


W ≤ 0
(Jarzynski, Crooks, Tasaki) 
                                         



 
A heat engine operated at a single temperature  
is possible with the help of feedback control (FC)  
  

W ≤ kBT lnγ
γ >1

γ =1 in the absence of FC 



 
For quantum systems with the help of measurement,  
work can be positive 
 
 
at a single temperature in a cycle without FC  
  

W > 0



 
For quantum systems with help of measurement,  
work can be positive 
 
 
at single temperature without feedback control  
  

W > 0



or 

For any quantum mechanical system, work can be extractable: 

                at single temperature in a cycle without FC, if 

(1)the system initially in equilibrium state ( )  

(2)work strokes (       ,       ) should be adiabatically slow 

(3)nonselective and minimally disturbing measurement (        ) is  

performed between the strokes 

                                 

W > 0

    

  

 

(Yi, Talkner & Kim) 
                                         

H (λ0 ) H (λ1) H (λ0 )H (λ1)



 
Measurement Schemes:  
 
An example of spin-1/2 system under 
the projective measurement 
  



↑

↓

spin-up state 

spin-down state 

σ z = +1↑ ↑ + (−1)↓ ↓

= +1Π↑+ (−1)Π↓

σ z ↑ = +1↑ σ z ↓ = (−1)↓

Π↑ = ↑ ↑

Π↓ = ↓ ↓

↓↑ = ↑ ↓ = 0 ↑↑ = ↓ ↓ =1



ρ = p↑ ↑ ↑ + p↓ ↓ ↓ =
p↑ 0
0 p↓

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ρ2 ≠ ρDensity operator     for a mixed state (              )  ρ

p↑ = TrΠ↑ρΠ↑ =
3
5

p↓ = TrΠ↓ρΠ↓ =
2
5

Trρ = p↑+ p↓ =1



ρ↓ = ↓ ↓

Measurement ( ) with registration ( ): 
                                        selective measurement  

or 

  
ρ↑ =

Π↑ρΠ↑

TrΠ↑ρΠ↑

= ↑ ↑

pure state   (               )  ρ↑,↓
2 = ρ↑,↓

Trρ↑,↓=1



Sprior = −Trρ lnρ = −p↑ ln p↑ − p↓ ln p↓ ≈ 0.67

von Neumann entropy(degree of uncertainty)  

before the measurement  

after the measurement with   

Spost = p↑S↑+ p↓S↓ = 0

S↑,↓ = −Trρ↑,↓ lnρ↑,↓ = 0

von Neumann entropy 
of a pure state =0 

Sprior − Spost = 0.67



Non-selective measurement: ( ) 
     Measurement without registration 

ρpost =Π↑ρΠ↑+Π↓ρΠ↓ = ρ

  
ρpostρ

Π↑,ρ⎡⎣ ⎤⎦= Π↓,ρ⎡⎣ ⎤⎦= 0

Π2
↑,↓ =Π↑,↓

Π↑+Π↓ =1

or 

(idempotent) 

(complete) 



Non-selective Measurement ( ) of an incompatible observable  
                                         

or 

  

ρ = p↑ ↑ ↑ + p↓ ↓ ↓

incompatible observable (x-component of spin)  

                                         σ x = +1↑; x ↑; x + (−1)↓; x ↓; x

= +1Πx
↑+ (−1)Π

x
↓

density matrix before  

                                         

σ x ↑; x = +1↑; x

σ x ↓; x = −1↓; x

density matrix after M 
                                         Πx

↑,ρ⎡⎣ ⎤⎦≠ 0 Πx
↓,ρ⎡⎣ ⎤⎦≠ 0



or 

  

ρpost =Π↑
xρΠ↑

x +Π↓
xρΠ↓

x =
1
2
↑ ↑ +

1
2
↓ ↓ ≠ ρ

change in von Neumann entropy   

                                         Sprior − Spost = −p↑ ln p↑ − p↓ ln p↓ − ln2 ≤ 0

Non-selective Measurement ( ) of an incompatible observable  
                                         

density matrix before  

                                         
ρ = p↑ ↑ ↑ + p↓ ↓ ↓

density matrix after  

                                         



or 

  

energy change caused by of an incompatible observable  
     

Hamiltonian  
                                         

H = ε↑ ↑ ↑ +ε↓ ↓ ↓ ε↑ < ε↓

Eprior = TrHρ = ε↑p↑+ε↓p↓
  average energy after  

                                         

  average energy before  

                                         

Epost = TrHρpost = (ε↑+ε↓) / 2



or 

  

Eprior −Epost = ε↑(p↑ −1/ 2)+ε↓(p↓ −1/ 2)
= (ε↑ −ε↓)(p↑ − p↓) / 2

< 0

p↑ > p↓
If  the lower energy state        is more populated than  
the higher energy state        (             ) 

                                         
↓
↑

Eprior < Epost

p↑+ p↓ =1
ε↑ < ε↓



or 

  

For any systems having no population inversion, 

a minimally disturbing measurement performed on the system 

increases the system energy.  

Population inversion: 
low lying energy states are more populated than higher energy states    

                                         
Minimally disturbing measurement: 

                                         
Mα =M

+
α

Mα
α

∑ M +
α =1



 
   Is                                  work or heat? 
  

ΔEM = Epost −Eprior



ΔEM

 
 
 
              does NOT result from change of any parameter  
    of the considered system;  
    hence, it cannot be associated with work. 
 
 
                                     is akin to HEAT.   

ΔEM



Suppose a system which is described by  
        Hamiltonian          and a density operator         at time  

                                         

dE
dt

= Tr dH
dt

ρ + TrH dρ
dt

H (t) ρ(t)

                                         
t

                                         average energy of the system  

                                         
rate of the average energy change  

                                         

E(t) = TrH (t)ρ(t)

work rate (power)  
                                         

PW
heat transfer rate  

                                         

PQ



PQ = TrH
dρ
dt

=
1
i!
TrH[H,ρ]

=
1
i!

TrHHρ −TrHρH( ) = 0

                                                                                  

For an isolated system under unitary evolution (no heat flow)  
          (informationally)  

                                         
density operator evolution   

                                         

PW = Trρ dH
dt

dρ
dt

=
1
i!
[H,ρ]

heat transfer rate  

                                         

work rate  

                                         
vanishes if  
Hamiltonian is constant in time. 

                         



Suppose a system which is described by  
        Hamiltonian          a density matrix         at time  

                                         
PQ = TrH

dρ
dt

=
1
2
Trρ Lk

+[H,Lk ]+[Lk
+,H ]Lk

k
∑
⎛

⎝
⎜

⎞

⎠
⎟

                                                                                  

For an open system (coupled to an environment) 
           
                                         

Lk

density matrix evolution   

                                         
dρ
dt

=
1
i!
[H,ρ]+ LkρLk

+ −
1
2
Lk
+Lk,ρ{ }

⎛

⎝
⎜

⎞

⎠
⎟

k
∑

heat transfer rate  

                                         

Work rate   

                                         

: Lindblad operators  

                                         

                                         



Suppose a system which is described by  
        Hamiltonian          a density matrix         at time  

                                         PQ ∝TrH [ρ,Mk
k
∑ ]Mk

+

                                                                                  

A system subject to measurements is an open system 
           
                                         density matrix evolution    

                                         dρ
dt

=
1
i!
[H,ρ]−γ ρ − MkρMk

+

k
∑

⎛

⎝
⎜

⎞

⎠
⎟

heat transfer rate  

                                         

Work rate   

                                         

                                         

M1 =Π↑,M2 =Π↓

M1 =Π
x
↑,M2 =Π

x
↓

Measurement operators for spin-1/2 (             )  

                                         
k =1,2

(spin-z measurement) 

(spin-x measurement)  

                                         

Non-zero even for a constant  
Hamiltonian, provided  

                                         
Mk,ρ[ ] ≠ 0

continuous nonselective  

                                         



 
Measurement-driven  Spin-1/2 Engine 
 
                    



   
   An engine cycle 

or 

  

working substance (WS): spin-1/2 in the presence of magnetic fields 
                                             aligned along z-direction  

                                         

H (B) = −µBBσ z                            Hamiltonian   

                                         

    

H (B0 ) H (B1) H (B1)B0 < B1 H (B0 ) H (B0 )



or 

  

The field strength should vary   

U0→1
ad = ↑;B1 ↑;B0 + ↓;B1 ↓;B0

σ =↑,↓;B               :the eigenstate of the 
Hamiltonian with field strength B   

                                          

Quantum adiabatic theorem 
A quantum system remains in its instantaneous 
eigenstate for a sufficiently slow perturbation 

unitary evolution for API 

Density operator at the state 1 

ρ(1) =U0→1
ad ρ(0)(U0→1

ad )+



or 

  

Density operator at the state 2 

ρ(2) =Π↑
xρ(1)Π↑

x +Π↓
xρ(1)Π↓

x

nonselective measurement of spin-x component 



or 

  
 

 
 

 H (B0 ) H (B1) H (B1)B0 < B1 H (B0 ) H (B0 )

W (0→1)
W (2→ 3)

Work and Heat 

ΔEM
QR



or 

                            Work   

                                         

    

H (B0 ) H (B1) H (B1) H (B0 ) H (B0 )

W (0→1) = TrH (B0 )ρ(0)−TrH (B1)ρ(1)
W (2→ 3) = TrH (B1)ρ(2)−TrH (B0 )ρ(3)

                            Heat input by nsM   

                                         ΔEM = TrH (B1)ρ(2)−TrH (B1)ρ(1)



or 

  

Density operators 

ρ(1) =U0→1
ad ρ(0)(U0→1

ad )+

ρ(0) = e−β0H (B0 )

Tre−β0H (B0 )

ρ(2) =Π↑
xρ(1)Π↑

x +Π↓
xρ(1)Π↓

x

ρ(3) =U2→3
ad ρ(2)(U2→3

ad )+

                            initial state   

                                         
                            state reached after API   

                                         
                            post-measurement state   

                                         
                            state reached after APII   

                                         



TOTAL Work done by WS during one engine cycle  

                                         Wtot =W (0→1)+W (2→ 3) = µB (B1 −B0 ) tanh(β0µBB0 )> 0

Wtot >0 indicates that work can be extractable  

Maximal work that can be extracted via unitary 
transformation, free of inner friction 

                                         



                                         

η =
Wtot

ΔEM

=1− B0
B1
=1− T0

T1

Efficiency  
                                         

T0 initial temperature  

                                         B0
T0

=
B1
T1

Wtot = µB (B1 −B0 ) tanh(β0µBB0 )

This  the but…  
                                         

Heat input by nsM  
                                         ΔEM = µBB1 tanh(β0µBB0 )> 0



the engine cycle is 
                                         

Heat transferred from the WS to the reservoir  

                                         
QR = E3 −E0 = µBB0 tanh(βµBB0 )> 0

the WS is brought into a thermal contact with a reservoir at                      . 

    
H (B0 ) H (B1) H (B1) H (B0 ) H (B0 )

T0 =1/ (kBβ0 )
After some time elapsed, the WS recovers the initial equilibrium state . 

During       process,   



Otto cycle 
                                         

ηotto =1−
T2
T1

                                         

QH

QL (ideal gas)
                                         



initial state	
               

  adiabatic  
compression (               ) 

  

a particle in a harmonic potential 

: position-measurement with finite fuzziness     

  adiabatic  
  expansion   

  thermalization 
   

σ

Mx =
1

(2πσ 2 )1/4
exp − (x̂ − x)

2

4σ 2

⎡

⎣
⎢

⎤

⎦
⎥measurement operator      

σ → 0,Mx in effects becomes  
projective measurement       

x̂ position operator      

  

ω0 ω1 ω1 ω0 ω0

ω1 >ω0

ωi oscillation frequency      



W = (1−γ ) !
2

8mσ 2

extracted work    

ΔEM =
!2

8mσ 2

γ =
!ω0

!ω1

⎛

⎝
⎜

⎞

⎠
⎟

heat input by the measurement   

 vanishes in the classical realm (          ) 

energy level spacing 
 before the compression 

energy level spacing  
after the compression 

!→ 0

 diverges for precise measurement (           ) σ → 0

δp2
post

=
!2

4σ 2 + δp2
prior

 measurement-induced uncertainty   
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