frequency Ω. The number density grows as

n(t) ' C
16π

Ω2m̃2t. (8)

C = 1 in the case of m(t) ∝ cos(Ωt).
Suppose the inflaton oscillates sinusoidally, φ(t) ∝ cos(mφt).
m ∝ φn leads to Ω = nmφ, (n− 2)mφ, . . . .
n = 1, 2 can be interpreted as decay and annihilation,
respectively:

Γ(n× φ→ ψψ) ∼ nnψ
2nφt

∼ n3C
32π

m̃2

φ2
amp

mφ. (9)

[Greene and Kofman, 1999, Peloso and Sorbo, 2000,

Asaka and Nagao, 2010] See also App. B of [Ema et al., 2016].
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Abstract of analyses

Summary of the section

It is very important to estimate the gravitino abundance!

Given a supergravity model, our tasks are

To diagonalize the fermion mass matrix.

To obtain the amplitude m̃ and frequency Ω of the
oscillating mass eigenvalues.

Example

φ = φamp cos(mφt) and m =
mφφ

2

2M2
Pl

.

→ m̃ =
mφφ

2
amp

2M2
Pl

and Ω = 2mφ.

To apply the formula of fermion production to estimate the
gravitino abundance.
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Lagrangian and physical modes

1 Introduction
Gravitino problem
Context of our work
Abstract of analyses

2 Gravitino Lagrangian
Lagrangian and physical modes
Diagonalization of the gradient term

3 Gravitino production without a stabilizer field
Model and its dynamics
Gravitino production

4 Gravitino production with a stabilizer field
Model and its dynamics
Gravitino production

5 Conclusion
Summary, conclusion, and prospects
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Lagrangian and physical modes

Assumptions

Kinetic terms can be regarded as minimal, Kij̄ ' δij̄ after
inflation.

Scalar field configuration is real.
(If all the parameters of the model and initial conditions
are real, this assumption is satisfied.)

D-term is not important.
(Inflaton is a gauge singlet, and inflation is F -term-driven.)
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Lagrangian and physical modes

Supergravity Lagrangian

e−1L =
M2

Pl

2
R− gij̄∂µφi∂µφ∗ j̄ − V

− 1

2
gij̄

(
χiL /̂Dχ

j̄
R + χj̄R /̂Dχ

i
L

)
− 1

2

(
mijχ

i
Lχ

j
L +mīj̄χ

ī
Rχ

j̄
R

)
− 1

2
ψµR

µ +
1

2
ψµ
(
m3/2PR +m∗3/2PL

)
γ̂µνψν

+

√
2

MPl
gij̄ψµγ̂

νµ
(
χiL∂νφ

∗j̄ + χj̄R∂νφ
i
)

+
1√

2MPl

(
ψ · γ̂

)
v + e−1L4f ,

where

Rµ ≡γ̂µρσDρψσ, Dµψν =

(
∂µ +

1

4
ωµ

abγab − iAµγ∗
)
ψν − Γρµνψρ,

Aµ ≡
i

4M2
Pl

(
∂iK∂µφ

i − ∂īK∂µφ∗ī
)
, vL ≡eK/2M

2
PlDiWχiL + gij̄ /∂φ

iχj̄R

m3/2 ≡ eK/2M
2
Pl
W

M2
Pl

, mij ≡ eK/2M
2
Pl

[
∂i +

∂iK

M2
Pl

]
DjW − eK/2M

2
PlΓkijDkW.
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Lagrangian and physical modes

Equation of motion, constraints, and decomposition

We take unitary gauge v = 0, and assume the FLRW background.

Equation of motion

Σµ ≡ Rµ − γ̂µν
(
m3/2ψν −

√
2

MPl
gij̄

(
χiL∂νφ

∗j̄ + χj̄R∂νφ
i
))

= 0. (10)

Constraints

0 = DµΣµ +
m3/2

2
γ̂µΣµ, 0 = Σ0. (11)

Decomposition

~ψ = ~ψt +

(
1

2
~γ − 1

2k2
~k
(
~k · ~γ

))
ψ` +

(
3

2k2
~k − 1

2k2
~γ
(
~k · ~γ

))
~k · ~ψ, (12)

where ψ` ≡ ~γ · ~ψ and ~γ · ~ψt = ~k · ~ψt = 0.

i~k · ~ψ =
(
i~γ · ~k − a

(
m3/2 + γ0H

))
ψ`, (13)

where H ≡ ȧ/a.
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Lagrangian and physical modes

Lagrangian in terms of physical degrees of freedom

e−1L3/2 =e−1Lt + e−1L` + e−1Lmix, (14)

e−1Lt =− 1

2a3
~ψt /D~ψt +

H

2a2
~ψtγ0 ~ψt − 1

2a2
~ψtm3/2

~ψt, (15)

e−1L` =− ρSB

4ak2M2
Pl

ψ`
[
γ0∂0 +

(
i~γ · ~k

)
Â− 3a

2

(
m3/2 +Hγ0) Â− 1

2
am3/2

]
ψ`,

(16)

e−1Lmix =

√
2

a2MPl
ψ`γ0gij̄

[
(∂0φ

i)χj̄R + (∂0φ
∗j̄)χiL

]
, (17)

where

Â ≡ pSB − γ0pW
ρSB

, (18)

ρSB ≡
∑
i

|φ̇i|2 + VSB, VSB ≡ V + 3m2
3/2M

2
Pl =

∑
i

|Fi|2, (19)

pSB ≡
∑
i

|φ̇i|2 − VSB, pW ≡ 2ṁ3/2M
2
Pl = −

∑
i

(φ̇∗iFi + φ̇iF
∗
i ). (20)
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2
am3/2

]
ψ`,

(16)

e−1Lmix =

√
2

a2MPl
ψ`γ0gij̄

[
(∂0φ

i)χj̄R + (∂0φ
∗j̄)χiL

]
, (17)

where
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Lagrangian and physical modes

Canonical normalization

canonical fields

~ψtc ≡
√
a~ψt, ψ`c ≡−

√
ρSBa

3/2

√
2k2MPl

i
(
~γ · ~k

)
ψ`, χ′i ≡a3/2χi, (21)

Lt =− 1

2
~ψtc

[
γ0∂0 + i

(
~γ · ~k

)
+ am3/2

]
~ψtc, (22)

L` =− 1

2
ψ`c

[
γ0∂0 − i

(
~γ · ~k

)
Â† + am̂3/2

]
ψ`c, (23)

Lmix =
2
√
ρSB

ψ`ci
(
~γ · ~k

)
γ0gij̄

[
φ̇iχ′ j̄R + φ̇∗j̄χ′iL

]
, (24)

where

m̂3/2 ≡
3HpW +m3/2(ρSB + 3pSB)

2ρSB
. (25)
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Diagonalization of the gradient term

1 Introduction
Gravitino problem
Context of our work
Abstract of analyses

2 Gravitino Lagrangian
Lagrangian and physical modes
Diagonalization of the gradient term

3 Gravitino production without a stabilizer field
Model and its dynamics
Gravitino production

4 Gravitino production with a stabilizer field
Model and its dynamics
Gravitino production

5 Conclusion
Summary, conclusion, and prospects

22 / 55



Introduction Lagrangian case w/o stabilizer case w/ stabilizer Conclusion Appendix

Diagonalization of the gradient term

Preparation of diagonalization 1

Fermions χi (i = 1, . . . , N) can be decomposed as goldstino v and
orthogonal fields vI⊥ (I = 1, . . . , N − 1). They are packaged in vi ≡ (v, vI⊥).

goldstino

v =
∑
i

αi(−Fi + φ̇i γ
0)χi (26)

≡
∑
i

αi(cos θi + sin θi γ
0)χi =

∑
i

αie
γ0θi χi, (27)

where αi ≡
√
ρiSB/ρSB and ρiSB ≡ |φ̇i|2 + |Fi|2.

relation of the two bases

vi =
(
OT
)
ij
eγ

0θjχj ↔ χi = e−γ
0θiOijvj , OT =

(
α1, . . . , αN

ÕT

)
.

(28)
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Diagonalization of the gradient term

Preparation of diagonalization 2

In terms of these variables vi, the matter fermion Lagrangian reads

Lf,kin =− 1

2
vI⊥

[
γ0∂0δIJ + ÕTIie

γ0θi i
(
~γ · ~k

)
e−γ

0θiÕiJ

+ÕTIi (∂0θi) ÕiJ + ÕTIi

(
γ0∂0ÕiJ

)]
vJ⊥, (29)

Lf,mass =− a

2
χimijχj = −a

2
vI⊥

(
ÕTIie

γ0θimije
−γ0θj ÕjJ

)
vJ⊥. (30)

The mixing term is now

Lmix = 2ψ`c i
(
~γ · ~k

)
γ0

[∑
i

αi sin θi χi

]
= 2ψ`c i

(
~γ · ~k

)
γ0αi sin θi e

−γ0θiÕiIv
I
⊥.

(31)
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Diagonalization of the gradient term

Diagonalization of the gradient term

Lgrad = −1

2

(
ψ`c v⊥

) (
i~γ · ~k

)
Â
(
ψ`c
v⊥

)
, (32)

where

Â =

(
−Â† αi e

−2γ0θiÕiJ

ÕTIiαi e
−2γ0θi ÕTIie

−2γ0θiÕiJ

)
= OT diag

(
e−2γ0θi

)
O ≡ e−2γ0θ̂.

(33)

where we used Â = −
∑
i e

2γ0θiα2
i .

Diagonalization (
ψ`c
′

v′⊥

)
≡ e−γ

0θ̂

(
ψ`c
v⊥

)
, (34)

where e±γ
0θ̂ = OT diag

(
e±γ

0θi
)
O.

L = −1

2

(
ψ`c
′ v′⊥

)(
γ0∂0 + i~γ · ~k + aM

)(
ψ`c
′

v′⊥

)
. (35)
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Diagonalization of the gradient term

Master formula of the mass matrix

L = −1

2

(
ψ`c
′ v′⊥

)(
γ0∂0 + i~γ · ~k + aM

)(
ψ`c
′

v′⊥

)
, (36)

where

M = e−γ
0θ̂

[
γ0 ∂

∂t
+

(
m̂3/2 0

0 ÕT
(
m̂f + θ̇i + γ0 ˙̃

OÕT
)
Õ

)]
eγ

0θ̂, (37)

with

m̂f ≡ eγ
0θimije

−γ0θj . (38)

γ0-dependent mass terms (γ0M2 in M =M1 + γ0M2) can be removed,
and do not contribute to the mass eigenvalues by time-dependent field
redefinition ψold = Lψnew with L satisfying

(∂0 +M2)L = 0. (39)

The final mass matrix is LTM1L [Nilles et al., 2001b].

The remaining task is to diagonalize the mass term, once specifying the

model.
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Diagonalization of the gradient term

Summary of this section

Assumptions
Minimal Kähler, real configuration, and irrelevant D-terms.

After canonical normalization,
Transverse gravitino

Lt =− 1

2
~ψtc

(
γ0∂0 + i~γ · ~k + am3/2

)
~ψtc. (40)

Longitudinal gravitino and fermion system

L = −1

2

(
ψ`c
′
v′⊥

)
new

(
γ0∂0 + i~γ · ~k + aLTM1L

)(
ψ`c
′

v′⊥

)
new

,

(41)

We should express mass eigenvalues in terms of the oscillating
inflaton field.
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Model and its dynamics

1 Introduction
Gravitino problem
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Model and its dynamics

Model

K = −1

2
(φ− φ†)2 + |z|2 − |z|

4

Λ2
, (42)

W =
1

2
mφφ

2 + µ2z +W0. (43)

Gravitino mass at the vacuum

m0
3/2 ' µ2/

√
3MPl 'W0/M

2
Pl. (44)

Strongly stabilized Polonyi field

〈z〉 '2
√

3MPl(m
0
3/2/mz)

2, and m2
z =12(m0

3/2MPl/Λ)2. (45)

SUSY breaking and (transverse) gravitino mass

|φ̇| ∼ |Fφ| ∼ mφφamp ∼ HMPl, |Fz| ∼ µ2 ∼ m0
3/2MPl � |ż|, (46)

m3/2 '
mφφ

2

2M2
Pl

+m0
3/2 ∼ H

φamp

MPl
+m0

3/2. (47)
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Model and its dynamics

Goldstino nature and mass eigenvalues

K = −1

2
(φ− φ†)2 + |z|2 − |z|

4

Λ2
,

W =
1

2
mφφ

2 + µ2z +W0.

Who is the goldstino?

v ∼

{
φ̃ for H & m0

3/2

z̃ for H . m0
3/2

, v⊥ ∼

{
z̃ for H & m0

3/2

φ̃ for H . m0
3/2

. (48)

Longitudinal gravitino-fermion system

Lf = −1

2

(
ψ`c
′ v⊥′

) [
γ0∂0 + i~γ · ~k + aM

](
ψ`c
′

v⊥
′

)
, (49)

Mass eigenvalues

(
mheavy, mlight

)
'


(
mφ, −m3/2(m0

3/2/H)2
)

for H & m0
3/2(

mφ, −m3/2

)
for H . m0

3/2

. (50)
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Model and its dynamics

Time dependence of various quantities

mφ

H

m3/2

t

m0
3/2

t

mφ

M
11

M
2
2

H ∼ m0
3/2H ∼ m0

3/2

v⊥ψℓ

ψℓ
v⊥

Figure: Left: Time dependence of mφ, H and m3/2 in single superfield
inflation model. Right: Time evolution of mass eigenvalues of
(ψ`, v⊥) are shown by thick solid lines. The red (blue) segments show
that the main composition of the mass eigenstate is ψ` (v⊥). Dashed
and dot-dashed lines show M22 and M11, respectively.
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Gravitino production
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Gravitino production

Transverse gravitino production

The annihilation rate is

Γ(φφ→ ψtψt) ' C
4π

m̃2

φ2
amp

mφ '
3C
16π

H2mφ

M2
Pl

, (51)

where
√

3m̃ ' Hφamp/2MPl is the oscillation amplitude of the
mass of the produced fermion.
Transverse gravitino yield

n
(t)
3/2

s
'
(

Γ(φφ→ ψtψt)

H

)
H=Hinf

3TR

4mφ
' 9C

64π

HinfTR

M2
Pl

' 8× 10−16C
(

Hinf

1013 GeV

)(
TR

1010 GeV

)
. (52)
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Gravitino production

Longitudinal gravitino production

Two sources of longitudinal gravitino

v⊥ produced when H > m0
3/2 becomes ψ` later.

Γ(φφ→ v⊥v⊥) .
3C
16π

(
m0

3/2

H

)2
(m0

3/2)2mφ

M2
Pl

. (53)

ψ` produced when H < m0
3/2.

Γ(φφ→ ψ`ψ`) .
3C
16π

H2mφ

M2
Pl

. (54)

The dominant contribution comes when H ' m0
3/2,

Γ(φφ→ ψ`ψ`) .
3C
16π

(m0
3/2)2mφ

M2
Pl

. (55)

Longitudinal gravitino yield

n
(`)
3/2

s
' 8× 10−23 C

(
m0

3/2

106 GeV

)(
TR

1010 GeV

)
. (56)
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Gravitino production

Inflatino production

The mass of the heavier spinor v⊥ has an oscillating part,

mheavy ' mφ + 2m̂3/2. (57)

This allows production at H ∼ Hinf if inflaton amplitude is
Planck scale.
Inflatino yield

n
φ̃

s
' 27C

16π

HinfTR

M2
Pl

' 9× 10−15C
(

Hinf

1013 GeV

)(
TR

1010 GeV

)
,

(58)

where we have used m̃ ' 2m̂3/2 ' 3Hinf '
√

3mφ.
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Gravitino production

Higher power inflaton potential

K = −1

2
(φ− φ†)2 + |z|2 − |z|

4

Λ2
, (59)

W =
1

n
λφn + µ2z +W0. (60)

Background expansion is different from the quadratic case.
For the quartic potential (n = 3), it is φamp ∝ a−1 and H2 ∝ a−4, and the
gravitino yields are

n
(t)

3/2

s
' C

64π

(
90

π2g∗

)1/4(
Hinf

MPl

)3/2

' 2× 10−11C
(

Hinf

1013 GeV

)3/2

, (61)

n
(`)

3/2

s
' C

64π

(
90

π2g∗

)1/4
(
m0

3/2

MPl

)3/2

' 6× 10−22C

(
m0

3/2

106 GeV

)3/2

, (62)
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Gravitino production

Summary of gravitino abundance

Figure: Dependence of gravitino abundance Y3/2 = n3/2/s on the reheating
temperature TR. Parameters are set as m3/2 = 106 GeV and Hinf = 1013

GeV.
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Gravitino production

Summary of this section

Quadratic inflaton potential

The transverse gravitino is produced dominantly at
H ∼ Hinf.

The longitudinal gravitino is produced dominantly at
H ∼ m0

3/2, and suppressed compared to the transverse

mode by a factor (m0
3/2/Hinf)

2.

The inflatino production is similar to the transverse
gravitino.

Quartic inflaton potential

Gravitino (mainly transverse) is copiously produced even
for low reheating temperature.
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Model and its dynamics

1 Introduction
Gravitino problem
Context of our work
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2 Gravitino Lagrangian
Lagrangian and physical modes
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Model and its dynamics

Model

K = −1

2
(φ− φ†)2 + |X|2 + |z|2 − |z|

4

Λ2
, (63)

W = mφXφ+ µ2z +W0. (64)

Induced oscillation amplitude of the stabilizer X

Xamp ∼
m0

3/2

H
φamp. (65)

Time evolution of the gravitino mass m3/2

m3/2 '


mφφ

2

M2
Pl

m0
3/2

H
+m0

3/2 for H > m0
3/2

mφφ
2

M2
Pl

+m0
3/2 for H < m0

3/2

. (66)
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Model and its dynamics

Rewrite the model

It is convenient to define Φ± ≡ 1√
2
(φ±X) so that

K = |Φ+|2 + |Φ−|2 −
1

4

[
(Φ+ + Φ−)2 + h.c.

]
+ |z|2 − |z|

4

Λ2
, (67)

W =
1

2
mφ

(
Φ2

+ − Φ2
−
)

+ µ2z +W0. (68)

longitudinal gravitino-fermion system

Lf = −1

2

(
ψ`c
′ v

(1)
⊥
′

v
(2)
⊥
′
) [
γ0∂0 + i~γ · ~k + aM

] ψ`c
′

v
(1)
⊥
′

v
(2)
⊥
′

 , (69)

Mass eigenvalues
(
mφ, −mφ, −m3/2(m0

3/2/H)2
)

for H & m0
3/2(

mφ, −mφ, −m3/2

)
for H . m0

3/2

. (70)
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Model and its dynamics

Time dependence of various quantities

mφ

H

m3/2

t

m0
3/2

t

mφ

H ∼ m0
3/2H ∼ m0

3/2

ψℓ

ψℓ

v
(2)
⊥

v
(2)
⊥

v
(1)
⊥

Figure: Same as Fig. 2 but for multi-superfield inflation models.
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Gravitino production
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Gravitino production

Transverse gravitino production

The production rate is suppressed by the small stabilizer amplitude.

Γ(φφ→ ψtψt) '


C
4π

φ2
amp

M2
Pl

m3
φ

M2
Pl

(
m0

3/2

H

)2

' 3C
4π

(m0
3/2)2mφ

M2
Pl

for H > m0
3/2

C
4π

φ2
amp

M2
Pl

m3
φ

M2
Pl

' 3C
4π

H2mφ

M2
Pl

for H < m0
3/2

.

(71)

Transverse gravitino yield

n
(t)

3/2

s
'
(

Γ(φφ→ ψtψt)

H

)
H=m0

3/2

3TR

4mφ
=

9C
16π

m0
3/2TR

M2
Pl

' 3× 10−22 C

(
m0

3/2

106 GeV

)(
TR

1010 GeV

)
. (72)
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Gravitino production

Longitudinal gravitino production

Two sources of logitudinal gravitino

v
(2)
⊥ produced when H > m0

3/2 becomes ψ` later.

Γ(φφ→ v
(2)
⊥ v

(2)
⊥ ) .

C
4π

(
m0

3/2

H

)6
φ2

amp

M2
Pl

m3
φ

M2
Pl

' 3C
4π

(
m0

3/2

H

)4
(m0

3/2)2mφ

M2
Pl

,

(73)

ψ` produced when H < m0
3/2.

Γ(φφ→ ψ`ψ`) .
C
4π

φ2
amp

M2
Pl

m3
φ

M2
Pl

' 3C
4π

H2mφ

M2
Pl

. (74)

longitudinal gravitino yield

n
(`)
3/2

s
.

(
Γ(φφ→ ψ`ψ`)

H

)
H=m0

3/2

3TR

4mφ
' 9C

16π

m0
3/2TR

M2
Pl

' 3× 10−22 C
(

m0
3/2

106 GeV

)(
TR

1010 GeV

)
. (75)
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Gravitino production

Inflatino and stabilizino production

Heavy fermion states have oscillating parts in their masses.

m±heavy ' ±mφ + 2α2
±m̂
±
3/2, (76)

where m̂3/2 has an oscillating term of O(H).
Inflatino/stabilizino yields

n
v

(1)
⊥

s
'
n
v

(2)
⊥

s
'27C

16π

HinfTR

M2
Pl

'9× 10−15 C
(

Hinf

1013 GeV

)−1( TR

1010 GeV

)
. (77)
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Gravitino production

Higher power inflaton potential

K = −1

2
(φ− φ†)2 + |X|2 + |z|2 − |z|

4

Λ2
, (78)

W = λXφn + µ2z +W0. (79)

Scalar mass matrix

V = (φ X)

(
(λφn−1)2 −2m0

3/2(λφn−1)

−2m0
3/2(λφn−1) n2(λφn−1)2

)(
φ
X

)
. (80)

For n 6= 1, the masses are not degenerate.
Induced oscillation amplitude of stabilizer X (n 6= 1)

Xamp ∼
m0

3/2

mφ
φamp, with mφ ≡λφn−1

amp . (81)

Time evolution of the gravitino mass m3/2 (n 6= 1)

m3/2 '


m0

3/2φ
2

M2
Pl

+m0
3/2 for mφ > m0

3/2

mφφ
2

M2
Pl

+m0
3/2 for mφ < m0

3/2

. (82)
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Gravitino production

Higher power inflaton potential

The transverse gravitino production is suppressed by (m0
3/2/mφ)2 compared

to the case without a stabilizer field.

For a quartic potential (n = 2),
Gravitino yields

n
(t)

3/2

s
' 9C

16π

(
90

π2g∗

)1/4
(

(m0
3/2)2

H
1/2
inf M

3/2
Pl

)
' 7× 10−24C

(
Hinf

1013 GeV

)−1/2
(

m0
3/2

106 GeV

)2

,

(83)

n
(`)

3/2

s
' 9C

16π

(
90

π2g∗

)1/4
(
m0

3/2

MPl

)3/2

' 2× 10−20 C

(
m0

3/2

106 GeV

)3/2
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Gravitino production

Summary of gravitino abundance

Figure: Dependence of gravitino abundance Y3/2 = n3/2/s on the reheating
temperature TR. Parameters are set as m3/2 = 106 GeV and Hinf = 1013

GeV.
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Gravitino production

Summary of this section

quadratic inflaton potential

The transverse gravitino is produced dominantly at
H ∼ m0

3/2, and suppressed compared to the case without a
stabilizer field.

The longitudinal gravitino is produced dominantly at
H ∼ m0

3/2.

The inflatino/stabilizino production is not suppressed.
Depending on its interactions and masses, this can be a
dominant source of the gravitino by their decay. See
[Nilles et al., 2001a] for cosmological consequences of inflatino.

quartic inflaton potential

Gravitino production is enhanced from the quadratic case,
but still much suppressed compared to the case without a
stabilizer field.
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Summary, conclusion, and prospects

1 Introduction
Gravitino problem
Context of our work
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Model and its dynamics
Gravitino production

5 Conclusion
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Summary, conclusion, and prospects

Summary

We studied gravitino production by preheating with
focuses on (Z2-symmetric) large-field models.

Our setup is way more realistic than the previous works:
shift symmetry of the inflaton Kähler potential, with or
without a stabilizer field, no Polonyi problem, and
gravitino as a time-dependent mass eigenstate.

Gravitino abundance depends very much on the model:
with or without a stabilizer field, and quadratic or quartic
(or higher) potentials.
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Summary, conclusion, and prospects

Summary of gravitino abundance

Figure: Dependence of gravitino abundance Y3/2 = n3/2/s on the reheating
temperature TR. Parameters are set as m3/2 = 106 GeV and Hinf = 1013

GeV.
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Summary, conclusion, and prospects

Conclusion

Without a stabilizer field X

Longitudinal gravitino abundance is well suppressed.

For a quadratic potential, transverse gravitino abundance
is less than thermal gravitino abundance.

For a quartic potential, transverse gravitino abundance is
large irrespective of the reheating temperature, and
cosmologically problematic.

With a stabilizer field X

Due to the small induced oscillation of X, the oscillation of
the gravitino masses is suppressed.

For both of quadratic and quartic potentials, transverse as
well as longitudinal gravitino abundance is less than the
thermal gravitino contribution.
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Summary, conclusion, and prospects

Prospects

We can generalize this work to the following cases:

Non-minimal Kähler potential
→ General treatment becomes technically involved.

Complex scalar configurations
→ We cannot neglect the auxiliary vector field in
supergravity.

D-term inflation
→ Gaugino plays the role of goldstino.

Constrained superfields such as (orthogonal) nilpotent
superfield(s)
→ Sound speed of gravitino can be non-relativistic.

It will be interesting to study these cases.
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Miscellaneous

Notations and conventions

Metric

The sign is the (−,+,+,+) convention.

Dirac γ matrices

{γ̂µ, γ̂ν} = 2gµν .

Related to the flat space quantities by γ̂µ = eaµγa.

(γ0)† = −γ0 and (~γ)† = ~γ.

γ∗ ≡ iγ0γ1γ2γ3, and PL ≡ 1+γ∗
2
, PR ≡ 1−γ∗

2
.

Dirac/Majorana conjugate

ψ ≡ iψ†γ0.

Charge conjugation matrix C: γµT = −CγµC−1.

Majorana fermion λ satisfies λ = −C−1λ
T

.

Curvature

ωµ
ab =2eν[a∂[µeν]

b] − eν[aeb]σeµc∂νeσ
c,

Rµν
ab ≡2∂[µων]

ab + 2ω[µ
acων]c

b, Rµν ≡ Rµρabeaνebρ, R ≡ gµνRµν .
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Miscellaneous

More explanations on the derivation of yield quantities

Suppose that gravitinos are produced dominantly at H ' H∗.
Quadratic potential case

Y3/2 ≡
n3/2

s
=

(
nφ

Γ(φφ→ψψ)
H

)∣∣∣
H=H∗

(
a∗
aR

)3

4ρrad, R

3TR

=
3TR

4ρrad, R

ρφ,∗
(
a∗
aR

)3

mφ

(
Γ(φφ→ ψψ)

H

)∣∣∣∣
H=H∗

=
3TR

4mφ

(
Γ(φφ→ ψψ)

H

)∣∣∣∣
H=H∗

(85)

because ρφ,∗
(
a∗
aR

)3

= ρ
(just before decay)
φ,R = ρ

(just after decay)
rad, R .
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More explanations on the derivation of yield quantities

Suppose that gravitinos are produced dominantly at H ' H∗.
Quartic potential case

Y3/2 ≡
n3/2

s
=

(
nφ

Γ(φφ→ψψ)
H

)∣∣∣
H=H∗

(
a∗
aR

)3

4ρrad, R

3TR

=
3TR

4ρrad, R

ρφ,∗
(
a∗
aR

)3

mφ

(
Γ(φφ→ ψψ)

H

)∣∣∣∣
H=H∗

=
3TR

(
aR
a∗

)
4mφ

(
Γ(φφ→ ψψ)

H

)∣∣∣∣
H=H∗

=
3T*

4mφ

(
Γ(φφ→ ψψ)

H

)∣∣∣∣
H=H∗

(86)

because ρφ,∗
(
a∗
aR

)4

= ρ
(just before decay)
φ,R = ρ

(just after decay)
rad, R .

Here, we defined T∗ ≡ TR

(
aR
a∗

)
=
(

90
π2g∗

)1/4√
H∗MPl.
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Comment on the linear term in the Kahler potential

Linear term in the inflaton Kahler potential

If the inflaton does not have a Z2 symmetry, and the Kahler potential has
the linear sinflaton term,

K = ic(φ− φ†) + . . . , (87)

the gravitino production is significantly enhanced.
For definiteness, consider the quadratic potential case (n = 2) without a
stabilizer field. There is a mixing between φ and z induced by the following
term,

V ⊃ (DφW )(DφW ) ⊃ KφW

M2
Pl

mφφ
∗ + h.c. '

√
3icm3/2mφ

MPl
zφ∗ + h.c.. (88)

Mixing angle

θφz ∼



√
3cm3/2mφ

m2
zMPl

for mφ < mz

√
3cm3/2

mφMPl
for mφ > mz

. (89)

Amplitude of induced oscillation

zamp ∼ θφzφamp (90) 59 / 55
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Comment on the linear term in the Kahler potential

Linear term in the inflaton Kähler potential 2

If the inflaton does not have a Z2 symmetry, and the Kähler potential has
the linear sinflaton term,

K = ic(φ− φ†) + . . . , (91)

the gravitino production is significantly enhanced.
Gravitino production rate

ṅ
(`)

3/2 '
2ρz
mz

Γ(z → ψ`ψ`) ' 2ρφ
mφ

mφ

mz
θ2
φzΓ(z → ψ`ψ`), (92)

where

Γ(z → ψ`ψ`) ' 1

96π

m5
z

(m0
3/2)2M2

Pl

. (93)

Inflaton partial decay rate

Γ(φ→ ψ`ψ`) ' mφ

mz
θ2
φzΓ(z → ψ`ψ`) '



c2m3
φ

32πM4
Pl

for mφ < mz

c2m3
φ

32πM4
Pl

(
mz

mφ

)4

for mφ > mz

.
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ṅ
(`)

3/2 '
2ρz
mz

Γ(z → ψ`ψ`) ' 2ρφ
mφ

mφ

mz
θ2
φzΓ(z → ψ`ψ`), (92)

where

Γ(z → ψ`ψ`) ' 1

96π

m5
z

(m0
3/2)2M2

Pl

. (93)

Inflaton partial decay rate

Γ(φ→ ψ`ψ`) ' mφ

mz
θ2
φzΓ(z → ψ`ψ`) '



c2m3
φ

32πM4
Pl

for mφ < mz

c2m3
φ

32πM4
Pl

(
mz

mφ

)4

for mφ > mz

.

(94) 60 / 55



Introduction Lagrangian case w/o stabilizer case w/ stabilizer Conclusion Appendix

Comment on the linear term in the Kahler potential

Linear term in the inflaton Kähler potential 3

If the inflaton does not have a Z2 symmetry, and the Kähler potential has
the linear sinflaton term,

K = ic(φ− φ†) + . . . , (95)

the gravitino production is significantly enhanced.

The result is consistent with [Endo et al., 2007, Nakayama et al., 2012].

(Longitudinal) gravitino yield

n
(`)

3/2

s
'
(

2Γ(φ→ ψ`ψ`)

H

)
H=Γinf

3TR

4mφ
'

3c2m2
φ

64πM3
PlTR

(
90

π2g∗

)1/2

' 1× 10−5

(
c

MPl

)2 ( mφ

1013 GeV

)2
(

1010 GeV

TR

)
. (96)

Very violent production occurs unless c is suppressed!
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Fermion production in the background field method

Quantization I

Consider a fermion with an oscillating mass m(t) with its frequency Ω,

L = −1

2
ψ
(
/∂ −m(t)

)
ψ. (97)

Creation and annihilation operators

The Fourier mode ψ~k(t) =
∫

d3x

(2π)3/2
e−i

~k·~xψ(t, x) is expanded as

ψ~k(t) =
∑
s

[
u~k,s(t)b̂~k,s + v~k,s(t)b̂

†
−~k,s

]
, (98)

where v~k,s(t) = −C−1uT−~k,s(t), and mode functions are orthonormal, and

the creation/annihilation operators satisfy the standard canonical
anti-commutation relations.
Helicity basis

u~k,h(t) =

(
u+
~k,h

(t)

u−~k,h(t)

)
⊗ ξ~k,h, v~k,h(t) =

(
−u−
−~k,h

(t)

u+

−~k,h
(t)

)∗
⊗ ξ′−~k,h. (99)
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Fermion production in the background field method

Quantization II

Here ξ~k,h is the normalized eigenvector of helicity h = ±1, satisfying

(~σ · ~̂k)ξ~k,h = hξ~k,h. ~̂k ≡ ~k/k is a unit vector. We have also defined

ξ′~k,h ≡ −iσ
2ξ∗~k,h, which satisfies (~σ · ~̂k)ξ′~k,h = −hξ′~k,h.

Now, the normalization condition becomes
∣∣∣u+
~k,h

∣∣∣2 +
∣∣∣u−~k,h∣∣∣2 = 1.

Equation of motion

i∂0u
+
~k,h

+ hku−~k,h = m(t)u+
~k,h
, (100)

i∂0u
−
~k,h

+ hku+
~k,h

= −m(t)u−~k,h. (101)

Combining them, we obtain

0 =ü+
~k,h

(t) + ω̃2
~k
(t)u+

~k,h
(t). (102)

0 =ü−~k,h(t) + ω̃2
~k
(t)∗u−~k,h(t). (103)

where ω̃2
~k
(t) ≡ ω2

~k
(t) + iṁ(t) and ω2

~k
(t) ≡ m2(t) + k2.
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Fermion production in the background field method

Quantization III

Vacuum initial conditions

u+
~k,h

(t→ 0) =

√
ω~k(0) +m(0)

2ω~k(0)
, u̇+

~k,h
(t→ 0) = −iωk(0)u+

~k,h
(t→ 0), (104)

u−~k,h(t→ 0) =− h

√
ω~k(0)−m(0)

2ω~k(0)
, u̇−~k,h(t→ 0) = −iω~k(0)u−~k,h(t→ 0).

(105)
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Fermion production in the background field method

Particle production I

Hamiltonian density

〈H(t)〉 =
〈
ψ†i∂0ψ

〉
=

∫
d3k

(2π)3

1

2

∑
h

[
m(t)

(∣∣∣u−~k,h(t)
∣∣∣2 − ∣∣∣u+

~k,h
(t)
∣∣∣2)+ 2hk<

(
u+
~k,h

(t)u−
∗

~k,h
(t)
)]

= 2×
∫

d3k

(2π)3
ω~k(t)

(
fψ(~k; t)− 1

2

)
(106)

where the phase space density is given by

fψ(~k; t) ≡ 1

2ω(t)

[
m(t)

(∣∣∣u−~k (t)
∣∣∣2 − ∣∣∣u+

~k
(t)
∣∣∣2)+ 2hk<

(
u+
~k

(t)u−
∗

~k
(t)
)]

+
1

2

=
1

2ω(t)

[
m(t) + 2=

(
u+∗

~k
(t)∂0u

+
~k

(t)
)]

+
1

2
. (107)
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Fermion production in the background field method

Particle production II

Number density

nψ(t) = 2×
∫

d3k

(2π)3
fψ(~k; t), (108)

Ansatz of the mode function

u+
~k,h

(t) =
Ak,h(t)√

2ω̃~k(t)
e−i

∫ t dτω̃~k
(τ) +

Bk,h(t)√
2ω̃~k(t)

ei
∫ t dτω̃~k

(τ), (109)

where

Ȧk(t) =
˙̃ω~k(t)

2ω̃~k(t)
e2i

∫ t dτω̃~k
(τ)Bk(t), Ḃk(t) =

˙̃ω~k(t)

2ω̃~k(t)
e−2i

∫ t dτω̃~k
(τ)Ak(t).

(110)

This satisfies the equation of motion. We solve the time evolution of A(t)
and B(t) perturbatively in time.
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Fermion production in the background field method

Particle production III

Initial conditions of A and B

Ak(t→ 0) =
√
ω~k(0) +m(0), B(t→ 0) = 0. (111)

Initially, we expect A~k '
√
ω~k +m and B~k ' 0 at the leading order.

For modes with k2 � m2, we obtain

B~k(t) '
∫ t

0

dt′
mṁ+ im̈/2

2ω̃2
~k

A~k(0)e−2i
∫ t′ dτω̃~k

(τ) ' −iA~k(0)

∫ t

0

dt′m(t′) e−2iω~k
t′ .

(112)

For given time t, the integration cancels out due to oscillations of the

phase except for Ω−∆Ω . 2ω~k . Ω + ∆Ω with ∆Ω ∼ 1/t.

B~k(t) ' − i
2
A~k(0)m̃t for Ω− 1

t
. 2ω~k . Ω +

1

t
, (113)
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Fermion production in the background field method

Particle production IV

where m̃ stands for the amplitude of oscillating m(t). Similarly,

A~k(t) ' A~k(0)− iB′~k(0)m̃
t2

4
' A~k(0)

(
1− m̃2t2

8

)
for Ω− 1

t
. 2ω~k . Ω +

1

t
.

(114)

Growth of number density

fψ(~k; t) ' m̃2t2

4
for Ω− 1

t
. 2ω~k . Ω +

1

t
. (115)

This expression is valid as long as fψ � 1, namely qΩt . 1 with the
resonance parameter being q ≡ m̃2/Ω2 � 1. Integrating this,

nψ(t) ' C
16π

Ω2m̃2t. (116)

C is an O(1) parameter depending on the details of the oscillation. For
example, C = 1 for m(t) ∝ cos(Ωt).
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Fermion production in the background field method

Particle production V

Oscillation induced by a scalar field
Suppose

φ(t) 'φamp cos(mφt), m(t) ∝φn(t). (117)

This involves Ω = jmφ with j = n, n− 2, n− 4, . . . .

Example

For n = 1, Ω = mφ, and we can interpret the process as decay of φ,

Γ(φ→ ψψ) ∼ nψ
2nφt

∼ C
32π

m̃2

φ2
amp

mφ (118)

Example

For n = 2, Ω = 2mφ, and we can interpret the process as annihilation of φ,

Γ(φφ→ ψψ) ∼ nψ
nφt
∼ C

4π

m̃2

φ2
amp

mφ (119)
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Gravitino production in small-field inflation models

Small-field model without a stabilizer field

Single-field new inflation model [Izawa and Yanagida, 1997]

K = |φ|2 + |z|2 − |z|
4

Λ2
, (120)

W = φ

(
M2 − λφn

n+ 1

)
+ µ2z. (121)

Expansion around the vacuum: φ = 〈φ〉+ δφ with 〈φ〉 = (M2/λ)1/n.

K = 〈φ〉 (δφ+ δφ†) + |δφ|2 + |z|2 − |z|
4

Λ2
, (122)

W ' 1

2
mφ(δφ)2 + µ2z +W0 −m0

3/2 〈φ〉 δφ, (123)

where mφ = nM2/ 〈φ〉 and W0 = n
n+1
〈φ〉M2 = m0

3/2M
2
Pl.

This is similar to the chaotic inflation with a linear term in the Kähler

potential with c ∼ 〈φ〉. The inflaton decays through the mixing with z, and

the rate is consistent with [Endo et al., 2006b, Endo et al., 2007].
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Gravitino production in small-field inflation models

Small-field model with a stabilizer field

Multi-field new inflation model [Asaka et al., 2000, Senoguz and Shafi, 2004]:

K = |φ|2 + |X|2 + |z|2 − |z|
4

Λ2
, (124)

W = X(M2 − λφn) + µ2z +W0. (125)

Expansion around the vacuum: φ = 〈φ〉+ δφ with 〈φ〉 ' (M2/λ)1/n and
〈X〉 ' 0.

K = 〈φ〉 (δφ+ δφ†) + |δφ|2 + |X|2 + |z|2 − |z|
4

Λ2
, (126)

W ' mφXδφ+ µ2z +W0, (127)

where mφ = nM2/ 〈φ〉.

This is similar to the chaotic inflation with a linear term in the Kähler

potential with c ∼ 〈φ〉. Since φ and X mixes maximally, and there is a

mixing term ∼ 〈φ〉Xz∗, the decay rate is similar to the previous case at

least for H . m3/2. The inflaton decays through the mixing with z, and the

rate is consistent with [Endo et al., 2006b, Endo et al., 2007].
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Dynamical mixing of scalar fields

Induction of oscillation through mixing I

Potential of two real scalars φ1 and φ2

V =
1

2
(φ1 φ2)M2

(
φ1

φ2

)
, M2 =

(
m2

1 m2
12

m2
12 m2

2

)
. (128)

where we assume |m1m2| > m2
12 (no tachyon).

Initial condition: (φ1, φ2) = (φi, 0).

Mass eigenvalues

V =
1

2
(φ′1 φ

′
2)M

′2
(
φ′1
φ′2

)
, M

′2 =

(
m
′2
1 0

0 m
′2
2

)
, (129)

where

m
′2
1 =

1

2

(
m2

1 +m2
2 +
|m2

1 −m2
2|

m2
1 −m2

2

√
(m2

1 −m2
2)2 + 4m4

12

)
, (130)

m
′2
2 =

1

2

(
m2

1 +m2
2 −
|m2

1 −m2
2|

m2
1 −m2

2

√
(m2

1 −m2
2)2 + 4m4

12

)
, (131)
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Dynamical mixing of scalar fields

Induction of oscillation through mixing II

Mass eigenstates (
φ′1
φ′2

)
=

(
cθ sθ
−sθ cθ

)(
φ1

φ2

)
, (132)

where cθ ≡ cos θ and sθ ≡ sin θ with −π/4 < θ ≤ π/4.

c2θ =
1

2

(
1 +

√
1− 4m4

12

4m4
12 + (m2

1 −m2
2)2

)
, (133)

s2
θ =

1

2

(
1−

√
1− 4m4

12

4m4
12 + (m2

1 −m2
2)2

)
. (134)

with θ ≥ 0 for (m2
1 −m2

2)/m2
12 > 0 and θ < 0 for (m2

1 −m2
2)/m2

12 < 0.
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Dynamical mixing of scalar fields

Induction of oscillation through mixing III

Solution of the equation of motion

φ′1(t) = cθφi

(
ai
a(t)

)3/2

cos(m′1t), (135)

φ′2(t) = −sθφi
(
ai
a(t)

)3/2

cos(m′2t), (136)

In the original basis, this becomes

φ1(t) = φi

(
ai
a(t)

)3/2 [
c2θ cos(m′1t) + s2

θ cos(m′2t)
]
, (137)

φ2(t) = −φi
(
ai
a(t)

)3/2

sin(2θ) sin

(
(m′1 +m′2)t

2

)
sin

(
(m′1 −m′2)t

2

)
.

(138)
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Dynamical mixing of scalar fields

Induction of oscillation through mixing IV

φ1(t) = φi

(
ai
a(t)

)3/2 [
c2θ cos(m′1t) + s2

θ cos(m′2t)
]
,

φ2(t) = −φi
(
ai
a(t)

)3/2

sin(2θ) sin

(
(m′1 +m′2)t

2

)
sin

(
(m′1 −m′2)t

2

)
.

Induced oscillation (non-degenerate case)

φ2(t) ∼ sin(2θ)φi, (139)

after a few oscillation.

Induced oscillation (degenerate case)
In the degenerate limit m1 = m2, we have m′1 −m′2 ' m2

12/m1, and

φ2(t) ' −φi
(
ai
a(t)

)3/2

sin(m1t)
m2

12

2m1
t for t .

2m1

m2
12

. (140)
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Estimation of the mass eigenvalues

Some definition for later convenience

Remember the definition of θi, tan θi = −φ̇i/Fi. We can estimate its time
derivative as

θ̇i =
1

Fi

(
−φ̈i +

φ̇iρ̇
i
SB

2ρiSB

)
=
∂φiV

Fi
−

3m3/2φ̇
2
i

ρiSB

+
3Hφ̇iFi
ρiSB

, (141)

which is of the order of ∼ O(mφi) +O(m3/2) +O(H). It is also
conveniently expressed as

θ̇i =
∂φiV

Fi
−m3/2 − m̂i

3/2, (142)

where we have decomposed

m̂3/2 =
∑
i

α2
i m̂

i
3/2, m̂i

3/2 ≡
3HpiW +m3/2(ρiSB + 3piSB)

2ρiSB

, (143)

where

piSB ≡ |φ̇i|2 − |Fi|2, piW ≡ −(φ̇∗iFi + φ̇iF
∗
i ). (144)

Note that (ρiSB)2 = (piSB)2 + |piW |2.
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Estimation of the mass eigenvalues

Single-superfield model I

Trace and determinant

TrM =m̂3/2 +mf − α2
1θ̇1 − α2

2θ̇2

'mφ + 2α2
1m̂

1
3/2 + (α2

1 − α2
2)m3/2, (145)

det M =α2
1α

2
2 sin2(θ1 − θ2)(m̂3/2 −mc

f )2 − α2α̇2(m̂3/2 −mc
f ) sin(2(θ1 − θ2))

− (α̇2
1 + α̇2

2) sin2(θ1 − θ2) + α2
2(m̂3/2 −mc

f )(θ̇2 − θ̇1)

+ (m̂3/2 − θ̇1)(mc
f − θ̇2)

'− α2
2mφm3/2 + α2

1α
2
2 sin2(θ1 − θ2)(m̂1

3/2)2 − α2
1α

2
2

(
m̂1

3/2 +m3/2

)2
(146)

where θ̇φ ' −mφ −m3/2 − m̂1
3/2, θ̇z ' 0,

m̂1
3/2 = (m3/2 + 3H sin 2θ1 − 3m3/2 cos 2θ1)/2, m̂2

3/2 ' −m3/2,

mc
f ≡ mf + α2

2θ̇1 + α2
1θ̇2 ' −α2

2(m3/2 + m̂1
3/2) and it satisfies

m̂3/2 −mc
f ' m̂1

3/2. α̇i have been neglected because

α1α̇1 = −α2α̇2 = O(min
[
(m0

3/2)2/H,H2/(m0
3/2

]
) . O(m0

3/2).
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Estimation of the mass eigenvalues

Single-superfield model II

Mass eigenvalues
Since (TrM)2 � det M, the mass eigenvalues of M are given by

1

2

(
TrM±

√
(TrM)2 − 4 det M

)
=

{
TrM for the heavy state,

det M/TrM for the light state.

(147)

Thus, we obtain the eigenvalues

(mheavy,mlight) ' (mφ + 2α2
1m̂

1
3/2,−α2

2m3/2).
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Estimation of the mass eigenvalues

Multi-superfield model I

Matter fermion mass matrix

m̂f ' mf ' diag(mφ,−mφ, 0), (148)

in the “light-cone” basis (Φ+,Φ−, z) with Φ± = (Φ±X)/
√

2.

θ̇i and m̂i
3/2

θ̇± ' ∓mφ−m3/2− m̂±3/2 and m̂±3/2 ' (m3/2−3m3/2 cos 2θ1±3H sin 2θ1)/2.

Using these, we can straightforwardly calculate the following quantities.
Trace, determinant, and one more combination

TrM =(1− 2α2
z)m3/2 + 2

(
α2

+m̂
+
3/2 + α2

−m̂
−
3/2

)
, (149)

detM =s2
2m3/2m

2
φ + · · · = α2

zm3/2m
2
φ + . . . , (150)

m1m2 +m2m3 +m3m1 =M11M22 +M22M33 +M33M11

−M2
12 −M2

23 −M2
31

=−m2
φ − 2(α2

+m̂
+
3/2 − α

2
−m̂
−
3/2 +O(m3/2))mφ + . . . ,

(151)

where m1,m2, and m3 are mass eigenvalues.
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Estimation of the mass eigenvalues

Multi-superfield II

Mass eigenvalues
The three mass eigenvalues are
(mφ + 2α2

+m̂
+
3/2,−mφ + 2α2

−m̂
−
3/2,−α2

zm3/2).
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