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Quantum information formalism

Quantum system S

Pure states (wavefunctions) live in Hilbert space HS ≡ H
Mixed states form a set of linear operators

D(H) := {ρ : H → H| ρ ≥ 0 and Trρ = 1}

Processes: completely-positive trace-preserving maps

P(H) := {E : D(H)→ D(H)| CPTP condition}

Every CPTP map has a Kraus operator representation

E(ρ) =
∑

j

KjρK †j ,

with
∑

j K †j Kj = 1H.

Varun Narasimhachar Quantum coherence in thermodynamics 1/19



Quantum information formalism

Quantum system S

Pure states (wavefunctions) live in Hilbert space HS ≡ H

Mixed states form a set of linear operators

D(H) := {ρ : H → H| ρ ≥ 0 and Trρ = 1}

Processes: completely-positive trace-preserving maps

P(H) := {E : D(H)→ D(H)| CPTP condition}

Every CPTP map has a Kraus operator representation

E(ρ) =
∑

j

KjρK †j ,

with
∑

j K †j Kj = 1H.

Varun Narasimhachar Quantum coherence in thermodynamics 1/19



Quantum information formalism

Quantum system S

Pure states (wavefunctions) live in Hilbert space HS ≡ H
Mixed states form a set of linear operators

D(H) := {ρ : H → H| ρ ≥ 0 and Trρ = 1}

Processes: completely-positive trace-preserving maps

P(H) := {E : D(H)→ D(H)| CPTP condition}

Every CPTP map has a Kraus operator representation

E(ρ) =
∑

j

KjρK †j ,

with
∑

j K †j Kj = 1H.

Varun Narasimhachar Quantum coherence in thermodynamics 1/19



Quantum information formalism

Quantum system S

Pure states (wavefunctions) live in Hilbert space HS ≡ H
Mixed states form a set of linear operators

D(H) := {ρ : H → H| ρ ≥ 0 and Trρ = 1}

Processes: completely-positive trace-preserving maps

P(H) := {E : D(H)→ D(H)| CPTP condition}

Every CPTP map has a Kraus operator representation

E(ρ) =
∑

j

KjρK †j ,

with
∑

j K †j Kj = 1H.

Varun Narasimhachar Quantum coherence in thermodynamics 1/19



Quantum information formalism

Quantum system S

Pure states (wavefunctions) live in Hilbert space HS ≡ H
Mixed states form a set of linear operators

D(H) := {ρ : H → H| ρ ≥ 0 and Trρ = 1}

Processes: completely-positive trace-preserving maps

P(H) := {E : D(H)→ D(H)| CPTP condition}

Every CPTP map has a Kraus operator representation

E(ρ) =
∑

j

KjρK †j ,

with
∑

j K †j Kj = 1H.

Varun Narasimhachar Quantum coherence in thermodynamics 1/19



Quantum resource theory formalism

A resource theory consists of

A set of allowed operations (CPTP maps) O ⊆ P(H)
A set of free states F ⊆ D(H)

Consistency condition: For ω ∈ F and E ∈ O,

E (ω) ∈ F .

Partial order of resources under allowed operations
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Examples of quantum resource theories

Entanglement theory
Free operations O: Local operations
Free states F : Separable states

Resource theory of reference frames
Free operations: Symmetry-covariant processes
Free states: Symmetric states

Resource theory of thermal inequilibrium
Free operations: Energy-conserving interactions
Free states: Thermal states
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Thermal operations (TO): a resource theory

System S under Hamiltonian H
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Coherence under thermal operations

Coherence is useful in quantum computing, work
extraction, etc. [Åberg, Phys. Rev. Lett. 113 (2014)];
[Skrzypczyk et al., Nat. Commun. 5 (2014)]; [Korzekwa et
al., New J. Phys. 5 (2016)]

Various results on coherence under TO:
1 [Rodríguez-Rosario et al., arXiv:1308.1245 (2013)]
2 [Ćwikliński et al., Phys. Rev. Lett. 115 (2015)]
3 [Lostaglio et al., Nat. Commun. 6 (2015)]
4 [Lostaglio et al., Phys. Rev. X 2 (2015)]

Hard to get exact “second laws” because of complex
interplay between entropies and time-translation symmetry
Our work: Some simple laws in the low-temperature limit
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Our model

Thermal operations in the low-temperature regime
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“Cooling maps” emerge

In the low-temperature regime, possible channels have elegant
Kraus operator representation:

1 Some diagonal Kraus operators

Ki =
∑

j

λ
(i)
j

∣∣Ej
〉 〈

Ej
∣∣ ;

2 Other Kraus operators of the form

Jjk = µjk
∣∣Ej
〉
〈Ek | ,

one for each pair (j , k) with j < k . (Only one nonzero
matrix element in every such Kraus operator)

“Cooling maps” model
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Results: Upper-triangular majorization

ρ 7→ σ possible only if
ρdd ≥ σdd

ρd−1,d−1 + ρdd ≥ σd−1,d−1 + σdd

...

ρ22 + ρ33 · · ·+ ρdd ≥ σ22 + σ33 · · ·+ σdd

These conditions emerge as the low-temperature limit of
the conditions in the coherence-less case.
But there are more conditions—on the off-diagonal terms.
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Full low-temperature condition

Theorem
For states ρ, σ, define matrix Q:

Qjk =

{
min

(
σjj
ρjj
,1
)
, if j = k ;

σjk
ρjk
, if j 6= k .

Then, ρ 7→ σ possible via cooling maps iff:
1 Q ≥ 0;
2
∑

k≥j ρkk ≥
∑

k≥j σkk ∀j (“Upper-triangular majorization”)

[VN and Gour, Nat. Commun. 6 (2015)]
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Quantum thermal device controlled by classical
components
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Classically-controlled thermal operations
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Classically-controlled thermal operations

Results:
Characterization of free states and resources
Quantification of resources
Conditions for resource conversion:

Single-copy
Many-copy
State-to-ensemble
Ensemble-to-state

[VN and Gour, Phy. Rev. A 95 (2017)]
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What is a memory?
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Memory under a resource theory

Quantum memory: Each setting a quantum state
Initial state ρ “blank tape”
“Storing value x” ≡ ρ 7→ Ex(ρ) where Ex ∈ O
“Reading memory” ≡ “distinguishing states Ex(ρ)”
Memory capacity limited by

Encoding operation repertoire O;
Blank tape state ρ
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Thermally passive qubit memory

Initial state of the memory determines accessible states under
TO
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Thermally passive qubit memory

Formal definition of memory capacity:

I (ρ) := sup
{(pj ,Ej )}j

χ
[{

pj , Ej(ρ)
}]
, (1)

where

χ
[{

pj , σj
}]

= S

∑
j

pjσj

−∑
j

pjS
(
σj
)
. (2)

(Holevo bound on accessible information)
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Optimal encoding scheme

Three-state ensemble attains the optimum rate:
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Qubit memory capacity

Capacity depends on both energy distribution and coherence
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Applications and outlook

Probes and memory devices in noisy / power-deficient
environments

Maxwell demons / Szilard engines based on passive
memories
Other capacity measures based on single-shot decoding /
other constraints
Generalization from “quantum {information storage}” to
“{quantum information} storage”
Passive memories under other resource theories
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