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Introduction From Classical to Quantum Information

Classical Information
States of classical objects describe an objective reality.

Examples:

A classical bit is in the state 0 or 1

A classical cat is either dead or alive.
A classical particle is at position X and has the velocity V.

A classical electric field has the value E(F) at the position 7’

Two given points in spacetime have a well-defined distance d.



Introduction From Classical to Quantum Information

Classical Information
States of classical objects describe an objective reality.

Examples:

A classical bit is in the state 0 or 1

A classical cat is either dead or alive.
A classical particle is at position X and has the velocity V.

A classical electric field has the value E(F) at the position 7’

Two given points in spacetime have a well-defined distance d.

Classical information

@ is a description of an objective reality.
@ is independent of the observing subject.

@ can be shared (copied).



Introduction From Classical to Quantum Information

Classical Information

Classical information can be obtained by measurement.
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Ideal classical measurements are reproducible and
do not change the state of the system.



Introduction From Classical to Quantum Information

Quantum Information

States of quantum objects do not have an objective reality.

@ A quantum bit can be in a 'superposition’ of 0 and 1
@ A quantum cat can be in a 'superposition’ dead or alive.

h\ %

@ A quantum particle can be uncertain in space and momentum.

@ A quantum field can be uncertain in its field value.

@ In a (not yet existing) theory of quantum gravity, two points in
spacetime may have an uncertain distance.



Introduction From Classical to Quantum Information

Quantum Measurement

High energy
photon

Photocathode
Focusing electrode  Photomultiplier Tube (PMT)

lonization track

Low energy photons

/

I
Anode

Connector
pins

|
Scintillator Primary

electron

Secondary
electrons

Dynode

Quantum measurements exchange information in both directions.

-»M

Interaction
Hamiltonian

VVV



Interpretation of quantum mechanics

Wikipedia gives a list of the most important interpretations:

Interpretation .

Ensemble interpretation
Copenhagen interpretation
de Broglie-Bohm theory
Quantum logic
Time-symmetric theories
Many-worlds interpretation
Consciousness causes collapse
Stochastic interpretation
Many-minds interpretation
Consistent histories

Transactional interpretation
Objective collapse theories

Relational interpretation

QBism

Author(s) .
Max Bom, 1926 Agnostic
Niels Bohr, Wemer Heisenberg, 1927 No
Louis de Broglie, 1927, David Bohm, 1952 Yes
Garrett Birkhoff, 1936 Agnostic
Satosi Watanabe, 1955 Yes
Hugh Everett, 1957 Yes
Eugene Wigner, 1961 No
Edward Nelson, 1966 No
H. Dieter Zeh, 1970 Yes
Robert B. Griffiths, 1984 No
John G. Cramer, 1986 No
Ghirardi—Rimini-Weber, 1986, o
Penrose interpretation, 1989
Carlo Rovelli, 1994 Agnostic
Christopher Fuchs, Ruediger Schack, 2010 No
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Introduction From Classical to Quantum Information

Interpretation of quantum mechanics

Even 100 years after its discovery, the interpretation of quantum
mechanics is still controversial, but it seems that:
- Classical objective reality does not exist in nature.

- What we perceive as reality is a relation between subject and object,
created by physical interaction.

- Quantum states could be viewed as a 'catalogue’ of possibilities of
what could happen in an interaction.

lv) = % <|Iiving cat) + |dead cat))




Introduction Pure Quantum States

Quantum amplitudes and state vectors

Standard Quantum Mechanics Formalism
Each classical configuration ¢ = 1,..., N is associated with an amplitude
e €C

normalized by >"_|vc|* = 1.

The list of all amplitudes {¢1,...1¥n} can be regarded as a complex vector

) ={¢1, ... ¥n}

on the unit sphere (1)[1)) = 1 of an N-dimensional vector space CV.



AT CIET) ST
The qubit

Example

The two classical states 0,1 of a switch are associated
with two complex amplitudes g, 11 € C normalized

by [¢0[* + [¢1]* = 1.
These amplitudes are regarded as a complex vector:

v = (1)

Because of the normalization they reside on the unit sphere of C?:

(YY) = Pbo + Yir = 1.

This describes the (pure) state of a quantum bit (qubit).



AT TR
The qubit — Bloch sphere

= (1) e

@ Normalization eliminates 1 degree of freedom

@ Total phase factor e is not observable

= 2 degrees of freedom left. : o

Bloch sphere representation of a qubit:

[) = cos(8/2)]0) + sin(8/2)e’® |1)



Introduction Pure Quantum States

Unitary time evolution

As long as no measurement is carried out, the amplitudes evolve in time by
means of the Schrédinger equation

.0
’EWJJ =H|¢y)
where H = H is the Hamiltonian of the system.

Formal solution:
Wt> = Ut|¢0>a

where the time evolution operator
U; = exp(—iHt)

is unitary, i.e,
uuf =ufu =1.



Introduction Projective Measurements

Projective measurement

Von-Neumann measurement postulate:
A measurement apparatus is described by a set of classical measurement

results A, associated with orthogonal states |¢,).

Quantum
State >

Classical
outcome A,

Measuring a system in the state [¢)), the measurement apparatus will
return A, with probability p, = |(1|¢,)|?.

amplitudes # probabilties



Introduction Projective Measurements

Artificial division into quantum and classical world
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The measurement postulate leads to an artificial division between the
microscopic quantum and the macroscopic classical world.



Introduction Projective Measurements

Measurements create randomness

The measurement apparatus and the (human) observer
are also quantum systems.

What is the state of the whole system?

We need a formalism that can handle quantum amplitudes and
statistical probabilities on equal footing.
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Quantum States

Quantum amplitudes and classical probabilities

Textbook quantum mechanics Classical statistics
Amplitudes Probabilities
quantum amplitudes ; probabilities p;
state vectors |1)) probability distributions {p;}
Uncertainty of what will happen | Ignorance of what did happen
in a measurement in a measurement

= A common description is needed.

= Use the notion of statistical ensembles.



Quantum States Quantum Ensembles

Concept of Ensembles

The probability p; that a bit is in the classical state 1
can be encoded by an ensemble of infinitely many bits,
where 1 occurs with the frequency p;.

901119916111019161110919991000118111001019911101011911611101911111169181111816118
90011100000010101001010010010001991010011110100111991011100000100009191011191018@
910011100011010100010011111000191191101100110110011991011119101010099911011198188
1108011109110111001101801000900809110110011101100911001811811901110111810111111811
110109011011009011110011001000@091101000111011010010800010110801000010081001801000
9101099161111191161111191611810091900000199110000011116111119616181161161132399180
911111096811101909001101119611811891111011111181800198110119941118a111100010081418
901000010000101190110110010010001110111010010110019191011110101011119901001191081
91101110091110109001801801111111109101100019111100801110111010901101018910811101810
911011116110100000161111000110011016100100111611010010100100111000011011609111110
1101010011111110080101191001680109111111109161101010980011001116000101080013031116
911019111110000991100001006600101191101119168801019911811191118220110180811a1a4188
91011010100010191010101101100111191101000100110111910011001001110111990110191101@
910811110901109110111801011111811001100001080111101080111101111611100910011801811
1111111180611110111101091601101111000008001081000100910111816180011116181601808010

Idea: Consider ensembles of qubits instead of bits.



Quantum States Quantum Ensembles

Quantum Ensembles

o Classical bit:

Only two possibilities: 0 or 1

= Two probabilities pg and p;.

@ Qubit:

Infinitely many possibilities:
) = cos( )10) + e®sin ( )11)
= Probability density p(v) ~ p(0, ¢).




Quantum States Quantum Ensembles

Quantum Ensembles

Probabilistic ensemble of quantum states:

|1(0,4)) occurs with probability density p(6, ¢).




Quantum States Quantum Ensembles

Quantum Ensembles

Probabilistic ensemble of quantum states:

|1(0,4)) occurs with probability density p(6, ¢).

As we will see:

We cannot determine p(, ¢)
by repeated measurements.

Different ensembles may represent the same
measurement statistics, i.e. they are equivalent
with respect to measurements.

Equivalence classes of ensembles!



Quantum States Quantum Ensembles

Equivalence of Quantum Ensembles

Example: Projective measurement of an ensemble of qubits:

Let the measurement apparatus be characterized by two orthogonal vectors
|p1), |¢2) with tho corresponding possible outcomes A\ and ;.

Then ); is measured with the probability

pi= [[sin@)a0 [ a60.0) (oivie.)|

~—_——
sum over ensemble observation prob.




Quantum States Quantum Ensembles

Equivalence of Quantum Ensembles

Reorganize this expression:

pi= [[sin@)a0 [ a6p06.6)|(6i0.0)
2

— /0 sin(0)d0 [0 p(9.0) (610, (0,019

s 2T
= (o] ([ "sin@)as [ a0.p(0.0) o) o) 100

2X2 matrix p

= (@il plon) = Tr[|e)(ei] o] = Tr|Ein]

= E,‘




Quantum States Quantum Ensembles

Equivalence of Quantum Ensembles

Summary so far:

If we consider a measurement projecting on

Er = [¢1)(o1], E2 = |p2) (¢2]

with the outcomes A1 and \»,

then )\; is measured with the probability

pi = Tr Eip)

= All information that plays a role
is contained in the 2 x 2 matrix p,
called statistical operator or density matrix.



Statistical Operator and Quantum States
Statistical Operator / Density Matrix

Statistical operator:

T 2w
p:/o sin(e)de/o do p(0, ¢) [(0,6)) (Y(0.6)]

General compact notation:

p= [Des@ )l p=3 pilv)wl

T T

Vectors are normalized but not necessarily mutually orthogonal.



Statistical Operator / Density Matrix

Different ensembles may correspond to the same density matrix.

Example: [1,) = cosa| 1) +sinall), p= f027r da p(a) [Ya) (Vs

plat) = 1/2/m = const plo) — sin"(3/2)

plo) — 8(o)+3(ct—/2)

) in all cases.

NI O



Statistical Operator — Properties

The statistical operator represents an equivalence class of different
quantum ensembles which cannot distinguished by measurements.

p = >_; pilti) (il Wil =1, pre0,1], S, pi=1

Properties:



Statistical Operator — Properties

The statistical operator represents an equivalence class of different
quantum ensembles which cannot distinguished by measurements.

p =2 pilti) (¥l (ilvi) =1, pi€[0,1], > pi=1
Properties:
@ p is a Hermitean operator:
p=p
@ The trace of p equals 1:

Trlo] = Zp,Tr[w, (wil| = Y=t
@ Expectation values of p behave like probabilities:

(®lp|®) =D pi (Plyyi)(wi|®) € [0,1]
i [0,1]
(S



Statistical Operator — Spectral decomposition

o= pilun i p= / dap(e)|a) (1ol

Since p is Hermitean (p = p') it has a set of orthonormal eigenvectors with
real-valued eigenvalues, i.e., it has a spectral decomposition

d
DA
j=1

W|th <¢,|¢J> == 6,] and F)j S R d=dimension of Hilbert space



Statistical Operator — Spectral decomposition

o= pilun i p= / dap(e)|a) (1ol

Since p is Hermitean (p = p') it has a set of orthonormal eigenvectors with
real-valued eigenvalues, i.e., it has a spectral decomposition

d
DA
j=1

W|th <¢’|¢j> == (SU and Pj S R d=dimension of Hilbert space

As all expectation values of p behave like probabilities, we can conclude
that the eigenvalues of p are like probabilities, too:

operator

d
Pj = [0’ 1] , Z P_] — 1 positive
j=1



Statistical Operator — Spectral decomposition

An operator p is called positive if one of the following equivalent
statements holds:

o p=pland (py, ) = (Ylply) > 0
e p=p' and all eigenvalues of p are non-negative.
@ p can be written as p = AfA.

Density matrices are positive normalized operators.

Positive maps are functions mapping positive operators to other positive
operators (density matrices onto density matrices).

Note: Completely positive is more than postive... (later)



Quantum states

o Pure states:
Physics textbooks introduce quantum states as vectors [1)).
In our new formalism they are replaced by pure states of the form

p =)l

Pure states represent the maximal knowledge that an observer can
have about a quantum system.

@ Mixed states:
In quantum information theory, a quantum state generally refers to a
mixed state represented by a statistical operator p.

A mixed state represents the partial knowledge of an observer about a
quantum system.



Statistical Operator and Quantum States
Quantum States

Quantum state of a qubit

Bloch ball representation:
p= %(1 + x0* + yo¥ —|—zo’z)

The vector (x,y, z) on the
Bloch ball can be interpreted as
expectation value of & = (¢, 0, 0%). _/

Points on the sphere represent pure states. 1>
Points inside the ball represent mixed states.
In the center we find the totally mixed state.



Quantum states

vector formalism: operator formalism:
|¥) p =)

(Yly) =1 Tr[p] =1

i0ey) = Hl¢) i0ep = [H, p]

(A)y = (VIA]) (A)p = Tr[Ap]
coherent superposition probabilistic mixture
|¥) = alihr) + Bli2) ¥ = p1y1 + pata

o> +18* =1 pr+p=1



N L) S'tica! Operator and Quantum States

Example: Pure and mixed qubit states

Coherent superposition (quantum uncertainty):

1
v =—(11+14)
p= )l = (100 1+ D1+ + 10 )
p= % <1 1) ; Tr[pc?] =0, Tr[pc™] =1

Probabilistic mixture (subjective ignorance):

p= 3o+ o) = 5(INM 4100 1)

1/1 0 e X1
p—zg J, Trlpo?] = 0, Trlpo™] =0



Projective measurement in the density-matrix formulation

Consider again a von-Neumann measurement projecting on
Er = |¢1){¢1], E2 = |p2) (2| with the outcomes A; and Xs.

o Textbook vector formalism:

The result \; occurs with probability |(1[¢;)|>. After the measurement
the system is in the state |¢;).

o Density matrix formalism:

p—p =Y EpE

1

Note that measurements generically generate mixed states!



Entropy and Information



Shannon information entropy

Recall classical probability theory:

The information content of an event with probability p is given by
Hp = —logy p

The average information content (Shannon entropy) of a probability
distribution {p;} is given by the expectation value of H,:

H=(Hp)p=—) _pilogs pi



Shannon information entropy

Recall classical probability theory:

The information content of an event with probability p is given by
Hp = —logy p

The average information content (Shannon entropy) of a probability
distribution {p;} is given by the expectation value of H,:

H=(Hp)p=—) _pilogs pi

Different scientific cultures use different prefactors:

H:—ZpiIOgQPi H:—Zp,‘|npi HZ—kBZPilnpi
i i i

Computer science Mathematics Physics



Von-Neumann entropy

Spectral decomposition:
p=_ Pilo)(®

The probability-like eigenvalues of p
allow us to define the entropy of a density operator as:

Zi: P; :_TF[N"P}

@ The von-Neumann entropy is basis-independent.

@ The von-Neumann entropy varies in the range 0 < S, <Ind.



Von-Neumann entropy of a quantum state

@ Pure state:

p =)

p has the form of a 1d projector
Probability eigenvalues {1,0,0,...}
= Zero entropy S, = 0.

o Fully mixed state:

p=

p is proportional to the identity matrix
Probability eigenvalues {1/d,1/d,...}
= Maximal entropy S, = Ind.



Mixing of ensembles

S(p) = —Tr[pln p}

If different ensembles p1, po, ... are put
together, the resulting ensemble is simply

p=> pi
i

If different ensembles p1, p2, ... are mixed with
different probabilities (weights) q;, we get

P:qui-
i

Concavity under probabilistic mixing (the entropy cannot decrease):

) (Z qui) > Z qiS(pi)

N _
\ 3B

T




Alternative information measures

Recall:
- The information of an event j with probability p; is H; = — In p.
- Shannon entropy H =", piHi = — >, pilnp;
- von-Neumann entropy S = (—Inp) = —Tr[pIn p]



Alternative information measures

Recall:
- The information of an event j with probability p; is H; = — In p.

- Shannon entropy H =", piHi = — >, pilnp;
- von-Neumann entropy S = (—Inp) = —Tr[pIn p]

The standard entropy is the arithmetic average (mean value) of the
information distribution. But one may also consider higher moments

HD =3 "piH? S =Tr[p(—Inp)"]

For example, S(® — (S(1))2 would be the information variance.



Bussrilinate
Renyi entropy

Knowing all moments or all cumulants, one could in principle recover the
complete spectrum of the density matrix.

@ Moment-generating function:

M(t) = (e=*") = (p~*) = Tr[p* ]
e Cumulant-generating function:

K(t) = InM(t) = InTr[p* %]



Bussrilinate
Renyi entropy

Knowing all moments or all cumulants, one could in principle recover the
complete spectrum of the density matrix.

@ Moment-generating function:
M(t) = (e=*") = (p~*) = Tr[p* ]
e Cumulant-generating function:
K(t) =In M(t) = InTr[p' ]

This is used to define the Renyi entropy

1 1

For g — 1 this reduces to the von-Neumann entropy. The Renyi entropy
incorporates all details of the information distribution, not only the mean.



Bussrilinate
Renyi entropy

For taking home:
In quantum information theory, the Renyi entropy
is so important because it is related to the

cumulatant-generating function
of the whole information distribution.

The ordinary entropy gives only the average information.



Information-preserving maps

An information-preserving map p — p’ leaves all information measures

(von-Neumann entropy, Renyi entropy, ...) invariant.

= This means that information-preserving maps preserve
the spectrum (eigenvalues) of the density matrix, i.e.

d d
p=>_ Pi®p(®;] = =D P (e
j=1 Jj=1

with (®;|®;) = (®}[®%) = §;; and the same P; in both expressions.

Such a map has to be unitary:

d
o = UpUT, U=> " [® (P, uuf =ufu =1.
k=1



Information-preserving maps

Unitary operations...

@ preserve all information-related aspects.
neither create nor destroy entropy.
are represented by unitary matrices UUT = UTU = 1.
can be viewed as 'rotations’ in Hilbert space H.
have eigenvalues on the complex unit circle (phases)
form the group U(d), where d is the dimension of H.

can be generated by taking the imaginary exponential
of Hermetian operators (generators, modular Hamiltonians).

Example:

Time evolution: p(t) = U(t) p(0)UT(t) with U(t) = e~ 'Ht.



Quantum States Quantum State Distance Measures

Quantum State Distance Measures



Quantum States Quantum State Distance Measures

Quantum state distance measures

Problem: How similar are two given quantum states p and o7

Various distance measures are known:

@ Trace distance
@ Quantum fidelity
© Relative entropy



Quantum States Quantum State Distance Measures

1. Trace distance

Define the p-norm of a matrix:

}1/13

A, = Tr[|A|P where A| := VAAT

Special cases:

[|Allx = Tr|A|

||Al|cc = maximal eigenvalue of |A|



Quantum States Quantum State Distance Measures

1. Trace distance
Define the p-norm of a matrix:

1Al =Te[jap] "

where |A| := VAAT
Special cases:

[|Allx = Tr|A|

||Al|cc = maximal eigenvalue of |A|

Definition of the trace distance:

T(na)i= 3l = ol = 5T [y i)

One can show [Nielsen] that the trace distance is the probability at which
the states can be distinguished with an optimal measurement.



CrEET i P e
2. Quantum fidelity

Definition of the quantum fidelity

F(p,0) = Tr [\/m} .

For pure states p = [¢) (0| and o = |¢)(¢| one has
VP = ps\/o =0, hence
F(p. o) = V) (W10) = [(61)].

@ The fidelity is unitary-invariant and behaves almost like a metric in the
space of density matrices.

@ Relation to the trace distance (Fuchs - van den Graaf):

1_F(:0a0)§ D(p7O—)S \/l—F(p,U)2.



CrEET i P e
3. Relative entropy

Classical relative entropy:

Suppose that we assume a 'wrong’ probability distribution {g;} instead of
the correct distribution {p;}. Then the information mismatch of
configuration i would be (—Ing;) — (= Inp;) =In 2

The average mismatch is known as the relative entropy or
Kullback-Leibler divergence:

D(pllq) = Zp,ln

Quantum relative entropy:

5(plle) = Trp(log p — log 7).

S(pllo) behaves almost like a metric, but it is non-symmetric.



Quantum States Quantum Thermostatics

Quantum Thermostatics



Quantum States Quantum Thermostatics

Quantum Thermostatics: Microcanonical ensemble

Gibbs postulate:
In an isolated system at thermal equilibrium S is maximal.
Classical physics: S = In|Q|
Quantum physics: S(p) = IndimH

1

Ty

Microcanonical ensemble < Fully mixed state

Example: Microcanonical qubit: p = <1(/)2 132)



Quantum States Quantum Thermostatics

Quantum Thermostatics: Canonical ensemble

If energy is exchanged with a heat bath, the entropy is maximised under
the constraint that the energy average E = (H) is constant.

dS[p] = dTr[plnp] =0, dTr[p] =0, dTr[Hp] =0



Quantum States Quantum Thermostatics

Quantum Thermostatics: Canonical ensemble

If energy is exchanged with a heat bath, the entropy is maximised under
the constraint that the energy average E = (H) is constant.

dS[p] = dTr[plnp] =0, dTr[p] =0, dTr[Hp] =0
Introduce Lagrange multiplyer «, 3:

= 5<Tr[p|n pl + aTrlp] + ﬁTr[Hp]) =Tr [(5p(|n p+a+ ﬁH)} =0.

1 ‘
Solution: p = e™®"M = p= e el with Z = Trle "]

= —0gInZ



Generalized Measurements (POVMs)



Projective measurements

Recall projective von-Neumann measurement:

Textbook version:
A measurement is represented by a Hermitean operator

M=M= " \y[¢n) (0l

with an orthonormal set of eigenstates |¢,).

@ The apparatus yields the result A, with probability |(1)|¢,}|? and
projects |1)) instantaneously on |¢p).
@ Thus, all following measurements would give the same result.

@ The expectation value of the measurement is (M) = ()|M|4)).



Projective measurements)

Recall projective von-Neumann measurement:

Advanced version:

A measurement is represented by a set of orthogonal projectors

En = |¢n><¢n|a EnEm = 6nmEn

Upon measurement, the quantum state p is mapped to

p = p’:ZEann
n

Repeating the same measurement again does not change p'.



Realistic measurements

Realistic
measurement

- exactly orthonormal eigenstates?
- result exactly reproduced on repitition?



Realistic measurements

Simple model for a non-perfect measurement:

Classical
randomness

Quantum state
p= Zi bi |1Pi>< lPz‘|

Many slightly different perfect (projective) measurements.



Generalized measurements (POVMs)

Usual projective measurement:

p—>p’:ZEann
n

Generalized measurement (take M; with probability g;):

p=p =Y ad EVpEN
k n

@ cannot be written as a projective measurement

e is a legal quantum operation (p is again a density matrix)



Kraus Theorem

University of Wiirzburg:

@ Nobel prize for X-rays
@ Nobel prize for Quantum Hall effect

e Karl Kraus (1971): Important theorem
in quantum information theory.




Kraus Theorem

Let 1 and H, be two Hilbert spaces.

Let ® : H1 — H> be a quantum operation
(meaning that ® applied to a density matrix is again a density matrix).

Then ® can be written in the form

p=d(p) = BupBj
k

with 3", BxB} = 1.

The operators {By} are called Kraus Operators.
They are unique up to unitary transformations.



Generalized measurements (POVMs)

Classical
randomness

Quantum state

p=3, plv<vl

M,

M, Olulfiu!

:

p=p = ay EpEY
k n

Applying the Kraus theorem there exist matrices {By}
so that the above formula can be written as

P =Y BB
k

A measurement described by a set of operators {By}
with >, BB, =1 is called a

Positive Operator-Valued Measurement (POVM).



Generalized measurements (POVMs)

Check special case of projective von-Neumann measurements:

pr p=> Ecpk
k

p > p=> BipBy
k

= By = Ej are just the orthogonal projection operators.

v



Entanglement

Outline

e Entanglement
@ Quantum and Classical Correlations in Bipartite Systems

@ Entanglement Criteria
@ Entanglement Measures



[SNENTAC NI Quantum and Classical Correlations in Bipartite Systems

Bipartite systems

AB

Hilbert space Hag = Ha ® Hp



[SNENTAC NI Quantum and Classical Correlations in Bipartite Systems

Bipartite systems - Tensor product

AB

Classical physics:

System A in config. ca

. . = System AB in config. cag := (ca, cg).
System B in config. cg

Quantum physics:

System A has amplitudes 1),

System B has amplitudes v, = System AB has amplitudes 9¢,; := Y, ¥cs-

[VaB) = [Ya) @ |¥B)



[SNENTAC NI Quantum and Classical Correlations in Bipartite Systems

Do not confuse direct sum and tensor product

P Direct sum H @ Hg: Dimensions add up, vectors are simply concatenated:

ot

ot i i

el =(w)o () =|v

3 v 1

u v
v2 classical

X Tensor product Ha ® Hg: Dimensions multiply, vector components are

multiplied in all combinations:
uivi

ut upvo
1
v ur vy
el =)o ()= |2 v
ud 272 quantum
uzvy

usvo



Entanglement Quantum and Classical Correlations in Bipartite Systems

Tensor product of operators

Likewise we can compute tensor product of operators (matrices) by forming
products of all combinations of the components:

a1 d12 a3 by by
C=A®B = |a1 a» a3 |® <b21 b22>

431 432 ass
ayibi1 anbip apbir axbix aizbin aizbio
aiibor anibxx awbor adbry aizbyr  aizbx
ar1b11 anibiz axbir axbix axbir axbi2
ac1bor  axiboy  axbor axbry axzbyr  ax3boo
as1bi1 asibiz asbir asbiz  aszbin aszbi2
as1bor  azibxx azbor azabxy azzbyr  aszbo
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Tensor products in practice

Vectors of the form |a) ® |b) are called factorizable or product states.
Ha ® Hp is the set of all product states plus all their linear combinations.

Some useful rules:
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Tensor products in practice

Vectors of the form |a) ® |b) are called factorizable or product states.
Ha ® Hp is the set of all product states plus all their linear combinations.

Some useful rules:

(1) +18)) @ (I} +1d}) = la) @ 1e) + |a) @ |d) + |) @ |e) + b} @ |d)

(Ma)) @ (ulb)) = Au(]a) @ [b))
ARA=)\A, AQp= A
(A@B)(lu)®|v)) = (Alu) @ (B|v))
(AB)" = AT@BT
Tr(A®B) = Tr(A) Tr(B)
det (A ® B) = (det A)¥m(*s)(det B)m(Fa)
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Bipartite systems

There are two different aspects of quantum states
with respect to a partition:

- Entanglement (quantum)
- Correlation (classical)
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Classical correlations

[ m
Classical correlations are simply due - 1} I
to the composition of the ensemble: ) LIV i
1
? S
[
) )
Example: Ill i 111
m
The two pure quantum states
[T =Nl
[ =1h el

are mixed in the ensemble by 50-50:

p = SN+ 3 LU
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Quantum correlations (entanglement)

W 1w
v W
o B
) )

W)
W) W)

) = 1)+ 51 wow
p = )W

Quantum correlations are due to a
coherent superposition of amplitudes

In this case the ensemble is not mixed but it
consists only of one type of pure states.
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Over-simplified cartoon of correlation landscape

maximally entangled

maximally classically
correlated

Quantum correlation

/4

uncorrelated

Classical correlation
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States of maximal classical and quantum corrleation

Example: 2-qubit system:

State with maximal classical correlations:

1 000

1 110 0 0 0O

pane = (1101 + 1D =3 {5 6 5

0 001

State with maximal quantum correlations (EPR state):

1 001
1 110 0 0 0O
pueme = 3 (1100 100)) (11 +1) =3 5§ 6 6
1 001
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How to distinguish classical and quantum correlations

Example: 2-qubit system:
What we would like to know: 11 or 1| or {1 or [} 7

Measurement operator: 0% ® o*

Measurement projectors: Eyp = | ) (11 ], Eyp = | T (T,
Epp=[IN{T] Ep=[dL

classical ‘ quantum
prt = Tr[pclassETT] = 1/2 prr = Tr[pq“a"tETT] = 1/2
Pty = TtlpcassEry] = 0 | pry = Trlpquant Ery] = 0
pi+ = Tr[pclassEyr] = 0 pir = TtlpquantEr] = 0
pLL = Tr[pc/assEii,] = ]./2 pyL = Tr[,OquantEu,] = 1/2

In both cases we find only 11 and ||, each with probability 1/2.
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How to distinguish classical and quantum correlations

Example: 2-qubit system:
With the observable 0% ® 0% we thus cannot see a difference.

(0% ®0%)class = Tr[pciass 0° ® 0] = 1

<Uz ® Uz>quant = Tr[,Oquant Uz ® JZ] = 1

But with the observable 0% ® o* we do see a difference.

(0% ® 0 )class = Tr[peiass 0* @ 0*] = 0
<0’X & UX)quant = Tr[pquant o’ ® GX] =1

In order to see the difference between classical and quantum correlations,
one has to use several kinds of measurements (rotate the analyzer).
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How to distinguish classical and quantum correlations

If classical and quantum
correlations are mixed,
they are hard to
distinguish.

Quantum correlation

Classical correlation
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Entanglement measures

In the following we will see that...

@ quantifying the correlation of classical systems is easy.

@ quantifying the entanglement of pure quantum states is also easy.

@ separating classical correlations and quantum entanglement
quantitatively in an arbitrary mixed state is extremely difficult.

= There is a large variety of entanglement measures.
= The whole issue of measuring entanglement is not yet settled.



Entanglement of pure quantum states

First consider pure states

/

Quantum correlation

Classical correlation
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Separable = not entangled

o Pure states p = [1)(¢)] -

have no classical correlations.

@ A pure state is said to be separable if it factorizes:
V) = [¢¥a) @ [VB)
p = [Ya)(¥al ® [¢¥B) (Vs8]

@ A pure state is said to be entangled if it is not separable.
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Measurement on subsystems

The subsystem may be may be separated at a large distance.

Suppose we want to measure the z-component of the spin of subsystem A.
This means to perform the measurement on A while doing nothing on B.
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Measurement on subsystems

Ignore B .

o’ = oc® 1

Suppose we want to measure the z-component of the spin of subsystem A:

_ z
measure 0% on A } = measure (0 ® 1) on AB.

- measure nothing on B



Quantum and Classical Correlations in Bipartite Systems
Partial trace

Measuring (0 ® 1) on pag...
(0%) =Tr [PAB 02} =Tr [PAB (0 ®1)

Let |/) and |j) be orthonormal basis vectors in H4 and Hp.
Then |ij) :=|i) ® |j) is a basis of Ha ® Hp.

(@) = lijlpas [kI)(KI| (0% ® 1)]ij)

ijkl

= Y lijloaslkl) (klo®]i) (I]j)
ijki

= > (D tiilpaslhi)) (Klo®li) = Tr|pac”|
ik J

=:(ilpalk)

...Iis the same as measuring 0% on pa = Trg|pag].
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Partial trace

Example:
1001
_1(0 000
P=2l0 00 0
1001
10 o® 1
= PA:TFB[PIZ%(O 1) ®

This is a maximally mixed state.

Pure state entanglement, seen from the perspective of a subsystem,
looks like classical randomness.
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Pure-state entanglement

o Pure state entanglement, seen from the perspective of a subsystem,
looks like classical randomness.

@ While the composite system is pure (entropy zero), the subsystems
have entropy.

= Therefore, if the total system is in a pure state, the entropy of the
subsystems can be used to measure the entanglement.
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Pure-state entanglement entropy

Let AB be in a pure state pag = |[¢) (]
Sa = S(pa) = —Tr[paln pa]

Sg = S(p) = —Tr[pg In pg]

One can show: Sp = Sg

= Undisputed unique entanglement measure for pure states:

‘ Entanglement entropy: E := S5 = Sg

Example: Maximally entangled 2-qubit EPR state:
pquant = 211+ 110) (1T [+ (1) : E=In2=1bit



Measuring classically correlated states

Let us now consider
classically correlated states

Quantum correlation

Classical correlation



Quantum and Classical Correlations in Bipartite Systems
Separability
We have already defined separability for pure states:
@ Pure states p = |¢) (1| have no classical correlations.

@ A pure state is said to be separable if it factorizes:

p = [Ya)¥al @ [vs)(¢s]

@ A pure state is said to be entangled if it is not separable.



Quantum and Classical Correlations in Bipartite Systems
Separability
We have already defined separability for pure states:
@ Pure states p = |¢) (1| have no classical correlations.

@ A pure state is said to be separable if it factorizes:

p = [Ya)¥al @ [vs)(¢s]

@ A pure state is said to be entangled if it is not separable.

Now we extend the notion of separability to general states:
@ Product states pag = pa ® pg have no correlations at all,
i.e., they are neither classically correlated nor entangled.
o A state is called separable if it can be written in the form

pag =D akpy) @ pl)
k

where the {qx} are probability-like coefficients.
o A state is called entangled if it is not separable. — A
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Measuring classically correlated states

Let us now consider
classically correlated states

Consider a separable (= non-entangled)
state along the green line in the figure.

Quantum correlation

To quantify its classical correlations,
use the mutual information:

Classical correlation

|Ia:6 = Sa + S8 — Sas]

Example: Maximally classically correlated 2-qubit state:

puene = 3(110+ 1) (6114 1) 0 dne =21 bi
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Distinguish quantum entanglement and classical correlation

Mixed states with
both classical and
quantum correlations

Quantum correlation

Classical correlation
Could we use the entropy and the mutual information as coordinates?
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Distinguish quantum entanglement and classical correlation

Unfortunately, the entanglement entropy responds also to classical
correlations.

Likewise, the mutual information also responds to entanglement.

Example: 2-qubit system:

State H Ia-B ‘ E
no correlations (product state) 0 0
maximal classical correlations 1 1
maximal quantum correlations 2 1

= More sophisticated entanglement measures needed.
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Schmidt Decomposition Theorem

The most important theorem in bipartite quantum systems.
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Schmidt decomposition

Schmidt decomposition theorem:

Every pure state |¢)) of a bipartite system
can be decomposed as

) =D anlna® |n)g
n=1

.

E'Sh'd186—19;
where the vectors |n), € Ha and |n)g € Hp rivin Sehmidt 1676195

are mutually orthonormal with r < min(da, dg).

The coefficients i, > 0 are the so-called Schmidt numbers obeying

Za%:l
n
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Schmidt decomposition

Note that this is much more than a basis representation.
@ In an ordinary basis representation we have a double sum
running independently in each subsystem:

da ds

ZZ¢U| A® B

i=1 j=1

@ In the Schmidt decomposition we have only a single sum

r
= anln)p @ |n)g
n=1

running from 1 to r where r < min(da, dg).
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Schmidt decomposition

Interpretation of the Schmidt numbers:

) = Zan‘”h ® |n)g
n=1

Decomposition of a pure-state density matrix:

= p =)l = Y anam|n)(mla @ |n)(mlg

n,m=1

Compute reduced density matrices:
r r
pa=Trelp] = alln)(nla,  pg=Tralp] = alln)(nlg
n=1 n=1

The o2 are just the probability-eigenvalues in the reduced state.
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Quantum Purification

Quantum purification

Quantum

is a direct consequence Pusrificat
of the Schmidt theorem: ySte

Each mixed state can be represented as the reduced density matrix of a
(generally entangled) pure state in a suitably extended Hilbert space.

= Classical randomness (entropy) can always be interpreted as
entanglement with something external.
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Quantum Purification

Take an arbitrary mixed state pa on the Hilbert space Ha:

pa =" paln)inla

Extend Ha by an auxiliary Hilbert space Hg of the same dimension.

Define some orthonormal basis |n)g in Hg.

@ Define the pure state

W)= VPaln)a @ n)g

= )= /PaPm In)(m|p @ |n)(mlg
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Quantum Purification

= pAB—W} W vanpm’ m’A®‘n><m‘B

o Take the partial trace over the auxiary space Hg

Tra[[)(@l] = > D> vPobm|n){mla (klln)(m|[K)e

ko mm =6knSkn
= ZPk|k><k|A = PA
k
The reduced density matrix is just the original mixed state. O

In a suitably extended Hilbert space any mixed state
can be represented as a pure state.
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Entanglement Criteria



Entanglement Entanglement Criteria

Recall definition of entanglement

@ A pure state [¢)) is said to be separable if it factorizes:

V) = [)a @ [¥)g
= p=[Y){¥a®¥)(¥]g

@ A mixed state p is said to be separable if it can be expressed as a
probabilistic combination of pure separable states:

p=>_pilvi)(¥il, [ii) separable.

@ One can show that a state is separable if and only if it can be written
in the form

Zp, Wesg, 0<p<l Yop=1
i

@ entangled = non-separable
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Entanglement criteria vs. entanglement measures

Entanglement criteria are simple checks which provide a sufficient
condition for the existence of entanglement.

@ PPT criterion
@ CCNR criterion

Entanglement measures are quantitative measures which tell us how
strongly the systems are entangled.

Entanglement distance measures
Entanglement of formation

(]
@ Quantum discord
[*]



Entanglement Criteria
PPT criterion

Definition of the partial transpose Ta, Tg:

For a factorizing operator C = Cp ® Cg the partial transpose is defined as
the transposition of one of the tensor slots:

C’ .= CA®Cg, C™ .= CA®Cq.
A non-factorizing operator can be written as a linear combination of

factorizing ones. So the partial transpose is also well-defined on general
operators.

TAOTB:TBOTA:T7 TOTA:TAOT:TB.



Entanglement Criteria
PPT criterion

Observation:

Transposition is a positive operation:
If p is a density matrix, then p' is also a valid density matrix.

Peres-Horodecki-Criterion (positive partial transpose, PPT):

If p is separable, then p7A and p'® are positive operators, that is, they are
both physically valid density matrices.

Or the other way round:

If p™A or p7® are not valid density matrices, then we know that the
subsystems A and B are entangled.



Entanglement Criteria
PPT criterion

Example:

Maximally entangled state (Bell state):

1 1
p = s(m+1w) (ar1+ @) =3
1 00
1 1
= =g 8 ) 0
0 0O
Eigenvalues of p : {0,0,0,1}

Eigenvalues of pTa = pT8 : {0, 1,1 1}

= O O

— O O O

o O O o

o O O o

[ = Y R
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Interpretation of the PPT criterion

@ Classical mechanics is invariant under time reversal

(a(t),p(2)) —  (a(=t),—p(-1))

@ Schrddinger unitary evolution is also invariant under time reversal

w(t)vH - w(_t)*vH*

which is the same as taking

p(t) = p(=t)=p"(~1)

Transposition ~ Time reversal



s G
Interpretation of the PPT criterion

PPT: If this is not a physically valid scenario,
then there must be entanglement between the two parts.
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Are all positive operations legal?

Positive
quantum operation
Environment

Quantum System

Our quantum system could be entangled
with something external far away.
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Side remark: Completely positive maps

e Completely positive maps ® : p — ®(p) are physically realizable
positive maps.

@ Not all positive maps are physically realizable.

Example: Transposition p — p' is positive but not physically
realizable because it could be entangled with another unknown
external object.

@ Definition: @ is called completely positive on H if ® ® 1 is positive on
H ® Haux for every external Hilbert space H ,ux.



Entanglement Criteria
CCNR criterion

Computable Cross Norm or Realignment Criterion

CCNR

What we need to know:
e What is realignment?
@ What is a operator Schmidt decomposition?
@ How does the CCNR criterion work ?
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Realignment

Operator realignment:

Let |i), und |i), be a basis of the bipartite Hilbert space Hag = Ha ® Hg
and let C be an operator with the matrix representation

C=>_ Ciwlij) (Kl

ijkl

Define the realigned Matrix CR by

CcR = Z G lik) (jl| = Z Cik j1|ij) (Kl|

ijkl ijkl

R — C., .
C,'J"k/ - Clk,J/




Entanglement Entanglement Criteria

Realignment
Operation Components | Exchanged indices
Normal transpose T C,}:k, = Cujj | (12) <> (34)
Partial transpose T, C,-I*,‘(, =Cyi | 143
Partial transpose Tg C,-JT‘,‘(, =Gy | 2+ 4
Realignment R C-’?k, =Ciji | 23

)




NS ENIAN  Entanglement Criteria

Realignmentn

Original Transpose Partial Transpose Realignment

@ C maps from the red state to the green state.
o CR maps from subsystem A to subsystem B.
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Operator Schmidt decomposition

The vector Schmidt decomposition

W)= anna®[n)g
n=1

works also for operators

C=) aCieCh
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Operator Schmidt decomposition

The vector Schmidt decomposition

r
) =D anln)a ®|n)g
n=1
works also for operators

C=) aCieCh

Theorem: The «, are the singular values of CR
(the positive square root of the eigenvalues of CRTCR)

IICl[s :Zan

Induced trace norm:



Entanglement Criteria
CCNR criterion

Computable Cross Norm or Realignment Criterion (CCNR):

Consider a separable pure state:

p=[0)WI =) (W]a © [P)(¥]g
= Only a single Schmidt number a; =1 =|lplls =1

Consider a separable mixed state. Then p is a probabilistic combination
of pure separable states py:

lells ||§k:.0kpk||s < zk:Pk [ pkl|
=1
meaning that >, a, < 1. In oppsite direction, we have CCNR:

Zak>1 = non-separable <<  entangled
k
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Entanglement Measures



Entanglement Entanglement Measures

Entanglement measures

Entanglement measures

e What we expect them to do

e 1. Entanglement measures based on distance
e 2. Entanglement of formation

@ 3. Quantum discord
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Entanglement measure — List of desired properties

What we expect an measure E(p) to do:

Separable state < No entanglement < E(p) = 0.

EPR / Bell states < E(p) is maximal.

Pure states: E(p) = S(pa) = S(pB)

E(p) should be invariant under local unitary transformations.
E(p) should not increase under LOCC operations.

Symmetry A < B.

000000

Convexity on probabilistic mixtures:

E(Z PkPk) <> peE(p)
P P
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1. Entanglement measure based on distance

e Entangled states

P .
Separable States N\ Actual
' (non-entangled) ‘; State
A PA®PF~© T
- ©p

Eo(p) = inf D(p.o).

O separable
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Entanglement measure based on distance

Entangled states

Separable States Actual
(non-entangled) State

Jg

PA®P©
Example: <

Relative entropy Dgr(p,c) = Tr[p(Inp — Ino)]
(Quantum-mechanical version of Kullback-Leibler divergence)

This allows us to define the:

@ Quantum mutual information: Sa.z = Dgr(p, pa ® pB)
@ Relative entanglement entropy: Eg(p) = infs ceparanie Dr(p, 0) -

Er(p) S SA:B
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Entanglement of formation

@ A mixed state is represented
by a collection of pure states.

@ Each pure state has a
well-defined entanglement.

@ The representation is not unique.
A mixed state represents rather a
class of equivalent ensembles.

plee) = 1/2/7 = const o) — sin’(3a2) plet) - S(o+B(e-T2)

%w%ﬁ*%ﬁz‘%

%’%}T*FJr*F

LR T
%#1%*%

B
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Entanglement of formation

The entanglement of the representing pure states
may be higher than the entanglement of the mixture.

. 1
Example: Mixture of two Bell states: EO ) j:\u)
1 0 0 =+1
1{o 00 o
= BE =510 00 o
+1 0 0 1
100 0
1 1{o0 00 0
=S(FH+19E) =316 0 0 o
000 1

Mixture has no correlation and no entanglement!
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Entanglement of formation

Main idea:

In the equivalence class of ensembles given by the density matrix,
let us find the representation of the ensemble for which the
averaged entanglement of the representing pure states is minimal:

Er(p) = inf{ > pi E(id{wil) [ o = D pilui sl |

—inf{ 3" pi Sy |0 = 3 pilnwil}.

...very hard to compute!
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Entanglement of formation

The entanglement of formation is very difficult to compute.
The only exception a s 2-qubit system.
Here an exact formula has been derived:

Er(p) = S 1+ \/12— C2(p)
where
S[x] = —xlogy x — (1 — x) logy(1 — x)

C(p) = max(O, )\1 — )\2 — /\3 — )\4)

Here \; are the decreasingly sorted square roots of the eigenvalues
of the following 4 x 4 matrix:

A= p(c” @c”)p* (0¥ ® )
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Question

Does “entanglement” and “quantum correlations”

really mean the same?
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Reconsider definition of entanglement

quantum correlation = non-classical correlation
entangled state = non-separable state

Separable state: _ '
p=> pisy ®py

1
A bipartite system in a mixed state is defined
to be entangled if the state is non-separable.
But, as we will see:

QUANTUM CORRELATIONS CAN BE PRESENT IN SEPARABLE STATES.
"'NON-ENTANGLED’ DOES NOT AUTOMATICALLY MEAN 'CLASSICAL’.

= Study quantum discord
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Separability vs. quantum correlation

) = L (10} 1)
Consider the following two-qubit state
p= (e ool + [-i-lemal
+ 1000l @ [=){=] + [D){1]® |+><+|>

where |0), |1), |[+), |—) are four non-orthogonal states of each qubit.

Even though p is separable (i.e. non-entangled),
we will see that it has quantum correlations.
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Quantum discord

General idea:

@ Quantum correlations are converted into classical correlations by
measurement.

@ The efficiency of this conversion depends on the choice of the
measurement apparatusses on both sides.

@ Let us maximize the conversion efficiency over all possible
measurements.

@ The discord is defined as the correlation difference before and after the
measurement.

Note: It seems that the minimization over different measurements is
more natural than the minimization over ficticious (non-measurable)
representatives of a given ensemble.
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Quantum discord

Example: Quantum correlations can be converted into classical
correlations by measurement.

Consider maximally entangled Bell state:

) = = (10)@10) + 1) 1)) = = (100) + [11))

Measurement on either A or B: Eg = |0)(0], £ = |1)(1]
Measurement on AB: E; = £ ® (\00)<00\, 101)(01], 10)(10], 111><111)
1 1 1
= 9e) (el = 5 = W =Y Eik =
P = Va8 ¢AB—2 p = d Uplj_2
1 1 / 1

entangled classically correlated
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Definition of the quantum discord

Consider two subsystems A and B. )

Classical information theory:

o I(A:B) = H(A) + H(B) — H(AB) 0o
e J(A:B)=H(B)—- H(B|A)
with the Shannon entropy H(X) = ZP i In px

\ [
Thanks to Bayes rule these expressions are identical, i.e. we have two
equivalent descriptions of the mutual information.

But in quantum theory they are different!
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Definition of the quantum discord

e /(A:B)=5(A)+S(B)—-S(A,B)
well defined, quantifies the total correlation (classical4+quantum)
e J(A:B)=S5(B)—-S(B|A)

depends on the chosen measurement in Al



Entanglement Entanglement Measures

Definition of the quantum discord

e /(A:B)=5(A)+S(B)—-S(A,B)
well defined, quantifies the total correlation (classical4+quantum)
e J(A:B)=S5(B)—-S(B|A)

depends on the chosen measurement in Al

If we maximize J over all possible measurements on A, it is expected to
quantify the classical correlations between the systems. Thus one defines
the quantum discord as the difference:

Da(p) = I(A:B) — max Jinay (A - B)
J

= 5(pa) — S(p) + {p&ﬁ} SCETRY
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Definition of the quantum discord

Total amount of correlation:
Z(A: B) = 5(pa) + S(pe) — S(p)

Classical correlation: Quantum discord:

J(A:B)= D(A:B)=I(A:B)— J(A: B)
5(p) — ?[11”]} > PiS(pay))

Note that D(A : B) # D(B: A) and 0 < D(A : B) < S(A).
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Test of the quantum discord

Consider the 2-qubit Werner states:

jo1) - J10)
v) =
pe=(1-2)7 +2V) (V]

where 0 < z < 1.

One can show:
@ p, is separable for z < %

@ p; is non-separable for z > %
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Entanglement of Formation vs. Quantum Discord
in a Werner state

EF / Discord
0.7¢

0.6
0.5¢
0.4
0.3}
0.2

0.1p




SUMMARY

@ There are two types of correlations, namely classical and
quantum-mechanical correlations.

@ States are defined as entangled if they are not separable.
@ There is no unique entanglement measure.

@ The entanglement of formation is the standard choice, but hard to
compute.

@ Quantum correlations may even be present in non-entangled states.

@ The quantum dicord is probably a better measure for quantum
correlations.
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Complexity



Advanced Topics Complexity

Definition of complexity

Complexity measures the difficulty to perform a certain quantum
operation.

Roughly speaking complexity is something like the number of quantum
gates needed to realize a certain operation on a quantum computer.

Please note:
@ Quantum complexity is something very recent.
@ Various definitions exist.

@ The whole issue is not yet settled.
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Definition of complexity

Recall classical complexity.

Any finite Boolean operation can be realized by
composing a finite number of NAND gates:

A— &
O—Y
B —

The classical complexity is defined as the
minimal number of NAND gates
needed to perform the task.
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Definition of complexity

Any finite unitary operation can be built by
composing a finite number of universal quantum gates:
A ———e—» A

Al a A —JH>a NP S

Phase shift gate Hadamard gate CNOT gate
1

1 0 1 1 1
0 iy 1 -1 0
1

Quantum Complexity ~ minimal number of quantum gates

1
0
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Definition of complexity
There are in principle two ways to define quantum complexity:

@ operation-based: Minimal number of quantum gates needed to build
a given unitary transformation.

@ state-based: Minimal number of quantum gates needed to transform
a given reference state into another target state.

Note: A quantum state alone does not have a complexity. The complexity of a quantum

state is always defined relative to a certain reference state.

= First have a look at the operation-based case.
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Operation-based complexity

Think of the given unitary transformation as a point
on the “Bloch surface” (SU(n)-manifold):

Identity

Given
~unitary
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Operation-based complexity

The SU(n) manifold comes with a
a “natural” distance measure (metric)

Identity

Given
unitary

ds? = Tr[dUtdU].

“Straight” lines (geodesics) in this metric
are generated by the modular Hamiltonian

U(r) = e~ H™

@ The tangent space around the identity is the Lie algebra su(n).

@ The modular Hamiltonian H is an element of the Lie algebra

and can be interpreted as the tangent vector of the geodesic line
in the starting point.
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Operation-based complexity

Represent H in the Pauli basis:
@ One-qubit generator € su(2):

H = Xol+ A\i0™ + Xoo¥ + A30% € span{l,0%,0”,0%}

o Two-qubit generator € su(4):

H € span{l®1l, 1®c", 1®d”, 1®o07,
c*®1, *®dc*, c*®d, c* Q%
o’ ®1, 0¥ Rc, 0¥ ®c’, 0¥ Q%
ocf®1l, 0c*®o*, cf®0”’, 0c*®o%, }

@ Three-qubit generator € su(8):

64 possible combinations
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Operation-based complexity

Consider now a fixed number of qubits,
e.g. generators for 4 qubits € su(16):

>
2

0-qubit operation: 116=1, 1,21, ® 1,
1-qubit operation: eg. c*®1,R1,® 1,
2-qubit operation: eg. 1o ®0Y ®c?® 1,
3-qubit operation: eg. ¥ R0’ 1, ® ¥

® 6 6 o6 o
Complexity

4-qubit operation: eg. X ®0’ R0 RcY

\ nigh

Idea: Complexity ~ number of Pauli matrices
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Operation-based complexity

Identity

@ Each operation corresponds to a
certain direction in tangent space.

.
\ Given
: \ unitary

@ Define a new metric which is
proportional to the complexity.

@ The new geodesics are different from the
straight line as they are trying to avoid
directions of high complexity.
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Operation-based complexity

Identity

A possible choice could be:

Gi_ven
Generator Weight | untiary
|dentity (phase shifts) 1
1-qubit operation 1
2-qubit operation 1
>3-qubit operation r

For r = 1 one recovers the natural metric.
For r — 0o the geodesic line consists only of < 2-qubit operations.
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Elements of Holography



Elements of Holography
Black Holes

Bekenstein-Hawking (1973):
Black holes carry entropy proportional to their surface

S=A/43%
where {p = \/Gh/c3 is the Planck length.



Elements of Holography
Black Holes

We cannot interact with the interior of a black hole, but we are entangled
with the interior of a black hole.

= We have to trace out the interior:

pa = Trepas
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Black Holes

Bekenstein-Hawking: The information of a black hole is proportional to its
surface, not to its volumel!

Black hole
event horizon
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Holography

The information of a black hole
is encoded on its surface,
like a holographic picture.

= Holographic conjecture:
Quantum gravity has much less
degrees of freedom than
Planck cells in the bulk.




Holography
Maldacena (1997): A certain type of quantum gravity (super strings)

on a certain type of geometry (Anti-de-Sitter space) is dynamically
equivalent (dual) to a conformal field theory (CFT) on the boundary:

\
Boundary theory: Conformal field theory (CFT) Boundary theory: Conformal field theory (CFT)

T=0 T>0

H. Hinrichsen: Introduction on Quantum Information Theory
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Holographic Dictionary

Objects that are conjectured to be in correspondence:

Bulk Boundary

Superstrings in AdSy.1 || d-dimensional CFT

fields operators
weak coupling strong coupling
mass scaling dimension
geodesics entanglement
black hole temperature

Gauge/Gravity
Duality

Appl
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Holographic entanglement

Consider for simplicity a one-dimensional conformal field theory
(CFT) at zero temperature:

Boundary theory: Conformal field theory (CFT)
L

pure state | ) (]
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Holographic entanglement

Entanglement £ ?

£ NN

I I
Define some region

without changing the state

B A B

E = S(pa) = S(ps)



LCIYELICC IRl Elements of Holography
Ryu-Takayanagi surface

Claim by Ryu and Takanayagi [PRL 2006]:

Quantum gravity

[

Entanglement ~ Length of geodesic

Geodesic line

Boundary CFT
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Ryu-Takayanagi surface

Analogous in higher dimensions:

(We omit the time direction. )
CFTd+1
VA
B Adsd+2
/>4 Zz
z>a (UV cut off)
Figure:

How can we explain this qualitatively?



A YELICG IR Il Tensor Networks

Tensor Networks



A YELICG IR Il Tensor Networks

From product to matrix product states

Product states:

Consider a one-dimensional chain of qubits in H = C? ® C? ® ... ® C2.
The periodic chain is said to be in a (pure) product state if:

) =19 @|9)@...0[8),  |9) =¢0l0) + ¢1]1).

In components:
Viriy...iy = Piy @iy *** Diy-

Product states have no entanglement.

0] (0] (0] (0] (0] [©) 0] 0]

[W>
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From product to matrix product states

Matrix product states:

Replace the numbers ¢g, ¢1 by matrices ®g, ®; in an auxiliary space V and
finally take the trace:

|¢>:Trv[|¢>®|¢)®---®|¢>} : @) = o[0) + P1]1).
In components:
wiﬂz---"l\/ =Try [q)hq)il T ¢iN:| = Z q)il,ltlltz(bihuzm T ¢iN7MNM1'
B2, 5N

Matrix product states exhibit short-range (exponential) entanglement.

) ) ) ) ) ) O )

| >



Tensor Networks

Advanced Topics

Tensor Networks

ﬁ

Tensor networks are like

but

matrix product states
more complicated.
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MERA Tensor Networks

Multiscale Entanglement Renormalization Ansatz (MERA):

| p>



Tensor Networks
MERA Tensor Networks

Multiscale Entanglement Renormalization Ansatz (MERA):

- = -
e

| =
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Holography interpreted as a MERA

.'.'"""'."'.'.""'.."'."';
AAALARRAAAAALARARARAAARRAALRAARRAR AL AR RRARARARRAAARAARRARRRRAAER
M A A AR A A R ARG

@ The vertical direction can be viewed as a renormalization direction.
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Entanglement and complexity of a MERA

— R A N

N VAN A\ N N N N N VAN a\ aN N VA N
AARAAARRARMNARARAAAARNAAAAARAAA AR A RN A
ARLARAARA AR AR AR R AR AR AR AR AR I AARA AR AR LA AL A AR

@ The line cutting the minimal number of bonds defines the RT line.

@ The number of bonds cut by the RT line is the entanglement.

@ The number of gates inside the RT region is the complexity.
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Thank you !
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