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Microscopically reversible unitary dynamics of a pure state

→ Relaxes towards a macroscopically steady state
（Recurrence time is very long: almost irreversible!）

S. Trotzky et al.,  Nature physics 8, 325 (2012)

Experiment:  Ultracold atoms

ex. 1d Bose-Hubbard, 87Rb

Dynamics of isolated quantum systems

M. Rigol et al., Nature 452, 854 (2008)

Theory:

ex. Hard-core bosons

(numerical exact diagonalization)

A seminal work by von Neumann in 1929 (arXiv:1003.2133)
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Scrambling of quantum information

BH

Hawking radiation

EPR pair

Black hole = “fastest” scrambler?

Maldacena and Stanford, PRD 94, 106002 (2016)
Sachdev and Ye, PRL 70, 3339 (1993)

Sachdev-Ye-Kitaev (SYK) model 

 Believed to be a dual of AdS2

 Saturates the upper bound of “Lyapunov exponent”
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Characterized by out-of-time-ordered correlator (OTOC)

or tripartite mutual information (TMI)

How does locally-encoded quantum information spread out?
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Motivation of Part 1

Quantum chaos

Integrability matters!

Wigner-Dyson level statistics and Eigenstate Thermalization Hypothesis (ETH) 

are true only for non-integrable systems

How about scrambling?

- Does integrability matter?

- Relevant to quantum chaos?

Scrambling = Delocalization of quantum information: “Chaotic”

Quantified by:  Decay of out-of-time ordered correlator (OTOC)
Negativity of tripartite mutual information (TMI)

Systematic investigation of TMI by numerical exact diagonalization

E. Iyoda, T. Sagawa, arXiv:1704.04850
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Out-of-time ordered correlator (OTOC)

• Early time: “Lyapunov exponent”
Maldacena, Shenker, Stanford, JHEP 08, 106 (2016)

• Late time: Delocalization of quantum information
– Some theorems (with particular averages of OTOC):

 Small OTOC ⇒ Negative tripartite mutual information
Hosur, Qi, Roberts, Yoshida, JHEP02(2016)004

 Small OTOC ⇔ Unitary 2-design 
(approximation of the Haar random up to the 2nd moment)

Roberts, Yoshida, arXiv:1610.04903

time

OTOC
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・ von Neumann entropy

Tripartite mutual information (TMI)

: Reduced density operator

・ Tripartite mutual information (TMI)

X

Y

Z

・ Bipartite mutual information (BMI) X Y

X∩Y



Negativity of TMI

Example: three classical bits

TMI is negative when 

→ Indicates delocalization of quantum information: Scrambling

zyx  2ln3 Ix: random (three-body correlation)

zyx 

x, y, z: random, independent 03 I (no correlation)

y, z: random, independent 2ln3 I

Information about x is delocalized to y and z

Cf. Ryu-Takayanagi formula

Hayden, Headrick, Maloney, PRD 87, 046003 (2013)
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Our setup

Total system : 

- Qubit A

- Many-body system BCD

Apply CNOT gate (A: control qubit, B: target qubit)

⇒ Information about A is encoded in B through entanglement 

Only BCD evolves with a Hamiltonian

: product state 

(e.g. Néel state, all-up state)
Prepare

Calculate dynamics of TMI )C:B:A(3I



Preliminary: Bipartite mutual information (BMI) 

Non-integrable XXX model

BMI decays, entanglement spreads ballistically
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Non-integrable 1d XXX model

Nearest neighbor
Next nearest neighbor (n.n.n.)

Néel: Negative TMI: Scrambled

All-up: Positive TMI: Not scrambled

JJL 8.0' ,14 

Néel All-up



Integrable 1d XXX model

Qualitatively the same as the non-integrable case!
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Initial state dependence: XXX model

Non-integrable; J’=0.8J Integrable

:        product states from to

: max/min of TMI in

Scrambling occurs for most of the initial states

12L

for only four states

4100  Jt



Transverse-field Ising model (TFI)
(Integrable/non-integrable)
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Integrable: 0 ,  zx hJh

Non-integrable: JhJh zx 1.1 ,1.2 

Scrambling occurs for all the initial states,  
both integrable and non-integrable cases

(a) non-integrable/Néel (b) non-integrable/all-up 

(c) integrable/Néel (d) integrable/all-up



Many-body localization (MBL)

Consistent with previous results on OTOC:
Y. Huang, Y-L. Zhang, and X. Chen, arXiv:1608.01091 
Y. Chen, arXiv:1608.02765 
R. Fan, P. Zhang, H. Shen, H. Zhai, arXiv:1608.01914
B. Swingle and D. Chowdhury, arXiv:1608.03280 

Scrambling occurs, but is quite slower in the MBL phase
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Initial state: Néel

126 samples



Sachdev-Ye-Kitaev (SYK) model

Four-body, random, and all-connected interaction of fermions

: creation(anhillation) operator of a fermion

: complex Gaussian with variance         satisfying

Clean SYK model (for comparison)

Maldacena and Stanford, PRD 94, 106002 (2016)
Sachdev and Ye, PRL 70, 3339 (1993)



Scrambling of the SYK model

Initial state: Néel

Disordered SYK Clean vs disordered

Disorder does not make scrambling slower, 
but makes it smoother in the SYK model,
in contrast to MBL of spin chains.

Ensemble average over 12 samples Typical trajectories of the disordered SYK



Summary of Part 1

Scrambling is an independent property of the standard notion of quantum chaos.

Scrambling always occurs independently of integrability, 
except for a few initial states.

Scrambled (I3 < 0) Not scrambled (I3 > 0)

Non-integrable XXX + n.n.n. (Néel)
TFI + hz (Néel,all-up)

XXX + n.n.n. (all-up)

Integrable XXX (Néel)
TFI (Néel,all-up)

XXX (all-up)

Disordered XXX + disorder (Néel)
SYK (Néel)

XXX + disorder (all-up)
SYK (all-up)

Clean SYK (Néel)             Clean SYK (all-up) 

E. Iyoda, T. Sagawa, arXiv:1704.04850
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Motivation of Part 2

In the SYK model, disorder makes scrambling smoother.

What is the origin of the large temporal fluctuation 
of the clean SYK model?
What is the role of disorder in the SYK model?

E. Iyoda, H. Katsura, T. Sagawa, in preparation.



SYK model

N : the number of fermion modes
NP : the number of particles (conserved)
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ic : complex fermion

 Believed to be a dual of AdS2

 Saturates the upper bound of “Lyapunov exponent”

Maldacena and Stanford, PRD 94, 106002 (2016)
Sachdev and Ye, PRL 70, 3339 (1993)

Four-body, random, and all-connected interaction of fermions



Extensive zero-energy states
in the clean SYK model
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Q maps the (NP+2)-particle subspace to the NP-particle subspace

Below half-filling, the difference of their dimensions is the number 
of zero-energy states!

Expectation: This huge degeneracy leads to the large temporal fluctuation 
in scrambling dynamics.

Extensive residual entropy
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“Wishart” SYK model

The clean SYK model is a special case of the Wishart SYK model
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: complex Gaussian distribution with variancelkJ ,
2J

Fu, Gaiotto, Maldacena, Sachdev, PRD 95, 026009 (2017)
Kanazawa, Wettig, arXiv:1706.03044

Cf. 𝒩=2 SUSY SYK
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(The name “Wishart” comes from the Wishart matrix in the random matrix theory)



Large temporal fluctuation

The Wishart SYK model has the same number of zero-energy states 
as the clean SYK model

 wSYK QQH †  
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Q

OTOC exhibits large temporal fluctuations!

12N



Temporal fluctuation and effective dimension (1/2)

OTOC  )0()()0()(:)( 0000 ctcctctC ††
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Reimann, PRL 101, 190403 (2008)
Short, Farrelly, New J. Phys. 14 013063 (2012)

Such a theorem is not know for OTOC, 
but qualitatively the same relation is expected.
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Temporal fluctuation and effective dimension (2/2)

Extensive zero-energy states (huge degeneracy)

Small Deff

Expected scenario for the Wishart (and clean) SYK model:

Large temporal fluctuation of OTOC 

We have confirmed this expectation numerically, 
by calculating all the states of the computational basis:

Wishart SYK

SYK

12N



Integrability of the Wishart SYK model (1/2) 

The Wishart (and thus clean) SYK model is 
integrable by the algebraic Bethe ansatz!
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: wSYK QQH †

For simplicity, we assume that N is even and Jk,l is a real skew symmetric matrix. 

O: an orthogonal matrix
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Integrability of the Wishart SYK model (2/2) 

The Wishart SYK Hamiltonian then reduces to

This is equivalent to the Richardson-Gaudin model (degenerate case),
which is integrable by the algebraic Bethe ansatz.

Review: Y. Pehlivan, arXiv:0806.1810

Level statistics is Poisson: 
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Summary of Part 2

• Introduced the Wishart SYK model, which includes the clean 
SYK model as a special case.

• Wishart SYK model has the extensive number of zero-energy 
states, which leads to large temporal fluctuations of OTOC.

• Wishart SYK model can be mapped to the Richardson-Gaudin
model, which is integrable by the algebraic Bethe ansatz. 

E. Iyoda, H. Katsura, T. Sagawa, in preparation.
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Part 1: Scrambling of quantum information
Scrambling is an independent property of integrability (and thus 
the standard notion of quantum chaos)
E. Iyoda, T. Sagawa, arXiv:1704.04850

Part 2: Wishart SYK model
Introduced a new variant of the SYK model, which exhibits large 
temporal fluctuations in scrambling dynamics
E. Iyoda, H. Katsura, T. Sagawa, in preparation

Thank you for your attention!


