

Myung Gyoon Lee (Jinhyuk Ryu, Gwang-Ho Lee+)

Seoul National University, Astronomy 2015. 1. 27

제4회 우주탐사회 워크샵, 2015.1.25-27, 하이원리조트

What is the wise way of studying clusters?

WISE! (Wide-field Infrared Survey Explorer)

Clusters? Our Clustering?

Part 1. A WISE Study of Star Clusters

(Jinhyuk Ryu et al. 2015, in prep)

Where are they?

- Star clusters are a good tracer to study structures of the Milky Way. However, known clusters are mostly located in the solar neighborhood.
- Open clusters: N= 2,168 (Dias+02, 2014 ver.)
- Globular clusters: N = 157 (Harris 1996, 2010 ver.)
- Embedded clusters: N~ 200
 - Bica+03, Mercer+05, Borrisova+11, Morales+13, and more refs.
- An estimated number of entil open clusters in the MWG ~ 100,000 (Roeser+10)
- Then, where are those unknown clusters?

Where to find?

- The Galactic center direction
 - There are 2-3 arms, a bar, and the bulge.
 - The number density of star clusters is high.
 - It is impossible to see
 deep inside through the
 Galactic plane in optical.
 - -NIR/MIR all sky survey data in WISE is a tool to find them.

Survey sky coverage and data

- A 720-deg² area (|/≤30° & |b|≤6°), consists of 334 fields. (90'×90')
 - +2MASS (K~15)
 - +UKIDSS GPS (Galactic Plane Survey; K~18)
 - +VVV (Vista Variables in the Via Lactea; K~18)
 - +GLIMPSE

Results: New Clusters

- (Method) automatic selection & visual search
- (Output) 1835 preliminary cluster candidates.
 - 163 (class A: 23, class B: 140) probable star cluster candidates.
 - 758 possible candidates (class C).
 - Two globular cluster candidates.

Sample : RL 022: embedded cluster?

Brightness density map (W1)

Spatial distribution of candidates

30

20

10

0

Galactic longitude[°]

-10

-20

-30

 Entire candidates (A+B+C=921)

• Embedded cluster candidates (258)

• Known Open clusters

Spatial distribution of star cluster candidates

Globular Cluster Candidate #1

2MASS K band (10'X10')

E(B-V) = 1.4[Fe/H] = -2.0 d = 20 kpc r_H = 40".85 (=3.88 pc)

GC Candidate #1

GC Candidate #2

E(B-V) = 1.85 d = 15.8 kpc [Fe/H] = -2.0

GC Candidate #2

Summary

- We find and investigate visually 1835 star cluster candidates using the WISE, 2MASS, UKIDSS, VVV, and GLIMPSE data at the central region of the Milky Way.
- 25 candidates are probably genuine star clusters. 16 are embedded; young clusters and 9 seems to be old.
 - The WISE data has advantage to find very young clusters, or old clusters.
 - Two of them are GC candidates.
- These two candidates are likely to be **halo GCs**, (old and metalpoor) but they are located at close to the Galactic plane.
- The asymmetric Galactic longitude distribution is originated mainly by embedded candidates. The Galactic bar end may be related to this.

Part 2. A WISE Study of Galaxy Clusters

Galaxy evolution in the mid-infrared green valley: a case of the A2199 supercluster (Gwang-Ho Lee et al. 2015, ApJ)

Abell 2199 Supercluster (z=0.03)

- \checkmark A galaxy catalog of Hwang+12 for Abell 2199
- ✓ SDSS DR7 spectroscopic data
- \checkmark WISE provides all sky survey data in four MIR bands (3.4, 4.6, 12, 22 μm)
- ✓ 1529 member galaxies = 559 early types (E/S0) + 970 late types (S/Irr)

MIR galaxy classification

The MIR green valley vs. The Optical green valley

- ✓ The MIR green valley galaxies
 ≠ the optical green valley galaxies.
- ✓ The MIR green valley galaxies belong to the optical red sequence.

This figure suggests that SF quenching mainly occurs before galaxies enter the MIR green valley.

Environment dependence of MIR GV galaxies: The cumulative distributions of $\sum_5 \& R/R_{200}$

- MIR green valley galaxies show the distributions between MIR blue cloud galaxies and MIR SF sequence galaxies.
- However, early-type galaxies show little difference between MIR blue cloud and MIR green valley galaxies.
- A unique difference between early-type MIR blue cloud galaxies and early-type MIR green valley galaxies is the MIR colors.

MIR colors of ETGs

- ✓ Two component SSP model (Piovan+03)
 12Gyr + 0.5, 1, 2 Gyr stellar populations
- ✓ A small amount of young populations makes [3.4]-[12] colors green (> -1.55).
- ✓ 50% of ETGs in the MIR green valley stopped forming stars at least 2 Gyr ago.
- ✓ The MIR traces SF over a longer timescale (> 2 Gyr) than the NUV and optical wavelengths (Ko +13).

Conclusions

 The MIR green valley is the site where the morphology transformation of galaxies mainly appears to occur.

Summary

A wise? study or A WISE study of clusters.

FOREVER (FORmation & EVolution of ClustERs)