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Supersymmetry, gravitino, and cosmology

@ Supersymmetry (SUSY) is a well-motivated candidate of
physics beyond the Standard Model.

@ Supergravity (SUGRA) is its local version.

o Gravitino is the SUSY partner of graviton, and it is the
gauge fermion field of SUSY with spin 3/2.

o Basically, its interaction is gravitational strength, and
gravitino is long-lived. In general, long-lived particles affect
cosmology.
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Cosmological gravitino problem

Stable gravitino

o It may exceed the observed dark matter abundance.
(The annihilation cross-section is small.)

Unstable gravitino

o Its decay products alters light element abundance by
affecting big-bang nucleosynthesis (BBN).

o They also affect cosmic spectrum including cosmic
microwave background (CMB), and ~-ray background etc.

@ The abundance of lightest SUSY particle (LSP) from
gravitino decay must also satisfy the dark matter bound.

It’s very important to estimate the gravitino abundance!
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Figure: BBN constraints on the gravitino yield [Kawasaki et al., 2008].

Fitting formula for the gravitino yield Y35 in [Kawasaki et al., 2008]:

n _ T
Yis = 2/2:2.3“0 14x(ﬁ)+... (1)
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Problems of steepness and negativity for inflaton potential

An exponential factor and a negative contribution.
S _ 1
V= oK (g”DZ-WDEW—3|W]2) +58pD4D", ()
where D;{W = o;,W + 0; KW.

Shift symmetry to obtain a flat potential,

tends to make the potential negative, V' < 0 at a large-field
region of the inflaton.
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K:—§(¢—¢)2+|X\2—P\X|4' (5)

[Kawasaki et al., 2000, Kallosh and Linde, 2010, Kallosh et al., 2011]
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Our work

A shift-symmetric inflaton with or without a stabilizer field
— Realistic large-field model.

Strongly-stabilized Polonyi field — No Polonyi problem.

Taking into account time-dependent mixing between
gravitino and a fermion. — True gravitino abundance.

@ Analytic estimation — Parametric dependence is clearer.

Reproduces results of perturbative decay
— Consistent with earlier works.
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Analysis procedure

@ Start from the supergravity Lagrangian.

© Rewrite it in terms of physical degrees of freedom.
(Transverse and longitudinal modes of the gravitino.)

@ Canonically normalize them.
@ Remove mixing with other fermions. (diagonalization)

@ The form of the Lagrangian reduces to that of Majorana
Spinors.
Apply the formula of fermion production by preheating.
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Abstract of analyses

Production of Majorana fermion by preheating

The production rate is estimated by the background field
method. Suppose that the fermion mass m(t) oscillates with its
amplitude m and frequency 2. The number density grows as

C o~
n(t) ~ EQQmZt. (8)

C =1 in the case of m(t) o cos(Qt).

Suppose the inflaton oscillates sinusoidally, ¢(t) o< cos(met).
m o< ¢ leads to 2 = nmg, (n — 2)mg, . ...

n = 1,2 can be interpreted as decay and annihilation,
respectively:

nny n3C m?
5 M-
2ngt ~ 3or Pamp

[Greene and Kofman, 1999, Peloso and Sorbo, 2000,
Asaka and Nagao, 2010] See also App. B of [Ema ct al., 2016].

[(nx¢— o) ~
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It is very important to estimate the gravitino abundance!

Given a supergravity model, our tasks are

o To diagonalize the fermion mass matrix.

e To obtain the amplitude m and frequency €2 of the
oscillating mass eigenvalues.

2
¢ = Pamp cos(myt) and m = ?A’Zél .
%m:%%mp and Q = 2my.
2M2,

o To apply the formula of fermion production to estimate the
gravitino abundance.
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Assumptions

e Kinetic terms can be regarded as minimal, K;; ~ ¢;; after
inflation.

@ Scalar field configuration is real.
(If all the parameters of the model and initial conditions
are real, this assumption is satisfied.)

@ D-term is not important.
(Inflaton is a gauge singlet, and inflation is F-term-driven.)
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Lagrangian and physical modes

Supergravity Lagrangian

_lﬁ—MlglR -9 iau *j vV
€ =5 it~ 9ij L 0" ™ —
1 ,—ii)i —Efpi 1 —i ] i
~ 59 (XL Xr tXgr XL) -3 (miijxL + miijxR)
1— 1— « v
- iqu” + 5% (ms/2Pr 4+ m3 2 PL) 3" ¥y

2 . v 7 *
+ Lgijwﬂ . (xﬁmb T xR0, )

— —1
M (V¥ -)v+e " Lay,

1
\/iMPl

where

~po 1 .
R* E,-YNP Dp’l/}g, DMT,ZJV = (8# + Zw“ b'Yab — ZAM’Y*) Py — FZ,,’!/}p,

= 4M 4M3, (8 KOu9' = 0lk0," ) v, =X DXL + 9506
W oK /
e = eK/QMPlW: mij = e /2ME {a' M2 } D;W — K/zM{‘SlFEDkW
Pl 2

18 /55



Lagrangian
000@00

Lagrangian and physical modes

Equation of motion, constraints, and decomposition

We take unitary gauge v = 0, and assume the FLRW background.

19/55



Lagrangian
000@00

Lagrangian and physical modes

Equation of motion, constraints, and decomposition

We take unitary gauge v = 0, and assume the FLRW background.

Equation of motion

v 2 i s
¢ =R —F* (mm% - —Mf 97 (X£0,0™7 + Xk o )) =0.  (10)
Pl

19/55



Lagrangian
000@00

Lagrangian and physical modes

Equation of motion, constraints, and decomposition

We take unitary gauge v = 0, and assume the FLRW background.

Equation of motion

v 2 i s
¢ =R —F* (mg/wy - —Mf 97 (X£0,0™7 + Xk o )) =0.  (10)
Pl

Constraints

m
LT 0=2x° (11)

0=D,%" +

19/55



Lagrangian
000@00

Lagrangian and physical modes

Equation of motion, constraints, and decomposition

We take unitary gauge v = 0, and assume the FLRW background.

Equation of motion
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Pl

Constraints

m
LT 0=2x° (11)

0=D,%" +

Decomposition

where ¢ =7 -4 and 7 - ' = k- 4* =0.

@
=y
<y
Il
/
-~
=1
=
|
e
£
w
~
(V)
Jr
3
=
N——
<
- o~
—
-
w
&

where H = a/a.
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Lagrangian in terms of physical degrees of freedom

671['3/2 =e 'Lite Lot e Lonix, (14)
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Lagrangian in terms of physical degrees of freedom

671['3/2 =e 'Lite Lot e Lonix, (14)
1 H =
e ﬁtz——tlﬁw +ﬁt w—ftm3/2¢7 (15)
—1 psB 0 -, 3a NS ¢
e 'L, = 4ak2M2 s —" [ 0o + (Z’Y'k})A— -5 (m3/2+H’Y )A— 5 M3 /2 ¥,
(16)
—1 \/§ —7.0 iy AW
€ Lo = 310055 [ (06 + (909" x| (a7
where
A= 0o (18)
PSB
psB = Z |§i|* + Ves, Vi =V +3m3,sMp = Z |Fil?, (19)

psB =Y _|dil> —Ves, pw =2mapMp=—Y (6 Fi+&iF).  (20)
@ @
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Lagrangian and physical modes

Canonical normalization

canonical fields

3/2
-, - \V/PSBA R i i
'l,b(t: E\/awt’ wﬁ = - 7\/§]€2Mpl 7 (»y . k‘) we’ X/ Ea3/2x , (21)
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Lagrangian and physical modes

Canonical normalization

canonical fields

3/2 ,
Ji=vad, wl=-YER_i(7-R)v, Xf=d @D

V/2k2 Mp,
Lo=— %ﬁ [7080 +i (ﬁ- E) + ams/z] be, (22)
Lo=— %W [7000 —i (v F) AT+ aﬁzg,/g] v, (23)
Laix =81 (7 F) 2P0 [65R+ 67X (24)
where
Frays = 3Hpw + ms/2(pss + 3pSB). (25)

2psB
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Preparation of diagonalization 1

Fermions x; (¢ =1,...,N) can be decomposed as goldstino v and
orthogonal fields v (I =1,...,N —1). They are packaged in v; = (v,v]).
goldstino
v :Zai(*Fi + 67" )i (26)
—Zaz (cosB; +sin0; 4" )x; = Zae % i, (27)

1

where a; = \/pip/pss and pis = |<;31|2 + |Fi|2.
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orthogonal fields v (I =1,...,N —1). They are packaged in v; = (v,v]).
goldstino
v :Zai(*Fi + 67" )i (26)
—Zaz (cosB; +sin0; 4" )x; = Zae % i, (27)

1

where a; = \/pip/pss and pis = |<;31|2 + |Fi|2.

relation of the two bases

Og. _~0pg. Aa1,y..., N
Vi (OT)..G7 xi e xi=e 0y, Of = < or ) '
]
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Lagrangian
00®000

Diagonalization of the gradient term

Preparation of diagonalization 2

In terms of these variables v;, the matter fermion Lagrangian reads

1—+ ~ ) =\ _0p. <
Lf,kin = — 5’01 [70806[‘] =+ Oﬁe’yoezi (,-7 k-) e a,OazOU

+0%; (806;) Oiy + OF; (’Y aoon)} vi, (29)
a

. a— [~ 0g. _0g. ~
Ef,mass = — §Ximinj = —5115_ (Oﬁew gq'mije 7% OjJ) UJJ_- (30)

The mixing term is now

Lomix :2@1( ) [ZalsmG )(1:| =20l ( _’)7 a;sinf;e”” 91'6”1)1.
(31)
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Diagonalization of the gradient term

Diagonalization of the gradient term

1 7 —\ (:=. L\ A ¢f
Lgrad = _5 ( c UJ_) (17 : k) A vy ) (32)
where
-~ — At ; 6_270%61:1 T .. 2,00, _ 2409
a <51T~a~62709i O e 2":0,, =0 diag (e ' >O:€ o
(33)
where we used A = — > eQVOgia?.
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Diagonalization of the gradient term

Diagonalization of the gradient term

1 7 —\ (:=. L\ A ¢f
Lgrad = _5 ( c UJ_) (17 : k) A vy ) (32)
where
-~ — At ; 6_270%61:1 T .. 2,00, _ 2409
a <51T~a~62709i O e 2":0,, =0 diag (e ' >O:€ o
(33)
where we used A = — > eQVOgia?.

Diagonalization

f/ _ % 1/)5
e A

where et ? = O7 diag ( iwoei) 0.
)

L= —% (7 (7080 +i7 k4 aM) (1”[) . (35)

v
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Diagonalization of the gradient term

Master formula of the mass matrix

1 — — - ¢
£:_§( ¢ U/J_) (’Yoao-ﬁ-i’_y"k-ﬁ-a/\/l) (vi), (36)
where
R .- 0 n
_ 4% | 00 ma/2 _ . e\ ~ 7%
with
~ 700i, o =08
ms=e mije . (38)
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Diagonalization of the gradient term

Master formula of the mass matrix

1 — — - ¢
£:_§( ¢ U/J_) (’Yoao-ﬁ-i’_y"k-ﬁ-a/\/l) (vi), (36)
where
R .- 0 n
_ 4% | 00 ma/2 _ . e\ ~ 7%
with
~ _ Y% —4%;
ms=e mije . (38)

7°-dependent mass terms (y° Mz in M = M; ++°My) can be removed,
and do not contribute to the mass eigenvalues by time-dependent field
redefinition o1g = Ltonew with L satisfying

(Qo + M2)L = 0. (39)
The final mass matrix is LT M: L [Nilles et al., 2001b)].
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0000®0

Diagonalization of the gradient term

Master formula of the mass matrix

1 /— N o
where
_ m: 0 .
e IR L TE R . FOSUR  T
M=e [V aﬁ( 0 O (ms+6:++°007)0) | (37)
with
~ _ 4%, —’YO@j
my =€’ “imyje . (38)

7°-dependent mass terms (y° Mz in M = M; ++°My) can be removed,
and do not contribute to the mass eigenvalues by time-dependent field
redefinition o1g = Ltonew with L satisfying

(Qo + M2)L = 0. (39)
The final mass matrix is LT M: L [Nilles et al., 2001b)].

The remaining task is to diagonalize the mass term, once specifying the

model.
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Summary of this section

Assumptions
Minimal Kéahler, real configuration, and irrelevant D-terms.
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Diagonalization of the gradient term

Summary of this section

Assumptions
Minimal Kéahler, real configuration, and irrelevant D-terms.

After canonical normalization,
Transverse gravitino

1= — X
Lo=— g (’YO@O 17 Ko+ amsyn) i “0)

Longitudinal gravitino and fermion system

1 /— — . 4
ﬁ:_f( ¢ Uﬁ.) (7080+i’_y'-/<:+aLTM1L>< f) J
2 new Y1/ new
(1)
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Diagonalization of the gradient term

Summary of this section

Assumptions
Minimal Kéahler, real configuration, and irrelevant D-terms.

After canonical normalization,
Transverse gravitino

1= R .
Ly=— EW: (’Yoao +1y-k+ am3/2) 0. (40)
Longitudinal gravitino and fermion system
1 — — o o
L= —7( v v/) (7080+if7-/<:+aLTM1L> e )
2 ¢ L1/ new vy
new
(41)

We should express mass eigenvalues in terms of the oscillating
inflaton field.
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© Introduction

e Gravitino Lagrangian
© Gravitino production without a stabilizer field
@ Model and its dynamics

@ Gravitino production with a stabilizer field

© Conclusion
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Model

1 4
Lo-aeep - L (12)

1
W= §m¢¢2 + 2z + Wy. (43)

K =
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2 A2
W= %m¢¢2 + 2z + Wy. (43)
Gravitino mass at the vacuum
m3 s =~ p’ /V3Mpy ~ Wo /M. (44)
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K=o ohplp- 42)
2 A2’
W= Simgd® + 122+ W, 43
= ome¢” + p'z + Wo. (43)
Gravitino mass at the vacuum

m3 s =~ p’ /V3Mpy ~ Wo /M. (44)

Strongly stabilized Polonyi field
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case w/o stabilizer
0e00

Model and its dynamics

Model

Kl

1
_ = 412 2
W= Simgd® + 122+ W, 43
= ome¢” + p'z + Wo. (43)
Gravitino mass at the vacuum
m3 s =~ p’ /V3Mpy ~ Wo /M. (44)
Strongly stabilized Polonyi field
(2) ~2v3Mpi1(m3)5/m.)?, and  m? =12(m3,s Mpi/A)>. (45)

SUSY breaking and (transverse) gravitino mass

0] ~ [Fol ~ modamp ~ HMp1, [Pl ~ 1> ~ mSaMpr> |2, (46)
sy = ﬁ s~ HOE (47)
2M Mpy
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case w/o stabilizer
000

Model and its dynamics

Goldstino nature and mass eigenvalues

1
— _(h — HT)2 2 _ =0
K = 2(¢ ¢ ) + ‘Z| A2 ’
1
W= Smed” + i’z + Wo.
Who is the goldstino?

¢ for H> mg/2 z for HZ mg/2 (48)
v~ , vl o~ ~ .
z for HSmg/2 + ¢ for HSmg/z
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case w/o stabilizer

ooeo

Model and its dynamics

Goldstino nature and mass eigenvalues

1 2 2
K:_§(¢—¢T) + 2| BVE

1
W:§m¢¢2+u2z+WO.

Who is the goldstino?

¢ for H> mg/2 z for HZ mg/2 (48)
v~ , vl o~ ~ .
z for HSmg/2 + ¢ for HSmg/z

Longitudinal gravitino-fermion system

o (7 E) [’voao+i«7-13+a/\/l] ( el/) (49)

2 VL
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ooeo

Model and its dynamics

Goldstino nature and mass eigenvalues

1 2 2
K:_§(¢—¢T) + 2| BVE

1
W:§m¢¢2+u2z+WO.

Who is the goldstino?

¢ for Hzmg/Q z for Hzmg/Q
v~ , vl o~ ~ .
z for HSmg/2 + ¢ for HSmg/z

Longitudinal gravitino-fermion system

Lo=—3 (0 o) prat i Fean] (),

Mass eigenvalues

Mme,

(mheavy, mlight) ~
- for H <m}
Me, ms3/2 ~ M3 2

—m3/2(mf§/2/H)2) for H 2 mg/z

(48)

(49)

(50)
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Model and its dynamics

Time dependence of various quantities

ms/2

v
~

H’\ng/Q Hng/Q

Figure: Left: Time dependence of my, H and mg/, in single superfield
inflation model. Right: Time evolution of mass eigenvalues of
(4*,v1) are shown by thick solid lines. The red (blue) segments show
that the main composition of the mass eigenstate is ¥* (v, ). Dashed
and dot-dashed lines show Mo and M7y, respectively.
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e Gravitino Lagrangian
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e Gravitino production

@ Gravitino production with a stabilizer field

© Conclusion
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Gravitino production

Transverse gravitino production

The annihilation rate is

~2 H2
m ~ € H'mg (51)

t
(¢¢ - w ¢ ) 4 ¢amp me = 167w Mlg'l ’

where V/3m ~ H Gamp/2Mpy is the oscillation amplitude of the
mass of the produced fermion.
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Gravitino production

Transverse gravitino production

The annihilation rate is

~2 H2
m ~ € H'mg (51)

t
(¢¢ - w ¢ ) 4 ¢amp me = 167w Mlg'l ’

where V/3m ~ H Gamp/2Mpy is the oscillation amplitude of the
mass of the produced fermion.
Transverse gravitino yield

(t)
n3/2 ~ F(¢¢ — wtwt) 3TR ~ 9C HlnfTR
s H HeH,, 4o 647 Mgl

- Hing TR
~8x 10710 i . 2
B 107C <1013 GeV> (1010 GeV> (52)
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@ v, produced when H > mg/2 becomes ¢ later.

3C mg/Q ’ (mg/2)2m¢
F(¢¢ — 'UL'UL) 5 16771' H . (53)
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Gravitino production

Longitudinal gravitino production

Two sources of longitudinal gravitino
@ v, produced when H > mg/2 becomes ¢ later.

r < 3C mg/Q ’ (mg/2)2m¢ 53
(pp = vivi) S or \ H M (53)
@ ¢ produced when H < mg/Q‘
3¢ H*m
L 0 < 2~ ¢
T(66 V%) S =3 (54)
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Gravitino production

Longitudinal gravitino production

Two sources of longitudinal gravitino
@ v, produced when H > mg/2 becomes ¢ later.

3C 7”2/2 ’ (mg/2)2m¢
F(¢¢ — 'UL'UL) 5 16771' H MFZ)I . (53)
@ ¢’ produced when H < mg/Q‘

Y 3C H2m¢

F(¢¢—>¢1/’)5167 M2, (54)
The dominant contribution comes when H ~ mg /20

3¢ (m35)°m

L(gp — i) S 202 (55)

~ 16 MR
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case w/o stabilizer
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Gravitino production

Longitudinal gravitino production

Two sources of longitudinal gravitino
@ v, produced when H > mg/2 becomes ¢ later.

3C mg/Q ’ (mg/2)2m¢
F(¢¢ — 'UL'UL) 5 16771' H MFQ)I . (53)
@ ¢’ produced when H < mg/Q‘

Y 3C H2m¢

P(¢¢—>¢1/’)5167 M2, (54)
The dominant contribution comes when H ~ mg /20

3¢ (m35)°m

L(gp — i) S 202 (55)

~ 167 MFQ,l
Longitudinal gravitino yield
0

0
n3/2 _923 ( m3/2 )( TR )
— ~ 1 »
L =8 10770 | or a7 | | 1010 cav (56) .,




case w/o stabilizer
000®000

Gravitino production

Inflatino production

The mass of the heavier spinor v; has an oscillating part,
Mheavy ~ Mg + 27/7\13/2' (57)

This allows production at H ~ H;y¢ if inflaton amplitude is
Planck scale.
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000®000

Gravitino production

Inflatino production

The mass of the heavier spinor v; has an oscillating part,
Mheavy ~ Mg + 27/7\13/2' (57)

This allows production at H ~ H;y¢ if inflaton amplitude is
Planck scale.

Inflatino yield
ng  27C HinTj H; T
) infLR ~15 inf R
— ~— o~ 1
s S Ter ag S O0x0C <1013 GeV) (1010 Gev> ’
(58)

where we have used m =~ 239 =~ 3Hjnt = \/§m¢.
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Gravitino production

Higher power inflaton potential

K=—2(6—¢"+]o - L (59)
2 A2’
W= %w" + 2+ Wo. (60)

Background expansion is different from the quadratic case.

36 /55



case w/o stabilizer
0000800

Gravitino production

Higher power inflaton potential

|2[*

A2’
1, n
W =X + 2+ Wo. (60)

K= 26— o' + 12 - (59)

Background expansion is different from the quadratic case.
For the quartic potential (n = 3), it is amp < ¢~ and H? o< a™*, and the
gravitino yields are

(t)
Ngj2  C (90 VA Hie \ 2 ~ 2% 10~ Hing 3/2 (61)
s 64w \ 7m2g. Mp - 1013 GeV ’

(&)

3/2 3/2
Majz € (90 NV mae\ T o g (e (62)
S B 64 7r2g* Mp1 B 106 GeV ’
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Gravitino production

Summary of gravitino abundance

>% 10-13
o T2
2
> 1078 | ===-- L2
2 T4
:‘E —————————_____—_____________—_‘_,_—""::_
S 408 == ] mm——— L4
6 10
________ Thermal

105 10" 10® 10° 10" 10"
Reheating Temperature Tr
Figure: Dependence of gravitino abundance Y3,5 = ngz/2/s on the reheating
temperature Tr. Parameters are set as mgz/o = 10% GeV and Hin = 102

GeV.
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Summary of this section

Quaderatic inflaton potential

@ The transverse gravitino is produced dominantly at
H ~ Hiyy.
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000000e

Gravitino production

Summary of this section

Quaderatic inflaton potential

@ The transverse gravitino is produced dominantly at
H ~ Hiyy.

o The longitudinal gravitino is produced dominantly at
H~ mg /20 and suppressed compared to the transverse
mode by a factor (mg/2/Hinf)2.

@ The inflatino production is similar to the transverse
gravitino.

Quartic inflaton potential

e Gravitino (mainly transverse) is copiously produced even
for low reheating temperature.
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Model

Kl

1
K= 36— o0 + X7+ | - 5, (63)

W =myX¢+ uz + Wo. (64)
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Model and its dynamics

Model

1 |2[*
K= —(6= 82+ 1XP + ] - oy (63)
W =myX¢+ uz + Wo. (64)
Induced oscillation amplitude of the stabilizer X
m9 .
Xamp ~ %/2 amp -+ (65)
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case w/ stabilizer
0®00

Model and its dynamics

Model

K__l — o2 1 x|? 2_ﬁ
= 5@ =8P +IXP + o - By,

A2
W =myX¢+ uz + Wo.
Induced oscillation amplitude of the stabilizer X

0
7773/2

Xamp ~ q amp -+

Time evolution of the gravitino mass ms3 /o

2 10
med? 139

—|—mg/2 for H>mg/2

M3, H

Msj2 = m¢2§12 0
— Mgy for H <mj
ME, / 3/2

(66)
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Model and its dynamics

Rewrite the model

It is convenient to define 4 = %(qﬁ + X) so that
1
K =042+ |02 - | [(q>+ L o)t h.c.} +e2 - EL (67)

1
W= omy (93 — @) + pPz + W (68)
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Rewrite the model

It is convenient to define 4 = %(qﬁ + X) so that

1 2[4
K =042+ |02 - | [(q>+ L o)t h.c.} + 22 - ’AL (67)
1
W= omg (95 = ®2) + p*z + Wo. (68)
longitudinal gravitino-fermion system
Z/
1 /— TN o/ L < ’
Ly = _5( 7o W) a0+ 7 Eram] [0 ] (69)

/
o
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case w/ stabilizer
coeo

Model and its dynamics

Rewrite the model

It is convenient to define 4 = %(qﬁ + X) so that

1 2[4
K =042+ |02 - | [(q>+ L o)t h.c.] + 22 - ’AL (67)
1
W= omg (95 = ®2) + p*z + Wo. (68)
longitudinal gravitino-fermion system

[/

1 /— TN o/ L < ’
L= -3 ( o7 v(j) U(f) ) [’7080 + 5 - k—|—a./\/l] vg;, , (69)

Ui

Mass eigenvalues

{gm(;s, —Mg, —m3/2(771,g/2/H)2) for Hzmg/Q

0
Mg, —Me¢, —M3/2 for H§m3/2

(70)
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Model and its dynamics
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Time dependence of various quantities

msg/2

<}

H~ mg/Q

37
~

H~ mg/Q

Figure: Same as Fig. 2 but for multi-superfield inflation models.
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Gravitino production

Transverse gravitino production

The production rate is suppressed by the small stabilizer amplitude.

2
£¢§mp mj’) nlg/? ~ E (mg/2)2m¢
dr ME ME\ H ) T an Mg

C Gimp M3 3C H?my

dm M2, ME — 4 M

for H > mg/2
T(¢p — P'y') ~

for H < mg/2
(71)
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Gravitino production

Transverse gravitino production

The production rate is suppressed by the small stabilizer amplitude.

2
£¢§mp mj’) Tn’g/Q ~ %(mg/2)2m¢
dr ME ME\ H ) T an Mg

C Gimp M3 3C H?my

dm M2, ME — 4 M

for H > mg/2
T(¢p — P'y') ~

for H < mg/2

(71)
Transverse gravitino yield
) (F(¢¢> - Mt)) 3Tw _ 9C ms/oTh
s H H=m3 , dmg 16w M3,
ms T
~3x107%2¢ 52 - 72
% <106 Gev ) \ 1010 Gev (72)
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Gravitino production

Longitudinal gravitino production

Two sources of logitudinal gravitino

( ) produced when H > m3/2 becomes ¢ later.

m)J 2 3 m?,,\ " (mQ,,)*m
F(¢¢—>v(f)v(f)) C ( 3/2 ¢7amp me o 3C 1572\ (M3)2) ¢7

San \ H ) MZ Mg
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Gravitino production

Longitudinal gravitino production

Two sources of logitudinal gravitino
( ) produced when H > m3/2 becomes ¢ later.

4
2 (2) C (nzg/2> Damp T 3¢ <mg/2> (m35)?mg

Poe=vi DS\ ) o, "1\ m ME
(73)
@ ¢’ produced when H < mg/Q.
C Grmp M} 3C H*my
T(¢p — ¥v°) S Pr VR VR e Ve (74)
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Gravitino production

Longitudinal gravitino production

Two sources of logitudinal gravitino
( ) produced when H > m3/2 becomes ¢ later.

4
@), < C (nzg/2> Domp M 3¢ <mg/2> (mg/2)2m¢

r ~
R S A N T A M,
(73)
@ ¢’ produced when H < mg/Q.
C ¢amp mz 3C H277’L¢
— — ~ — . 74
P(60 =) 5 4 M2, M2 T dx Mg, (74)

longitudinal gravitino yield

()
M2 <F(¢¢ - wW)) 3Tk 9¢ My Th
~ H=m0

RV
H , 4m¢ 167 .MP1

S

m? T
~ 1 —929 3/2 R )
310 ¢ (106 GeV 1010 GeV (75) 45 /55
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Gravitino production

Inflatino and stabilizino production

Heavy fermion states have oscillating parts in their masses.

mheavy -

E L~ Emy 20&7%;52, (76)

where 73/ has an oscillating term of O(H).
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Gravitino production

Inflatino and stabilizino production

Heavy fermion states have oscillating parts in their masses.

mE o dmg + 20&7%;52, (76)

heavy —

where 73/ has an oscillating term of O(H).
Inflatino/stabilizino yields

n n
vﬂ_l) - vf) N27C HmeR

s s 16w M3

_ Hipe \ * Tw
o~ 1071 — SR TA R
9> 10C <1013 GeV> (1010 GeV) (77)
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Higher power inflaton potential

_ 1 12 2 > 2
K=—5(¢-¢") +IXI"+ 2" - 55 (78)

W = AX¢" + pz + Wo. (79)
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Gravitino production

Higher power inflaton potential

_ _l 2 2 2 E
K==3(0- o +IX]+]o - O, (78)
W = AX¢" + i’z + Wo. (79)
Scalar mass matrix
)\ n—1\2 _2 0 )\ n—1
V=03 Lt ogry gy ) (5) 60

For n # 1, the masses are not degenerate.
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Gravitino production

Higher power inflaton potential

_ _l 2 2 2 E
K=—(6— o)+ X+ 127 - L, (78)
W = AX¢" + i’z + Wo. (79)
Scalar mass matrix
)\ n—1\2 _2 0 )\ n—1
V=03 (Lpmtrogrny i) (%) w0

For n # 1, the masses are not degenerate.

Induced oscillation amplitude of stabilizer X (n # 1)
mg/Q
me

Xamp ~ Gamp, with Mg =APamp- (81)
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Gravitino production

Higher power inflaton potential

K= =20 o)+ |XP 41 - 20
2 A2’
W = AX¢" + pz + Wo.

Scalar mass matrix
PV —2m3 o (A"
V=03 (Lomtrpgrty i ) (%)
For n # 1, the masses are not degenerate.
Induced oscillation amplitude of stabilizer X (n # 1)
m,;’/Q
me

Xamp ~ ¢amp7 with me E)\(]b;l;;

Time evolution of the gravitino mass mg/; (n # 1)

0
Tn’3/2¢ 0 0
2 +mgsy  for mg >my),
mg/o P%
me® +m3 for mg < m$
2 3/2 ¢ 3/2
Pl
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Gravitino production

Higher power inflaton potential

The transverse gravitino production is suppressed by (mJ 2/ mg)? compared
to the case without a stabilizer field.
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case w/ stabilizer
00000000

Gravitino production

Higher power inflaton potential

The transverse gravitino production is suppressed by (mJ 2/ mg)? compared
to the case without a stabilizer field.

For a quartic potential (n = 2),
Gravitino yields

(t) —1/2 0
M3 9C 90 m3/2 ~ 7% 10~ %c Hing m3/2
s 167r w2 g* HY2 M 3/2 o 1013 GeV 106 GeV

mf
(83)

i)y 9c [ 90 ms, my; \*?
3/2 3/2 —20 3/2

~ ~2x 10 C| ——— . 84
s 167 7729* ( Mp > x <106 GeV) (84)
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Gravitino production

Summary of this section

quadratic inflaton potential

o The transverse gravitino is produced dominantly at
H~ mg /20 and suppressed compared to the case without a
stabilizer field.

@ The longitudinal gravitino is produced dominantly at
H~ mg /2°

@ The inflatino/stabilizino production is not suppressed.
Depending on its interactions and masses, this can be a
dominant source of the gravitino by their decay. See
[Nilles et al., 2001a] for cosmological consequences of inflatino.

quartic inflaton potential
e Gravitino production is enhanced from the quadratic case,

but still much suppressed compared to the case without a
stabilizer field.
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Summary

o We studied gravitino production by preheating with
focuses on (Z3-symmetric) large-field models.

@ Our setup is way more realistic than the previous works:
shift symmetry of the inflaton Kéahler potential, with or
without a stabilizer field, no Polonyi problem, and
gravitino as a time-dependent mass eigenstate.

e Gravitino abundance depends very much on the model:
with or without a stabilizer field, and quadratic or quartic
(or higher) potentials.
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Figure: Dependence of gravitino abundance Y3/5 = ng/2/s on the reheating
temperature Tr. Parameters are set as mgz/, = 10% GeV and Hiys = 103
GeV.
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Conclusion

Without a stabilizer field X
o Longitudinal gravitino abundance is well suppressed.

e For a quadratic potential, transverse gravitino abundance
is less than thermal gravitino abundance.

o For a quartic potential, transverse gravitino abundance is
large irrespective of the reheating temperature, and
cosmologically problematic.

With a stabilizer field X

@ Due to the small induced oscillation of X, the oscillation of

the gravitino masses is suppressed.

e For both of quadratic and quartic potentials, transverse as
well as longitudinal gravitino abundance is less than the

thermal gravitino contribution.
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Summary, conclusion, and prospects

Prospects

We can generalize this work to the following cases:
@ Non-minimal Kahler potential
— General treatment becomes technically involved.

o Complex scalar configurations
— We cannot neglect the auxiliary vector field in
supergravity.

@ D-term inflation

— Gaugino plays the role of goldstino.

e Constrained superfields such as (orthogonal) nilpotent
superfield(s)
— Sound speed of gravitino can be non-relativistic.

It will be interesting to study these cases.
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Miscellaneous

Notations and conventions

Metric
The sign is the (—, +,+,+) convention.
Dirac v matrices
7,57} = 20
Related to the flat space quantities by 7, = e, 7a.
(7)) =—2"and ()" =7.
Y« = 107177273, and Pr, = H%, Pr = %
Dirac/Majorana conjugate
¢ =ity
Charge conjugation matrix C: v*7 = —C~y*C ™.

Majorana fermion \ satisfies A = —o—\".
Curvature
w, ™ :26”[a6[uey]b] — e, 0 e,°,

R E?ﬁ[uwy]ab + Zw[uacwl,]cb, Ruw = Ry, "Peaver’, R =g, R".
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Miscellaneous

More explanations on the derivation of yield quantities

Suppose that gravitinos are produced dominantly at H ~ H..
Quadratic potential case

3
F<¢¢—>ww>) ‘ (L)
_ nzg/2 (n¢ H H=H, \R

Y3/2 = s = 4prad, R
3TR
a 3
_ 3Tw Por (?) (F(¢>¢ - ww)) '
4prad, R Mg H HeH,
4m¢ H H=H,
because P (;17;)3 _ pg}it before decay) _ pl(rjal(ljs,tsfter decay)‘
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Miscellaneous

More explanations on the derivation of yield quantities

Suppose that gravitinos are produced dominantly at H ~ H..
Quartic potential case

3
F(¢¢—>ww)) ‘ (L)
_MNgp2 (n¢ H H=H, \°R

s 4prad, R
3TR

3Tr P (37;)3 (HW%W))'
H=H,

- 4prad, R me H

3w (=) <F<¢¢ - ww)>‘
4m¢ H H=H,

_ 3T (T(¢p = vy)
74m¢ ( H )’H_H* (86)

Ay _ (just before decay) __ (just after decay)
because pg,« (g) = Pp.R = Prad, R .

Here, we defined T, = Tk (Z—i‘) = ( 20 )1/4 vH,Mpi.

2 g
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Comment on the linear term in the Kahler potential

Linear term in the inflaton Kahler potential

If the inflaton does not have a Z> symmetry, and the Kahler potential has
the linear sinflaton term,

K=icl¢p—o¢" ) +..., (87)

the gravitino production is significantly enhanced.
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Linear term in the inflaton Kahler potential

If the inflaton does not have a Z> symmetry, and the Kahler potential has
the linear sinflaton term,

K=icl¢p—o¢" ) +..., (87)

the gravitino production is significantly enhanced.
For definiteness, consider the quadratic potential case (n = 2) without a
stabilizer field. There is a mixing between ¢ and z induced by the following

term,
e _ KW . 3icms ;om N
V D (DgW)(DgW) D =2 Zmy¢ +h.c.:wz¢ +he. (88)
Mg, M
Mixing angle
V3emsjomg
VOUT3/27e 4 .
m2 Mpr or Mg < m
Oz ~ . (89)
3
VBemsia s e
m¢Mp1
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Linear term in the inflaton Kahler potential

If the inflaton does not have a Z> symmetry, and the Kahler potential has
the linear sinflaton term,

K=icl¢p—o¢" ) +..., (87)

the gravitino production is significantly enhanced.
For definiteness, consider the quadratic potential case (n = 2) without a
stabilizer field. There is a mixing between ¢ and z induced by the following

term,
— _ K 31
VS (DaW) (D) o W 6 4 he, ~ Mz«b* +he. (88)
Mp] MPI
Mixing angle
\/§cm3/2m¢
VOUT3/27e 4 .
m2 Mpr or Mg < m
Oz ~ . (89)
3
VBemsia s e
m¢Mp1

Amplitude of induced oscillation

Zamp ™ 9¢z¢amp (90) 59 /55



Appendix
oceo

Comment on the linear term in the Kahler potential

Linear term in the inflaton Kahler potential 2

If the inflaton does not have a Z> symmetry, and the Kahler potential has
the linear sinflaton term,

=ic(p— o)+ ..., (91)
the gravitino production is significantly enhanced.
Gravitino production rate

NONS 2pz 2pp Mo 2 et
N3j9 = I'(z— 1/) w )~ p— m—29¢zF(z — ), (92)
where
1 m3
z — i’ z . 93
I( ) =~ 567 (m0,) 20, (93)
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Linear term in the inflaton Kahler potential 2

If the inflaton does not have a Z> symmetry, and the Kahler potential has
the linear sinflaton term,
=ic(p— o)+ ..., (91)

the gravitino production is significantly enhanced.
Gravitino production rate

¢ 2pz 2p¢ m
iy 2 ET (e = ') = TG o '), (92)
where
1 md
T(z = 9P") & oo oo (93)
967 (m 3/2) ME,
Inflaton partial decay rate
ch‘;’;
e f .
N 52 ML, or mg <m
(¢ = ') = “205.T(z = ¢'y") =
my c2mi o\
__ P i f .
3271‘M1%1 (m¢> or meg >m
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Linear term in the inflaton Kahler potential 2

If the inflaton does not have a Z> symmetry, and the Kahler potential has
the linear sinflaton term,
=ic(p— o)+ ..., (91)

the gravitino production is significantly enhanced.
Gravitino production rate

NONS sz 2P Mo 2
Mg/ ™ T'(z — 1/) w ) ~ g - —0;.T(z — 1/) U ), (92)
where
1 mi
T(z — ') ~ (93)

967 (m3,,)2 Mg,

Inflaton partial decay rate

02m3
¢ f
— or me <m
32m M}, o=
D(p — 9 ~ —202.T(z — v y") ~
me 2m3 4

m
7‘#4 z for mg > m.
32rMp, \ Mg

(94) 055
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Comment on the linear term in the Kahler potential

Linear term in the inflaton Kahler potential 3

If the inflaton does not have a Z> symmetry, and the Kdhler potential has
the linear sinflaton term,

K=ic(¢p—¢")+..., (95)
the gravitino production is significantly enhanced.
The result is consistent with [Endo et al., 2007, Nakayama et al., 2012].

(Longitudinal) gravitino yield
‘
nys _ (20(6 - 9" 8T, 3c'mg (90 \'?
s H p=r,,; 4mo  64TMZ T \ 79,

2 2 (10" GeV
~1x107° (=S T .
X 0 <Mp]> (1013 GeV) TR (96)

Very violent production occurs unless ¢ is suppressed!
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Fermion production in the background field method

Quantization |

Consider a fermion with an oscillating mass m(t) with its frequency €2,

L= 20— m(D) . (97)

Creation and annihilation operators
—ik-Z

The Fourier mode ¢z(t) = [ (2703/2 e~ %Y(t, x) is expanded as
p®) = 3 [ue, Obe, +ve (05 ] (98)
where vy (t) = —Cilﬂig .(t), and mode functions are orthonormal, and

the creation/annihilation operators satisfy the standard canonical
anti-commutation relations.
Helicity basis

ul (t —u . (t *
uE,h(t) = < ]i’h( ; > ®§E,h7 UE,h(t) = < u+_k’}é)) ) ®§l_;;,h« (99)
E
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Fermion production in the background field method

Quantization Il

Here g, is the normalized eigenvector of helicity h = +1, satisfying
(¢ - k)ﬁk n = h&; - k: = k/k is a unit vector. We have also defined
k’h = —io fah, which satisfies (& - lc) Pn= —hé

E.h°
2 2
Now, the normalization condition becomes u;Ih + ’u%h =1.
Equation of motion
180u~ + hkug m(t)u;fh, (100)
iouy , + hku~ = -—m(t)u;, (101)
Combining them, we obtain
0=, (t)+ wg(t)ugh(t). (102)
0 =i, (t)+ G%(t)*uah(t). (103)
where &%(t) = w%(t) +im(t) and wi(t) = m2(t) + k2
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Fermion production in the background field method

Quantization Ill

Vacuum initial conditions

wi(0) +m(0)

ugh(t —0) = 2(®) u;h(t —0) = —iwk(o)ugh(t —0), (104)
_ wz(0) = m(0 L . _
ug’h(tﬁO) =—nh W, ulg’h(tAO) = fzw,;(O)uE’h(t%()),

(105)
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Fermion production in the background field method

Particle production |

Hamiltonian density

folRst) = ﬁ {m(t) ( wz )] - uf(t)r) + 2hkR (ug(t)“i*(”)} +3
_ %t) [m(t) + 23 (" W0t (1))] + 5 (107)
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Fermion production in the background field method

Particle production Il

Number density

A3k -
ny(t) =2 x @y fo(k; ), (108)
Ansatz of the mode function
uzh(t) — Ak:,h(t) e—zf drwg (1) + Bk: h() eift dTL:IE(T)7 (109)

1/2&;;(15) 20.1,;(1‘,)

i _ aE(t) 2i [t dr@g () : _ &E(t) —2¢ [t dra@p(r)
Ak(t) = 720’:},;(15)6 k Bk(t), Bk(t) = = e k Ak(t)
(110)

This satisfies the equation of motion. We solve the time evolution of A(t)
and B(t) perturbatively in time.
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Fermion production in the background field method

Particle production IlI

Initial conditions of A and B
Ai(t = 0) = y/wg(0) +m(0), B(t—0)=0. (111)
Initially, we expect Ay ~ \/w; +m and Bj ~ 0 at the leading order.
For modes with k2 > m?, we obtain
/ dt’mm“m/ 2 AL (0)e 2" IO~ iA(0) / a m(t'y e
i (112)

For given time ¢, the integration cancels out due to oscillations of the

phase except for @ — AQ < 2wp < Q + AQ with AQ ~ 1/t.

B , (113)
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Fermion production in the background field method

Particle production IV

where m stands for the amplitude of oscillating m(t). Similarly,

ot o B m2t? 1 1
Ap(t) >~ Az(0) — ZBE(O)mZ ~ Az (0) (1 - 3 for Q— n S2wp SO+ n
(114)
Growth of number density
~ 2,2
Folft)~ ™8 o Q—%SZUJESQ—F% (115)
This expression is valid as long as fy < 1, namely ¢Q2t < 1 with the
resonance parameter being q = 1%2/92 < 1. Integrating this,
o () ~ S 0%t (116)
16m

C is an O(1) parameter depending on the details of the oscillation. For
example, C = 1 for m(t) o< cos(Qt).
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Fermion production in the background field method

Particle production V

Oscillation induced by a scalar field
Suppose

d(t) ~Pamp cos(myt), m(t) oo™ (t). (117)

This involves 2 = jmg with j =n,n —2,n—4,....

Example

For n =1, Q = mg, and we can interpret the process as decay of ¢,

’nw C ff’LQ
INC o B oy 2 MU
(¢ = ¥¥) gt 327 2y C

For n = 2, ) = 2my, and we can interpret the process as annihilation of ¢,

(118)

~ 9
T(¢¢ — ) ~ 2L~ £ T

~ — 119
ngt 41 ¢, me (1)

V.
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Appendix

Gravitino production in small-field inflation models

Small-field model without a stabilizer field

Single-field new inflation model [Izawa and Yanagida, 1997

2 2 |Z|4

K =6 + |2* - 55
_ 2 A" >
W_¢>(M p—— +uz.

(120)

(121)
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Gravitino production in small-field inflation models

Small-field model without a stabilizer field

Single-field new inflation model [Izawa and Yanagida, 1997

K = Jof? +1af - 2L, (120)
W=¢ (M2 - nAfnl) + 4’z (121)
Expansion around the vacuum: ¢ = (¢) + d¢ with (¢) = (M?/\)*/™.
K = (6) (604661 + Ioof? +|2f* - L. (122
W Lmg(86) + 1%z + Wo —mSa (6) 59, (123)

where my = nM?/ (¢) and Wy = T (@) M? = mg/2M§1.

This is similar to the chaotic inflation with a linear term in the Ké&hler
potential with ¢ ~ (¢). The inflaton decays through the mixing with z, and
the rate is consistent with [Endo et al., 2006b, Endo et al., 2007].
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Gravitino production in small-field inflation models

Small-field model with a stabilizer field

Multi-field new inflation model [Asaka et al., 2000, Senoguz and Shafi, 2004]:

4
z
K = Jof? + |XP? + 12 - ZE (124)
W = X(M? = \¢") + i’z + Wo. (125)
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Gravitino production in small-field inflation models

Small-field model with a stabilizer field

Multi-field new inflation model [Asaka et al., 2000, Senoguz and Shafi, 2004]:

K= 16 + X P + |2 = EL (120
W = X(M? = \¢") + i’z + Wo. (125)
Expansion around the vacuum: ¢ = (@) 4 d¢ with (¢) ~ (M?/A)*/™ and
(X) ~0.
K = (0) 66+ 860) + ol + 1XP+ P = L (126)
W~ mgXop + p’z + Wo, (127)

where my = nM?/ ().

This is similar to the chaotic inflation with a linear term in the Kéhler
potential with ¢ ~ (¢). Since ¢ and X mixes maximally, and there is a
mixing term ~ (¢)Xz", the decay rate is similar to the previous case at
least for H < mg/2. The inflaton decays through the mixing with z, and the

rate is consistent with [Endo et al., 2006b, Endo et al., 2007].
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Dynamical mixing of scalar fields

Induction of oscillation through mixing |

Potential of two real scalars ¢1 and ¢2

1 2 2
V=3 $2) M? (2;) . M= (:%12 ”7%2) . (128)

where we assume |mima| > mi, (no tachyon).

Initial condition: (¢1, ¢2) = (¢, 0).

Mass eigenvalues

1,., 2 ( /1> 2 m/12 0
- = M , M= ) 129
2(¢1 ¢2) ¢/2 0 m22 ( )
where
‘2 1 |m? m2\
my® = = (mi+m3 +7 (m?2 —m2)2 +4mi, ), (130)
2 m
' 1 mi —m
my = 3 <m§ +mj — 7|m% — mg‘ (mf —m3)? + 4m‘112) ) (131)
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Dynamical mixing of scalar fields

Induction of oscillation through mixing Il

Mass eigenstates

()= ) @) (132)

where ¢y = cos and sg =sinf with —7/4 <0 < /4.

2 1 4777/4112

E==(14+,1- , 133
D) < \/ Ami, + (m2 — m2)2 (133)
2 1 4m4112

sp=—(1—4/1— . 134
79 < \/ dmi, + (m2 — m32)2 (134)

with 6 > 0 for (m3 —m3)/m3, > 0 and 0 < 0 for (m3 —m3)/m3, < 0.
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Dynamical mixing of scalar fields

Induction of oscillation through mixing Il

Solution of the equation of motion

o\ 3/2
1 (t) = cos ( - ) cos(mit),

a(t)

3/2
$a(t) = —soi ) cos(mit),

RS

In the original basis, this becomes

3/2
> [cg cos(mt) + 52 cos(m'gt)] ,

Appendix

(135)

(136)

B2(t) = — ¢ ( & )3/2 sin(26) sin <(m,1 Zmé)t) sin ((m’l —Qm’z)t) ‘
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Dynamical mixing of scalar fields

Induction of oscillation through mixing IV

N\ 3/2
o1(t) = ¢s ( Qi ) [cg cos(mllt) + S‘% COS(mlgt)] )
3/2 ’ ’ l /
o @ . . (my+ma)t\ . [(m]—ma)t
P2(t) = — s (a(t)) sin(20) sin < 3 ) sin ( 3 .
Induced oscillation (non-degenerate case)

$2(t) ~ sin(20)¢s, (139)

after a few oscillation.

Induced oscillation (degenerate case)
In the degenerate limit m; = ma, we have m} —mb ~ m2,/m1, and

3/2 2
a; . mis 2ma
t)~ —¢; | —= t) —=t f t < . 140
oa(0) = 6. (05 )smmo J22e o e 2L (ao)
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Appendix

Estimation of the mass eigenvalues

Some definition for later convenience

Remember the definition of 6;, tan6; = —qﬁZ/F, We can estimate its time
derivative as
) 1 e Gipl _ 3 2 3H,F
o - L (_@ n ¢zpl_sg> _ 00,V _ mSi/2¢ L3 <15 3 (141)
E; 2psp E; PsB PsB

which is of the order of ~ O(mg,) + O(ms/2) + O(H). It is also
conveniently expressed as

: 0y, V i
0; = d;f, — Mg/2 — Mg3/2, (142)
where we have decomposed
_ _; _; _ 3Hpw +ms/s(pss + 3pt
msz/e = Za?mg/z, mg o = Ld ;/pzl( B SB), (143)
i SB
where
pss = i — |B®, pv = — (i Fi + $iFy). (144)

Note that (pig)? = (pkg)? + |piy 2.
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Estimation of the mass eigenvalues

Single-superfield model |

Trace and determinant
Tr M ZT?L3/2 +my — OL%@& — 0430.2
~my + 2070 + (0F — aj)maa, (145)
det M =aia3sin®(6, — 02) (M3 /2 — mfc)2 — bz (Mg o — m§)sin(2(61 — 62))
— (dl + dg) sin® (91 — 92) + ag(’ﬁ\lg/Q — m‘})(ﬁg — 91)
+ (m3/2 - 91)(m? - 92)
~— a§m¢m3/2 + a2a? sin? (61 — 92)(1%:14,/2)2 —alas (r’ﬁé/Q + m3/2)2
(146)
where 04 ~ —mg — ms3/s — ﬁléﬂ, 6. ~0,
ﬁl;;/z = (mg3)2 + 3H sin 20, — 3mg /5 cos 261) /2, fng/Q ~ —mg/g,
m§ =my + 030, + 20y ~ —a%(mg/g + ﬁlém) and it satisfies
Mgjy — MG T?Lé/z. &; have been neglected because

a1dn = —azde = O(min [(mg,,)*/H, H* /(m3,]) S O(m3,).
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Appendix

Estimation of the mass eigenvalues

Single-superfield model Il

Mass eigenvalues
Since (Tr M)? > det M, the mass eigenvalues of M are given by

Tr M for the heavy state,
det M/Tr M for the light state.
(147)

L

; (TrMi V(Tr M)% — 4 det M) = {

Thus, we obtain the eigenvalues

(Mieavy, Miight) ~ (Mg + 203y 5, —a3ms)2).
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Appendix

Estimation of the mass eigenvalues

Multi-superfield model |

Matter fermion mass matrix
my ~ my ~ diag(me, —me, 0), (148)
in the “light-cone” basis (&1, ®_, z) with &1 = (& £ X)/V2.
0; and TAn,g/g
Oy ~ Fmg —mg/p — T/T\L3i/2 and ﬁ\l;t/Q ~ (mgz/2 — 3msg,z cos 201 £ 3H sin 2601) /2.

Using these, we can straightforwardly calculate the following quantities.
Trace, determinant, and one more combination

TrM =(1 — 20%)ms o + 2 (aimg/z + oﬁ_m;/z) . (149)
det M :sgmg/gmi 4+ = Oézmg/gmi + ..., (150)
mims + mams + mami =Mi1Maz + Maoa M3z + Mszs M
— My — M3 — Mj,
=—mj - 2(ai7’ﬁ§'/2 — 012,771;/2 + O(msy2))me + ...,
(151)

where m1, m2, and m3 are mass eigenvalues.
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Appendix

Estimation of the mass eigenvalues

Multi-superfield I

Mass eigenvalues
The three mass eigenvalues are
(mg + 20&7%;/2, —mg + 202 m3/2, —aZmgy)s).
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