Near–Infrared Imaging Spectroscopic Survey in Space

Woong-Seob Jeong Space Astronomy Group, KASI

Survey Science Group Workshop, High1 Resort, 25~27 Jan.

NISS: Near-IR Imaging Spectrometer

- Technical heritage from MIRIS
- Wavelength range: $0.9 \sim 3.8 \mu m$ (continuous)
- Array format: 1024 x 1024, FoV: ~2 deg. X 2 deg. (15" resol.)
- 15cm aperture, Imaging & Low-Resolution Spectroscopy (R~20), Sensitivity ~17 AB mag.

Collaboration in SPHEREx

- Spectro-PHotometer for the Extragalactic structure, Reionization and ices Explorer
- Science Objectives: All-Sky Spectral Survey for
 - Inflationary Cosmology
 - History of Galaxy Formation
 - Galactic Ices
- Participating Institutes (PI: Jamie Bock)
 - JPL: management, thermal system, readout electronics, QA
 - Caltech: Instrument Development, I&T, Data Pipeline
 - Ball Aerospace & Technologies Corporation: spacecraft
 - ASU, Caltech, Harvard, IfA, JPL, OSU, UC Irvine: Science
 - KASI: H/W, data pipeline, science

• SPHEREx is the extended mission of the NISS.

SPHEREx Baseline Mission Parameters

cf. NISS: 2 bands

Band1: 0.95 ~ 1.9um Band2: 1.90 ~ 3.8um

Parameter	Required Value	Capability Value	
Telescope aperture	20 cm		
Focal ratio	3		
Band 1	$0.75 - 1.25$ um; $\lambda/\Delta\lambda = 40$; H2RG-2.5 um		
Band 2	1.25 – 2.10 um; $\lambda/\Delta\lambda$ = 40; H2RG-2.5 um		
Band 3	2.10 – 3.50 um; $\lambda/\Delta\lambda$ = 40; H2RG-5 um		
Band 4	2.60 – 5.00 um; $\lambda/\Delta\lambda$ = 150; H2RG-5 um		
Total FOV	3.5 deg x 7 deg		
Pixel size	6" x 6"		
Optics temperature	80 K		
5um array temperature	50 K		
Total efficiency	30 %	50 %	
Pointing jitter (1 σ , 200 s)	3"	1.5"	
Large (70°) slew time	150 s	90 s	
Small (10') slew time	20 s	10 s	
Read noise CDS	18/15 e ⁻	10.5 e ⁻	

<u>Required</u> assumes not-to-exceed value for all components <u>Capability</u> assumes estimated performance for all components

Nominal performance is intermediate

NISS Expected Sensitivity

- 10-second interval readout : 600-second integration
- Degradation of sensitivity for point sources
- Sensitivity (15-arcsec resolution)
 - diffuse source (5 σ) : 0.03~0.06 MJy/sr
 - Point source (5 σ) : 16.9 ~ 17.2 AB mag.

SPHEREx Sensitivity (1/2)

SPHREx Sensitivity (2/2)

NISS Science Mission

Near–IR Imaging Spectroscopy

- Large Nearby galaxies / Clusters of galaxies
- Star-forming regions
- Cosmic Near–Infrared Background

λ (μm)	line	Туре
1.26, 1.64	[Fe II]	Emission
1.875	Ρаα	Emission
1.96	[Si IV]	Emission
2.212	H ₂ 1-0 S(1)	Emission
3.05	H ₂ O Ice	Absorption
3.3	РАН	Emission

Near-Infrared Emission Lines

Multiwavelength observation for M55

Science Objective I

• Star Formation in Local Universe

- Nearby Galaxies
- Star forming regions
- Clusters of galaxies
- Supernova Remnants

```
• ...
```

o Tracer of SFR

- $\odot~$ UV continuum: longward of Ly α forest
- Recombination lines: H α , H β , P α , P β , Br α , Br γ , ... SFR(M_{\odot} year⁻¹) = 7.9 × 10⁻⁴² L(H α) (ergs s⁻¹)
- Forbidden lines: OII

SFR(M_{\odot} year⁻¹) = (1.4 ± 0.4) × 10⁻⁴¹ L[OII] (ergs s⁻¹)

• Far-IR Continuum

 $SFR(M_{\odot} \text{ year}^{-1}) = 4.5 \times 10^{-44} L_{FIR} \text{ (ergs s}^{-1}\text{) (starbursts)}$

• New Tracers: Pa α , PAH, ... ? \rightarrow supply complementary data

Star Formation in Nearby Galaxies

MIR

FIR

Nearby Galaxies

- \odot Large size: up to ~ 1 sq. deg.
- Complementary data: SINGS (Spitzer), KINGFISH (Herschel), HI Survey, Hα survey
- Star formation relation

Kennicutt & Evans 2012

Excess Emission in Mid-Infrared

- Piovan AGB dust model (2003)
- Excess emission
 - \rightarrow past SF activity in ETG

Star Formation in Star forming Regions

• YSOs in LMC: H₂O ice feature

Science Objective II

Star Formation History in High-z Universe

Cosmic Near-Infrared Background Observation

- → Contribution from resolved or unresolved sources: Near-infrared excess emission
- Serendipitous Discovery of Bright
 Objects at High Redshift
 → Optional

Detected WISE galaxies

Detection of CIB Fluctuation

- Smoothed image
 Correlation & fluctuation
- Fluctuation strength:
 ~2% of sky brightness
- Fluctuation at >100 arcsec
- Smooth fluctuation from ZL (Pyo et al. 2012)
- Upper limit of fluctuation: ~0.02% of sky rightness

Matsumoto, Seo, Jeong et al. 2011

Absolute Brightness of CIB

- Absolute brightness
 - Resolution & sensitivity
 - Removal of foreground sources
 - Stacking pixels

- Origin?
 - Zodiacal light
 - Lyman α or Lyman break: drop at $\lambda \sim 1 \mu m$ POPIII or first stars or first galaxies
 - TeV Gamma-ray photons from blazars
 - Intra-Halo Light ...

Fluctuation of CIB

Detection of fluctuation

- AKARI observation
- MIRIS: large scales > 3 deg.
- NISS: medium scales but, continuous

• Spectral resolution ~20

- ⊙ ∆z ~ 0.5 at z=10
- ∆t ~ 0.03 Gyr

Intra-Halo Lights

- IHL (NISS-NASA Prop.)
 Stripped stars from galaxy mergers
- Spectrum & fluctuation?

 • Flat near 1μm
 - \odot < 1 μ m spectrum

Extragalactic sources

- Expected angular power spectrum
- Halo model + semianalytical galaxy formation model

Scientific Targets

Nearby & Distant Universe

Nearby galaxies, clusters of galaxies, star-forming regions ...

- CIB observations in low-background regions
 - Detection of degree-scale fluctuation
 - ⊙ e.g., 6 deg. x 4 deg. ~ 24 sq. deg. → 2~3 months
- Number of imaging spectroscopy: > 20 targets

Objects	Targets
Nearby galaxies	M31, NGC628, … ; 15 galaxies
Local clusters of galaxies	Abell 2199, \cdots ; 1~2 clusters
Star-forming regions	LMC, SMC, … ; ~6 regions
CIB observations	NEP, SGP ; 1~2 regions

SPHEREx Science Overview

SPHEREX: An engineered all-sky spectral survey with 3 science goals Surveys are a natural synergy enabled by by the spacecraft orbit and observing scenario

- Inflationary Cosmology and DE (all-sky survey)

 Probes properties of inflation by measuring non-Gaussianity (f_{NL}), running of the spectral index (α_s), departure from flatness (Ω_k)
 Cosmology derived from 3-D clustering of galaxies

 - Unique large volume survey at z < 1 measures universe to fundamental limits and complements Euclid and WFIRST surveys at higher redshift
 ⇒Deliver Euclid like cosmological power ~3-4 years before.

Galactic Ice Survey (Galactic plane survey)

- Surveys the role of ices in all phases of star formation from ambient molecular clouds to circumstellar and protoplanetary systems
 Unique near-infrared spectral survey, provides a catalog for JWST and ALMA

History of Galaxy Formation Survey (deep 200 sq. deg. survey) - Measures total galaxy star formation for 0 < z < 6 - Probes epoch of reionization for 6 < z < 10

- Ensemble galactic star formation derived from deep 3-D intensity mapping survey
 Unique line-mapping capability complements current and future continuum measurements with Herschel, Planck, Spitzer and Euclid

Ancillary Science

- All-sky spectral survey for rich and diverse astronomy applications with discovery potential for unusual objects
- E.g. clusters and brown dwarfs will be detected in abundance
- High-z QSOs will be detected, if they exist

SPHEREx Full Sky Source Density

- Number of identified sources is unprecedented for z < 1.2
- Assumes nominal sensitivity between required and capability cases
- Counts based on a full simulation from COSMOS catalog

SPHEREx Full Sky Source Completeness

- Recovered galaxy density as a function of redshift accuracy.
- Important point: SPHEREx provides a redshift for all detected galaxies, not only ELGs.

Spectral Database POP

Object	# Sources	Legacy Science	Reference	Object	# Sources	Legacy Science	Reference
Detected galaxies	1.4 billion	Properties of distant and heavily obscured galaxies		Mass- losing, dust	Over 10,000 of	Spectra of M supergiants, OH/IR stars, Carbon	Astro- physical
Galaxies σ(z)/(1+z) < 0.03	120 million	Study (H, CO, O, S, H ₂ O) line and PAH emission by galaxy type. Explore	Simulation based on COSMOS	stars	all types	atmospheres, dust return rates, and composition of dust	Quantities, 4 th edition [ed. A.Cox] p. 527
Galaxies σ(z)/(1+z) < 0.003	9.8 million	Cross check of Euclid photo-z. Measure dynamics of groups and map filaments.	and Pan- STARRS	Brown dwarfs	>400, incl. >40 of types T and Y	Atmospheric structure and composition; search for hazes. Informs studies of giant exoplanets	dwarfarchiv es.org and J.D. Kirkpatrick, priv. comm.
QSOs	> 1.5 million	Understand QSO lifecycle, environment, and taxonomy	Ross et al.	Stars with hot dust	>1000	Discover rare dust clouds produced by cataclysmic events like the collision which produced the	Kennedy & Wyatt (2013)
QSOs	0-300	Determine if early QSOs	(2013) plus			Earth's moon	
at z > /		scopy probes EOR through Ly α forest	Sinuations	Diffuse ISM	Map of the Galactic plane	Study diffuse emission from interstellar clouds and nebulae: hvdro-	GLIMPSE survey (Churchwell
Clusters with ≥ 5	25,000	Redshifts for all eRosita clusters. Viral masses	Geach et al., 2011, SDSS cots		F	carbon emission in the 3µm region	et al. 2009)
Main sequence stars	>100 million	Test uniformity of stellar mass function within our Galaxy as input to extragalactic studies	2MASS catalogs				

Inflationary Cosmology from a Galaxy Survey

Goal: Probe the properties of Inflation

- SPHEREx measures non-Gaussianity (f_{NL}), running of the spectral in dex (α_s), and departure from flatness (Ω_k) to unprecedented precision. - SPHEREx uniquely surveys the large volume (full sky) required to m easure non-Gaussianity.

- SPHEREx will extract all cosmological information to z<1 and thus perfectly complement the higher redshift regime of Euclid and WFIRST.

⇒ Precise measurements of inflationary observables (f_{NL} , n_s , α_s , Ω_k , an d r) are used to determine the physical process that caused inflation.

Fit to cosmological parameters $f_{NL}, \alpha_s, \Omega_k, \dots$

3D galaxy power spectrum as function of redshift

SPHEREx Inflation Summary

- SPNEREX has a very strong galaxy clustering scientific case.
 - It will constrain inflation theories to unprecedented accuracies.
 - It will measure f_{NL} with a precision of \pm 1.1 at 1 σ .
- Measuring f_{NL} requires large scales \Rightarrow Full sky survey.
- Measuring f_{NL} and other parameters require many galaxies ⇒ Point source sensitivity re quirement.
- Measuring α_s and Ω_k require accurate redshifts \Rightarrow Spectral resolution requirements.
- Cosmological parameter forecasts:

1σ errors	SPHEREX	Current (Planck + BOSS)
Spectral index ns	2.7E-03	5.0E-03
Running α_s	1.0E-03	8.0E-03
Non-Gaussianity fnl	1.1	5.8
Flatness Ω_k	8.0E-04	3.2E-3
Sum neutrino mass [eV]	0.024	0.47

- SPHEREx should be sensitive enough to detect for the first time the running of the spectral index α_s if the Inflation model currently favors by BICEP2 holds.
- A joint Planck & BICEP2 effort will comprehensively test this picture in November

An Encompassing View of Galaxy Formation

Goal: Chart the full history of galaxy formation with emission line clustering tomography

-SPHEREx will measure the clustering of galaxies with *multiple* emission lines from z=0 to z=6. -SPHEREx will measure the clustering of the first galaxies at z > 5 using Ly α . -SPHEREx will potentially detect the direct Ly α emission from the first stars. -SPHEREx will determine the origin of the *Spitzer-CIBER* fluctuations.

 \Rightarrow SPHEREx will *uniquely map the spatial distribution* of star formation throughout cosmic times: from the on-set of star formation, to its peak formation rate and its current decline. The large scale (linear) spatial distribution is n ot measurable with deep small field observations (HST, JWST) and gives us unique insight on the relation betwe en luminous and dark matter.

⇒SPHEREx will measure diffuse intensity fluctuations just like Planck and Herschel mapped the Cosmic Infrared Background (analysis co-led by Bock and Doré)

Redshift coverage of SPHEREx measured emission lines:

Probes epoch of reionization models at z > 6 in Ly α

Intra-Halo Lights

O IHL

- Stripped stars from galaxy mergers
- Spectrum & fluctuation?
 - Flat near 1μm
 - \odot < 1 μ m spectrum

28

Galactic Ices: Reservoirs of Water and Organics

- Substantial quantities of water and organic material are locked in ices in inters tellar space and in the environs of forming stars and planets
- Within molecular clouds, abundance of H_2O_{ice} 10² 10³ x greater than H_2O_{gas}
- Within protoplanetary disks abundance of H₂O_{ice} is poorly constrained, but is p redicted to be substantial based on:
 - Ice in our solar system (asteroids, Kuiper Belt, Oort Cloud)
 - Models of disk evolution that predict most water in ice in mid-plane
 - Herschel observations of disk around TW Hydrae that imply several thousands of Earth's oceans in ice (Hogerheijde et al. 2011, Science)

NISS Schedule

Build Data Pipeline

SPHEREx Schedule

2014/12: submission of proposal 2015/07: Phase A start Sky Map 2016/06: Phase B start 2020/07: Launch

Summary

ONISS

- Technical demonstration: imaging spectroscopy
- Imaging spectroscopic survey
- Nearby galaxies, star-forming regions, lowbackground regions ...
- Operation in 2017?

o SPHEREx

Extended mission of NISSAll-sky mission in 2020?

