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Bardeen-Carter-Hawking, 1973

Stationary black holes are parametrized by mass 𝑀,
charge 𝑄, and angular momentum 𝐽.

For slow-varying processes, the following law is satisfied: 
(Φ: electrostatic potential, Ω: angular frequency)

Analogous with the first law of thermodynamics:

dE = TdS - pdV

𝛿𝑀 =
𝜅

8𝜋
𝛿𝐴 + 𝛷𝛿𝑄 + 𝛺𝛿𝐽

Working term

surface gravity
horizon area



Bekenstein, 1974

Is the area of the event horizon thermodynamic entropy?

𝛿𝐴 ≥ 0 (Hawking, 1971)

𝛿𝐴 ∝ 𝛿𝑆 (Bekenstein, 1974)



Bekenstein, 1974

Is the area of the event horizon thermodynamic entropy?

Analogous with the second law of thermodynamics:

dS ≥ 0

𝛿𝐴 ≥ 0 (Hawking, 1971)

𝛿𝐴 ∝ 𝛿𝑆 (Bekenstein, 1974)
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Hawking, 1975

A black hole emits thermal radiation.

The temperature, a.k.a. Hawking temperature, and the 
thermodynamic entropy, a.k.a. Bekenstein-Hawking entropy, 
are determined.

𝑛𝜔 ∝
1

𝑒2𝜋𝜔/𝜅 − 1

𝑇 =
𝜅

2𝜋
𝑆 =

𝐴

4
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Just memorize

For static spherical symmetric black holes:

𝑑𝑠2 = −𝑓 𝑟 𝑑𝑡2 +
1

𝑓 𝑟
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𝑟
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𝑟2
−
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For static spherical symmetric black holes:

𝑑𝑠2 = −𝑓 𝑟 𝑑𝑡2 +
1

𝑓 𝑟
𝑑𝑟2 + 𝑟2𝑑Ω2

where 𝑓 𝑟 = 1 −
2𝑀

𝑟
+

𝑄2

𝑟2
−

𝑟2

3
Λ.

𝑇 =
1

4𝜋

𝑑𝑓

𝑑𝑟
𝑟+

Hawking temperature

entropyhorizon

𝑓(𝑟+) = 0 𝑆 = 𝜋𝑟+
2
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As a check:

𝛿𝑆 = 8𝜋𝑀𝛿𝑀 =
𝛿𝑀

𝑇
So, that’s OK!
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Exercise 1: Schwarzschild BH

Horizon: 𝑟+ = 2𝑀

Entropy: 𝑆 = 4𝜋𝑀2

Hawking temperature: 𝑇 =
1

8𝜋𝑀

What are the consequences according to black body radiation?
According to the Stefan-Boltzmann law:

𝑑𝑀

𝑑𝑡
= 𝛼𝑁𝐴𝑇4 ∝

1

𝑀2

Therefore, the lifetime of a black hole is
𝑡𝐵𝐻~𝑀

3.
Hence, black hole will disappear in finite time.



Exercise 1: Schwarzschild BH

Penrose diagram of the Schwarzschild black hole

singularity

space-like infinity



Exercise 1: Schwarzschild BH

Matching with the star-interior (time-like surface)



Exercise 1: Schwarzschild BH

Dynamical formation of a black hole
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For dynamical black holes,
a locally defined horizon is
more meaningful.

For example, in the Vaidya metric,

𝑑𝑠2 = − 1 −
2𝑀 𝑣

𝑟
𝑑𝑣2 + 2𝑑𝑣𝑑𝑟 + 𝑟2𝑑Ω2

the apparent horizon is
𝑟𝐴𝑝𝐻 = 2𝑀(𝑣).

Exercise 1: Schwarzschild BH

𝑟𝐴𝑝𝐻



Exercise 1: Schwarzschild BH

𝑟𝐴𝑝𝐻

𝑟𝐸𝐻



Exercise 2: Charged BH

Horizon: 𝑟± = 𝑀 ± 𝑀2 − 𝑄2

Entropy: 𝑆 = 𝜋(𝑀 + 𝑀2 − 𝑄2)2

Hawking temperature: 𝑇 =
𝑟+−𝑀

2𝜋𝑟+
2

As a check:

𝛿𝑆 =
1

𝑇
𝛿𝑀 −

Φ

𝑇
𝛿𝑄
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Exercise 2: Charged BH

Horizon: 𝑟± = 𝑀 ± 𝑀2 − 𝑄2

Entropy: 𝑆 = 𝜋(𝑀 + 𝑀2 − 𝑄2)2

Hawking temperature: 𝑇 =
𝑟+−𝑀

2𝜋𝑟+
2

For usual cases, M > Q (satisfying weak cosmic censorship).
As time goes on, M approaches to Q by Hawking radiation.
As time goes on, Q decreases due to the Schwinger effect,

where 
𝑑𝑄

𝑑𝑡
∝ 𝑒−𝐸𝑐/𝐸+ (𝐸𝑐 =

𝜋𝑚𝑒
2

𝑒
, 𝐸+ =

𝑄

𝑟+
2).



Exercise 2: Charged BH

??
Hong, Hwang, Stewart and DY, 2010
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Exercise 2: Charged BH

What is the correct causal structure for the formation 
of a charged black hole?

Hawking-Ellis, 1973



Exercise 2: Charged BH

What is the correct causal structure for the formation 
of a charged black hole?

Birrell-Davies, 1982



Exercise 2: Charged BH

What is the correct causal structure for the formation 
of a charged black hole?

Wald, 1984



Exercise 2: Charged BH

What is the correct causal structure for the formation 
of a charged black hole?

Parikh-Wilczek, 1998



Exercise 2: Charged BH

Due to mass inflation, there appears a space-like 
singularity.

Bonanno-Droz-
Israel-Morsink, 1994



Exercise 2: Charged BH

Confirmed by numerical calculations

Hod and Piran, 1998; Hong, Hwang, Stewart and DY, 2010



Exercise 2: Charged BH

Including Hawking radiation and discharging effect

Sorkin and Piran, 2001; Hong, Hwang, Stewart and DY, 2010



Exercise 2: Charged BH

Further on charged black holes:
if a dilaton field is coupled to charge, then there may or 

may not be a Cauchy horizon depending on details of coupling
as well as the potential of the dilaton field.

Borokowska (Nakonieczna), Rogatko and Moderski, 2011
Hansen and DY, 2014; 2015
Nakonieczna and DY, 2016



Origin of Hawking radiation

Three ways to Hawking radiation



First way: Bogoliubov transformation
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First way: Bogoliubov transformation

Therefore, number of particles are non-trivial!
Even though we start from the vacuum

𝑎𝜔|  0 = 0

by using

𝑏𝜔 = 

𝜔′

[𝛼𝜔𝜔′
∗ 𝑎𝜔′ − 𝛽𝜔𝜔′

∗ 𝑎
𝜔′
† ]

we obtain

𝑛𝜔 = 𝑏𝜔
†𝑏𝜔 = 

𝜔′

𝛽𝜔𝜔′
2

This may be non-zero.

𝑎, 𝑎†

𝑏, 𝑏†

𝑐, 𝑐†

Hawking, 1975
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First way: Bogoliubov transformation

Now calculate!
𝑝𝜔~𝑒

𝑖𝜔𝜅−1ln[(𝑣0−𝑣)/𝑐] (for 𝑣 < 𝑣0)
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First way: Bogoliubov transformation

Now calculate!
𝑝𝜔~𝑒

𝑖𝜔𝜅−1ln[(𝑣0−𝑣)/𝑐] (for 𝑣 > 𝑣0)

This is a function of v. Hence, by using the 
Fourier transformation, we can match the 
coefficients α and β

𝑝𝜔 = 

𝜔′

[𝛼𝜔𝜔′𝑓𝜔′ + 𝛽𝜔𝜔′𝑓𝜔′
∗ ]

where 𝑓𝜔~𝑒𝑖𝜔𝑣.𝑎, 𝑎†

𝑏, 𝑏†

𝑐, 𝑐†

𝜔

trace back

blue-shifted by factor 𝑣~𝑒𝜅𝑢

𝑢

𝑣
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First way: Bogoliubov transformation

We obtain the relation
𝛼𝜔𝜔′

2 = 𝑒2𝜋𝜔/𝜅 𝛽𝜔𝜔′
2

In addition, there is a normalization condition

 

𝜔′

( 𝛼𝜔𝜔′
2 − 𝛽𝜔𝜔′

2) = 1
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𝑏, 𝑏†
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First way: Bogoliubov transformation

We obtain the relation
𝛼𝜔𝜔′

2 = 𝑒2𝜋𝜔/𝜅 𝛽𝜔𝜔′
2

In addition, there is a normalization condition

 

𝜔′

( 𝛼𝜔𝜔′
2 − 𝛽𝜔𝜔′

2) = 1

In conclusion,

𝑛𝜔 ∝
1

𝑒2𝜋𝜔/𝜅 − 1𝑎, 𝑎†

𝑏, 𝑏†

𝑐, 𝑐†

𝜔

trace back
𝑢

𝑣

𝑣0

Hawking, 1975



Second way: Renormalized EM tensor

We want to solve the equation
𝐺𝜇𝜈 = 8𝜋 𝑇𝜇𝜈

where the energy-momentum tensor has ambiguities.

Moreover, the expectation values are divergent in general:
𝜙(𝑥)𝜙(𝑥)



Second way: Renormalized EM tensor

In order to resolve these problems, renormalization techniques were developed.

Step 1. Obtain finite two-point correlation function, e.g., by the point splitting 
method:

lim
𝑥→𝑥′

𝜙(𝑥)𝜙(𝑥′) =
𝑐

𝑥 − 𝑥′
+ (finite terms)

Birrell and Davies, “Quantum fields in curved space”, 1982



Second way: Renormalized EM tensor

In order to resolve these problems, renormalization techniques were developed.

Step 2. Using the two-point correlation function, we obtain the energy-
momentum tensor.

Howard and Candelas, 1984

Birrell and Davies, “Quantum fields in curved space”, 1982



Second way: Renormalized EM tensor

For two-dimensional cases, we can obtain the simpler form:

𝑇𝜇𝜈 =
𝑃

𝛼2
(𝛼𝛼,𝑢𝑢 − 2𝛼,𝑢

2 ) − (𝛼𝛼,𝑢𝑣 − 𝛼,𝑢𝛼,𝑣)

− (𝛼𝛼,𝑢𝑣 − 𝛼,𝑢𝛼,𝑣) (𝛼𝛼,𝑣𝑣 − 2𝛼,𝑣
2 )

where 𝑑𝑠2 = −𝛼2𝑑𝑢𝑑𝑣.

Davies, Fulling and Unruh, 1976



Second way: Renormalized EM tensor

For two-dimensional cases, we can obtain the simpler form:

𝑇𝜇𝜈 =
𝑃

𝛼2
(𝛼𝛼,𝑢𝑢 − 2𝛼,𝑢

2 ) − (𝛼𝛼,𝑢𝑣 − 𝛼,𝑢𝛼,𝑣)

− (𝛼𝛼,𝑢𝑣 − 𝛼,𝑢𝛼,𝑣) (𝛼𝛼,𝑣𝑣 − 2𝛼,𝑣
2 )

where 𝑑𝑠2 = −𝛼2𝑑𝑢𝑑𝑣.

For dilaton black holes, there can be a back-reaction even for 2D: CGHS model.

Davies, Fulling and Unruh, 1976

Callan, Giddings, Harvey and Strominger, 1991



Second way: Renormalized EM tensor
Ashtekar, Pretorius and Ramazanoglu, 2011



Third way: Particle tunneling

Causal structure of a Schwarzschild black hole.



Third way: Particle tunneling

Constant time hypersurfaces



Third way: Particle tunneling

Euclidean analytic continuation



Third way: Particle tunneling

In order to remove a cusp singularity, we need to choose the 
Euclidean time period 𝜏 = 8𝜋𝑀 = 1/𝑇.



Third way: Particle tunneling

One can do a similar analytic continuation inside the horizon, 
although the signature becomes (++--).



Third way: Particle tunneling

Hartle and Hawking considered a particle tunneling from inside 
to outside the horizon.

Hartle and Hawking, 1976



Third way: Particle tunneling

Hartle and Hawking considered a particle tunneling from inside 
to outside the horizon.

Hartle and Hawking, 1976



Third way: Particle tunneling

Using the analytic continuation, one can calculate the emission rate.

(probability to emit a particle with energy E) = 𝑒−
2𝜋𝐸

𝜅 x (probability to absorb a particle with Energy E)

Hartle and Hawking, 1976



Third way: Particle tunneling

One can also calculate a tunneling between two null geodesics.

Parikh and Wilczek, 2000



Third way: Particle tunneling

One can also calculate a tunneling between two null geodesics.

Γ ∝ 𝑒−2 𝐼𝑚 𝑆

𝐼𝑚 𝑆 = 𝐼𝑚 
𝑟𝑖𝑛

𝑟𝑜𝑢𝑡

𝑝𝑟𝑑𝑟 = 𝐼𝑚 
𝑀

𝑀−𝜔

 
𝑟𝑖𝑛

𝑟𝑜𝑢𝑡 𝑑𝑟

 𝑟
𝑑𝐻 = 4𝜋𝜔 𝑀 −

𝜔

2

(𝐻 = 𝑀 − 𝜔′)

Parikh and Wilczek, 2000



Fourth way?: Using instantons?

Can this particle tunneling process generalize to instanton 
picture of a field?

Chen, Domenech, Sasaki and DY, in preparation



Fourth way?: Using instantons?

Find a scalar field solution of the Euclidean-Lorentzian 
manifold. How to calculate a consistent probability?

Chen, Domenech, Sasaki and DY, in preparation



Fourth way?: Using instantons?
Chen, Domenech, Sasaki and DY, in preparation



Fourth way?: Using instantons?
Chen, Domenech, Sasaki and DY, in preparation

𝑀

𝑀′

𝜔 = 𝑀 −𝑀′



Fourth way?: Using instantons?
Chen, Domenech, Sasaki and DY, in preparation

𝑀

𝑀′

𝜔 = 𝑀 −𝑀′

𝜏 = 4𝜋𝑀



Fourth way?: Using instantons?

Obstacles: there should be a cusp singularity!

Chen, Domenech, Sasaki and DY, in preparation

𝑀

𝑀′

𝜔 = 𝑀 −𝑀′

𝜏 = 4𝜋𝑀

𝜏′ ≠ 4𝜋𝑀′



Fourth way?: Using instantons?

We may overcome this problem: Chen, Hu and DY, 2015.

Chen, Domenech, Sasaki and DY, in preparation

𝑀

𝑀′

𝜔 = 𝑀 −𝑀′

𝜏 = 4𝜋𝑀

𝜏′ ≠ 4𝜋𝑀′



Applications of Entropy

Various notions of entropy



Information and entropy

A less probable event/state has more information.
𝐼𝑖 = − log 𝑝𝑖



Information and entropy

A less probable event/state has more information.

Entropy = Expectation value of information

= Capacity of information

𝐼𝑖 = − log 𝑝𝑖

𝑆 ≡ 𝐼 = − 

𝑖

𝑝𝑖 log 𝑝𝑖



From statistical mechanics

Density matrix: 𝜌 ≡  𝜓  𝜓 =  𝑖 𝑝𝑖  𝑖  𝑖 .

Von Neumann entropy

𝑆 ≡ −𝑇𝑟𝜌 log 𝜌 = − 

𝑖

𝑝𝑖 log 𝑝𝑖



From statistical mechanics

Density matrix: 𝜌 ≡  𝜓  𝜓 =  𝑖 𝑝𝑖  𝑖  𝑖 .

Von Neumann entropy

Boltzmann entropy: in thermal equilibrium 𝜌𝑒𝑞 =  𝑖
1

𝑁
 𝑖  𝑖

𝑆 ≡ −𝑇𝑟𝜌 log 𝜌 = − 

𝑖

𝑝𝑖 log 𝑝𝑖

𝑆𝑒𝑞 = 𝑁 × −
1

𝑁
log

1

𝑁
= log𝑁

The possible largest entropy.



Entropy of subsystem

Let us assume that we consider:

1. A closed system with the total number of states N

2. Initially total information of the system is log N

3. It was concentrated in A in the beginning.

BA



Entropy of subsystem

Let us assume that we consider:

1. A closed system with the total number of states N

2. Initially total information of the system is log N

3. It was concentrated in A in the beginning.

Now I want to move particles from A to B.

Will the total information be conserved? BA



Entropy of subsystem

Let us define a measure of information:

where 𝑆 𝐵 𝐴 = −𝑇𝑟𝐵𝜌𝐴 log 𝜌𝐴 is the entanglement entropy and 
𝜌𝐴 = 𝑇𝑟𝐴𝜌.

BA

𝐼 = 𝑆 𝐵 − 𝑆(𝐵|𝐴)

Page, 1993; Page, 2013



Estimation of entanglement entropy

For a pure and random system, we can estimate the 
entanglement entropy (m<n): 

BA

𝑆 𝐵 𝐴 =  

𝑘=𝑛+1

𝑚𝑛
1

𝑘
−
𝑚 − 1

2𝑛

Page, 1993; Page, 2013



Estimation of entanglement entropy



Estimation of entanglement entropy
𝑆(𝐵)



Estimation of entanglement entropy
𝑆(𝐵)

𝑆 𝐴 ∪ 𝐵 = log𝑁 = constant



Estimation of entanglement entropy
𝑆(𝐵)𝑆(𝐴) = black hole entropy

𝑆 𝐴 ∪ 𝐵 = log𝑁 = constant



Estimation of entanglement entropy
𝑆(𝐵)𝑆(𝐴) = black hole entropy

𝑆 𝐴 ∪ 𝐵 = log𝑁 = constant

𝑆 𝐵 𝐴 =  

𝑘=𝑛+1

𝑚𝑛
1

𝑘
−
𝑚 − 1

2𝑛

Page time



Estimation of entanglement entropy
𝑆(𝐵)𝑆(𝐴) = black hole entropy

𝑰 = 𝑺 𝑩 − 𝑺(𝑩|𝑨)

𝑆 𝐴 ∪ 𝐵 = log𝑁 = constant

Page time

𝑆 𝐵 𝐴 =  

𝑘=𝑛+1

𝑚𝑛
1

𝑘
−
𝑚 − 1

2𝑛



Emission of information

black hole

If 𝑺(𝑨) ∝ Area, then Hawking radiation should contain
information.



Information loss problem

A bird’s-eye view



A bird’s-eye view Chen, Ong and DY, 2014



A bird’s-eye view
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Chen, Ong and DY, 2014
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