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I. Matrix

1. Permutation and Parity

1.1 Permutation

Definition 1.1 Consider an ordered set (a!,a?,---,a"!,a") of n different numbers out of
{1,2,3,--- ,n}. Permutation ¢ is a mapping of an ordered set of numbers (a',a?,--- ,a"" ! a")
to another
(al’CLQ’ e ’an—l’ an) L> (Ualao-GQa to ,O_a”)‘ (11)
Note that
{a',a?, - a1 a"} = {Jal,JQQ, e ,Jan_l,aan} ={1,2,3,--- ,n}. (1.2)

1.2 Parity and Levi-Civita Symbol

Problem 1.2 Show that there are n! distinct mappings for the permutations o that permutes

1,2, ,n).

Definition 1.3 The parity of a permutation o of (1,2,--- ,n) is called even (odd) if it is obtained

by an even (odd) number of two-element exchanges. We define the parity operator e such that

+1, if o is even,
€(o) = (1.3)
—1, if o is odd.
Show that
e(o?ol) = e(o?)e(ah). (1.4)
Definition 1.4 We say that a permutation ¢ is the inversion if
o(at,a®, - a1t a") = (a",a" 1, 6% ab). (1.5)

Problem 1.5 Let us find the parity of the inversion for any positive integer n > 2.




1.2 Parity and Levi-Civita Symbol

1. Show that the number N(n) of exchanges for the inversion of (1,2,---,n) to obtain the

permuatation (n,n —1,---,2,1) is

-1
Nmn)=> k= nin=1) (1.6)

2
k=1

3

2. It is trivial to check N(2) =1, N(3) =3, N(4) =6, N(5) = 10, N(6) = 15, ---. Therefore,
the inversion changes the parity (even <+ odd) for n = 2 and 3. However, for n = 4 and 5,

the parity is invariant under inversion.

(a) Show that parity is invariant under inversion for n = 4k or 4k + 1 for k is a positive

integer.

(b) Show that the parity changes under inversion for n = 4k + 2 or 4k + 3 for k is a

non-negative integer.
3. Show that there are n!/2 even permutations of (1,2,--- ,n) for n > 2.

4. Show that there are n!/2 odd permutations of (1,2,--- ,n) for n > 2.

Problem 1.6 There is only a single way of exchanging two adjacent elements like
(- aby) = (oL biay ). (1.7)
Therefore, the exchange of two adjacent elements is well defined.
1. Let us consider the change of parity after exchanging two elements in a permutation
(---,a,b,c,---)—)(---,c,b,a,---). (1.8)

Show that the permutation can be decomposed into an odd number (3) of exchanges of two

adjacent indices:

( ’a’b7cj...)_)(... ’b7a7cj...)_)(... ’b7cja’...)_>(... 7C’b7a7...)_ (19)

2. Let us consider the exchange of two elements a and ¢
(- a, bt e, ) = (- e, bt e D a, ). (1.10)

This permutation o can be decomposed into

o =o', (1.11a)
ol a, bt b e ) = (e a, b b)), (1.11b)
o?(-- e a, bt B ) = (e b b a, ). (1.11c)




1.2 Parity and Levi-Civita Symbol

Show that the parity of e(o!) = (=1)""! and €(0?) = (—1)™

o = €(0?)e(o!) = —1 that is independent of n.

Problem 1.7 Consider a permutation of an ordered set of two numbers (1, 2).

1. Show that there are two permutations o(1,2) = (1,2) and o(1,2) = (2,1).

2. Show that the identity permutation o(1,2) = (1,2) is even.

3. Show that o(1,2) = (2,1) is odd.

Problem 1.8 Consider a permutation of an ordered set of three numbers (1,2, 3).

1. Show that there are 6 permutations.

2. Show that the permutations o(1,2,3) = (1,2,3), (2,3,1), (3,1,2) are even.

3. Show that the permutations ¢(1,2,3) = (3,2,1), (1,3,2), (2,1,3) are odd.

Problem 1.9 Consider a permutation of an ordered set of four numbers (1,2, 3,4).

1. Show that there are 24 permutations.

2. Show that the permutations all possible even

0(1,2,3,4) = (1,2,3,4), (2,3,1,4), (3,1,2,4).

3. Show that the permutations all possible even

0(1,2,3,4) = (2,1,4,3), (3,2,4,1), (1,3,4,2).

4. Show that the permutations all possible even

0(1,2,3,4) = (1,4,2,3), (2,4,3,1), (3,4,1,2).

5. Show that the permutations all possible even

0(1,2,3,4) = (4,2,1,3), (4,3,2,1), (4,1,3,2).

6. Show that the permutations all possible odd
0(1,2,3,4) = (2,1,3,4), (2,3,1,4), (1,3,2,4).

7. Show that the permutations all possible odd
0(1,2,3,4) = (1,2,4,3), (2,3,4,1), (3,1,4,2).
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1.3 Algebra involving Levi-Civita Symbols

8. Show that the permutations all possible odd permutations of the form (a,4,b,c) are

0(1,2,3,4) = (1,4,3,2), (2,4,1,3), (3,4,2,1).

9. Show that the permutations all possible odd permutations of the form (4,a,b,c) are
0(1,2,3,4) = (4,2,3,1), (4,3,1,2), (4,1,2,3).
0(1,2,3,4) can be generated by making use of the following MATHEMATICA command:

Permutations[{1, 2, 3, 4}]

1.3 Algebra involving Levi-Civita Symbols

Definition 1.10 An antisymmetric permutation symbol ¢ for an ordered set of numbers

(at,---,a") =0(1,2,3,--- ,n) where a’ € {1,2,3,--- ,n} is defined by

+1, if o is even,
e(at,-+,a") =14 —1, if o is odd, (1.12)
0, if {al"" ’an} 7£ {1a2,3a"' ,TL}.

€ is also called the Levi-Civita symbol. Note that the last case is that there exists at least one

pair such that a’ = a/ for i # j.

Problem 1.11 Let us consider the permutations of (1,2).

1. Show that
€11=0, €92=1, €3 =-1, €99=0. (1.13)
2. Show that
> e =0. (1.14)
i7j
3. Show that
6%1 - 07 6%2 - 17 6%1 - 1, 6%2 - O (115)
4. Show that
e =2l (1.16)
/[:7-7

We use Einstein’s convention that any repeated indices are assumed to be summed over:

eijez'j = Zeijeij- (117)

4,J




1.3 Algebra involving Levi-Civita Symbols

Problem 1.12 Let us consider the permutation of (1,2, 3).

1. Show that the only non-vanishing elements €;;, are

€123 = €231 = €312 = +1,

€321 = €132 = €213 = —1,

2. Show that
Z Eijk =0.
i7j7k
3. Show that
2 2 2
€193 = €331 = €319 = +1,
2 2 2
€391 = €132 = €313 = +1,
4. Show that

Problem 1.13 Let us consider the permutation of (1,2, 3).

1. Show that the only non-vanishing elements ¢;;;, are

€1234 = €9314 = €3124 = +1,
€2143 = €3241 = €1342 = +1,
€1423 = €2431 = €3412 = +1,

€4213 = €4321 = €4132 = +1,

€2134 = €2314 = €1324 = —1,
€1243 = €2341 = €3142 = —1,
€1432 = €2413 = €3421 = —1,
€4231 = €4312 = €4123 = — 1.

2. Show that

Z €ijke = 0.

i,5,k,¢

(1.18a)

(1.18b)

(1.19)

(1.20a)

(1.20b)

(1.21)

(1.23)




1.4 Application of Levi-Civita Symbols to Vector Analysis

3. Show that
€lo31 = €3314 = €3104 = +1, (1.24a)
€5143 = €3011 = €13a0 = +1, (1.24b)
€1103 = €ha31 = €3u10 = +1, (1.24c)
€1o13 = €1301 = €1130 = +1, (1.24d)
€5131 = €h314 = €1304 = +1, (1.24e)
€lo13 = €33a1 = €31a0 = +1, (1.24f)
€l132 = €5a13 = €3a01 = +1, (1.24g)
€4231 = €1312 = €1123 = +1. (1.24h)
4. Show that
> =4 (1.25)
irj, kb
Problem 1.14 By making use of mathematical induction, show that
€iyinrrip Eiyig-rin = M. (1.26)

1.4 Application of Levi-Civita Symbols to Vector Analysis

Problem 1.15 Let us consider vectors defined in a 3-dimensional Euclidean space. By making

use of Levi-Civita symbols, prove the following identities.

1. BAC — CAB rule:

Ax(BxC)=B(A-C)—-C(A-B,). (1.27)
2. Jacobi identity:
AXx(BxC)+Bx(CxA)+Cx(AxB)=0. (1.28)
3. Verify the identity and interpret the answer based on permutation and parity:

(AxB) - (CxD)=(A-C)-(B-D)-(A-D)-(B-C). (1.29)

4. Verify the identity and interpret the answer based on trigonometry:

(Ax B)?=A’B?> - (A-B)%. (1.30)




1.4 Application of Levi-Civita Symbols to Vector Analysis

5. Verify the identity and interpret the sign of each term based on permutation and parity:
(AxB)x (CxD)=(A-CxD)B—-(B-CxD)A
=(A-BxD)C—-(A-BxC)D. (1.31)
Problem 1.16 Consider a permutation of (1,2,3) and its parity.
1. Show that the triple scalar product of three three-vectors can be expressed as

A-Bx C = ¢ja't/C*. (1.32)
2. By making use of the parity properties of permutations, show that
A-BxC=B-CxA=C-AxB. (1.33)

Problem 1.17 The curl of a vector field in a 3-dimensional Euclidean space is defined by

9k

The vector fields A and B and the scalar field ¢ are dependent on the position. By making use of

the Levi-Civita symbol, verify the following formulas.
1.

Vx(AxB)=(V-B+B - V)A—(V-A+A.V)B, (1.35)

Ax(VxB)=Vg(A -B)—(A-V)B, (1.36)

where the gradient operator Vg with the subscript B acts only on B.

3.
Vx(VxA=V(V-A)-V3A. (1.37)

4.
V x (V¢) = 0. (1.38)

5.
V x (pA) = (V¢) x A+ ¢(V x A). (1.39)




2.1 Definition

2. Determinant

2.1 Definition

Definition 2.1 The determinant of an n X n square matrix A is defined by

all g12 413 ... gln
a2l @22 42 ... g2n
Det[A] = |a3! 432 ¢33 ... ¢3n
anl an2 an3 AL
= Z 6010203,,,0na1”1a2‘72 gl g
g
no
= ZE(O’) Hawl, (2.1)
o i=1
where the sum is over n! permuations o of (1,2, -+ ,n) and
(017027 70-n) - 0(1727 7n) (2 2)
The Levi-Civita symbol is defined by the parity of a permutation o:
€olg2g3..on = €[0(1,2,--+ ,n)] = €(o). (2.3)
Problem 2.2 Let o and 7 be permutations of (1,2,--- ,n). Show that
1. €(1) =1, where 1 is the identity permutation.
2. €(c71) = €(0).
3. €(or) = €(0)e(T) = €(T0).
Problem 2.3 Show that
n . .
Det[A] = Z (o) H aio'
o i=1
1 | | S
= Z (o) H a™? = o Z (o) H a™? == Z e(ro) H a’ "
o,T =1 o,T =1 o,T =1
n
= (o) [Ja"" (2.4)




2.1 Definition

Problem 2.4 Let us consider the determinant of a 2 X 2 matrix.

A:

1. Show that

Problem 2.5 Let us compute the determinant of a 3 x 3 square matrix.

1. Show that
all g12 413
11
a2l 42?2 23| = +a
a3l 32 ¢33
— g2t
= 443!
2. Show that
all g12 413
11
a2l 42?2 23| = +a
a3l 432 ¢33
— 4q2
4B

Problem 2.6 Show that for any n,

where 1 is the n x n identity matrix.

= ad — be.

a?? 23

—a
a3? 33
al? o13

+a
a3? 33
al?2 o13

—a
a2 23
a2 23

—a
a3? 33
a2l 23

—a
a3l 33
a2l ¢22

—a
a3l 32
Det[l] =1,

12

22

32

21

21

31

11

31

11

21

12

32

11

31

11

31

23

33

13

33

13

23

13

33

13

33

13

33

+ a13

23

+ CL33

+ CL31

+ CL32

+ CL33

21

31

11

31

11

21

12

22

11

21

11

21

22

32

12

32

12

22

13

23

13

23

12

22

(2.5)

(2.7)

(2.9)




2.1 Definition

Problem 2.7 Provide the reason why the determinant of each of the following matrices vanishes.

Det

Det

Det

1111111
1111101
1111011
1110111
1101111
1011111
0000000

111111 -1
211110 -2
311101 -3
411011 -4
510111 -5
601111-6
700000 —7

1111127
2011116
3001005
40001014
5000103
6000102
7000001

(2.10)

(2.11)

(2.12)

10



2.2 Expressions involving Levi-Civita Symbols

2.2 Expressions involving Levi-Civita Symbols

Problem 2.8 The tensor €;j€,, must be antisymmetric under exchange of 7 <+ j and under ex-

change of a < b.
1. Show that the only non-vanishing elements of the tensor €;;e,, are
€12€12 = €21€21 = 1, (2.13a)
€12€21 = €21€12 = —1. (2.13Db)

Therefore, the only non-vanishing cases are

{i,7} = {a,b} = {1,2}, (2.14)

i = {71 9 = @D = (12 or (2.1 (215)
T @) = e =12 e 21) |

2. Show that this condition is equivalent to

S sia §ib
Cijeay = 0670 — §5I = Det [ . (2.16)
sia §ib

3. By multiplying 6°*67° to both sides and summing over repeated indices, show that the relation

(2.16) is consistent in normalization:
2! = (21)% — 2. (2.17)
Problem 2.9 The tensor €;j,€qc is non-vanishing only if both (4,7,k) = ¢(1,2,3) and (a,b,¢c) =
7(1,2,3) are permutations of (1,2, 3).
1. Show that the only non-vanishing elements of the tensor €;j€qp. are

€ijk€abe = €(0)e(T) = €(0T). (2.18)

2. Show that this condition is equivalent to

sia §ib gic
€iinEare = 010070KC 4 gibgiegha y gicsiaght _ gicgibgka_giagicgkt _gibgiaghe — @t | gia gt gic
ska gk ke

(2.19)

11



2.3 Basic Properties of Determinant

3. By multiplying 6°*67°6%¢ to both sides, show that the relation is consistent in normalization:

31 =334+2x3-3x32

The following REDUCE program reproduces this result.

vecdim 3;

vector i,j,k,p,q,T;
m:=mat((i.p,i.q,i.r),(j.p,j-q,j-r),(k.p,k.q,k.r));
f:=det(m);

index i,j,k,p,q,Tr;

ff:=fxi.pxj.q*k.r;

Problem 2.10 Based on mathematical induction, show that

Sijr gijz ... §itin
§i2d1 §izj2 ... gizin
€iriniz-in€j1j2j3 - fn = Det

2.3 Basic Properties of Determinant

Problem 2.11 Let us consider a matrix A,

(2.20)

(2.21)

(2.22)

where a is the ith column vector. Let B be the matrix that satisfies the following conditions:

B = (b'p* .- b"),

al,

b? = aP,

b = a, for i # p, q.
Here, p # q. Show that

Det[B] = —Det[Al.

(2.23)

(2.24)

12



2.3 Basic Properties of Determinant

Problem 2.12 Let us consider a matrix A,
1[11

A= Al = (au a2 ... az‘n>, (2.25)

Cvl
02
C = ;
én
CcP = Aq,
C1 = Ap,
Cl = A, fori#p, q. (2.26)
Here, p # q. Show that
Det[C] = —Det[A]. (2.27)

Problem 2.13 Show that

1 1 2 n
_ o' ,,0°T2 o™
Det(A) = o g E €olp2..gn€rryer, @ 107 - a” T
: g T

_ % SN eo)elr) [ a7 (2.28)

i=1

where the sums are over two permutations o and 7 for (1,2,3,--- ,n).

Problem 2.14 Show that for a given j € {1,2,--- ,n}

Det[A] =) aCY = "d'CP, (2.29)
i=1 =1
CY = (=1)"I M), (2.30)

where C% and M) are called the (ij) cofactor and the (ij) minor of A, respectively. The (ij)

13



2.3 Basic Properties of Determinant

minor M) is the determinant of a submatrix of A in which ith row and jth column are deleted:

all g2 ... gli-l glitl L. gln
G2l g22 ... g2i-1 0 G241 L. g 2n
O — (_1)1+]M(U) = (=1)H |gi-11 gim12 .. gi-1i=1 gi=1j+1 . gi-ln|, (2.31)
gL 12 L il il gitln
anl an2 L. anjfl anj+1 ann

Problem 2.15 Verify the following statements for an n X n square matrix A.

10.

. If the columns (rows) of A are linearly dependent, then SRant(A) < n and Det(A) = 0.

. If the columns (rows) of A are linearly independent, then Rant(A) = n and Det(A) # 0.
. If Det(A) = 0, then Rank(A) < n and A is not invertible: A~! does not exist.

. If A is not invertible, then Rant(A) < n and Det(A4) = 0.

. If Det(A) # 0, then Rank(A) = n and A is invertible: A~! exists.

. If A is invertible, then Rant(A) = n and Det(A) # 0.

Det(cA) = "Det(A), where ¢ is a number.

. Det(AT) = Det(A).

. Let B = (b) and C = (C¥) be matrices such that

b =qalo’, C =g (2.32)
where o is a permutation of (1,2,--- ,n). Show that
Det(B) = Det(C) = e(o)Det(A). (2.33)

Let D = (d;;) be a matrix such that

dij = aoiTj, (234)
where o and 7 are permutations of (1,2,--- ,n). Show that
Det(D) = e(o)e(1)Det(A). (2.35)

14



2.4 Factorization of Det[AB] = Det[A]Det[B]

2.4 Factorization of Det[AB] = Det[A]|Det[B]

Problem 2.16 Let us prove
Det[AB] = Det[A]Det[B]

for 2 x 2 matrices.

1. Show that
o o2
Det[AB] = —cllo22 _ o122l

2 022

= (A'p")(A%0%) — (A'%)(A%")
1 ~ .

= Seijere(AD)(ATD)
1

= Seijere(ATHR)(ATH1)

— DN

= 5 (cij AT AI) (e b b7)

N — DN

where C% = Ab7, A is the ith row of A, and b’ is the jth column of B.
2. Show that AP A%7 — A?P A9 is antisymmetric under exchange of p <+ q. Therefore,

AIPA2Q _ A?pAlq — %epqers(AerQS _ A2T‘A13) — equDet(A).

3. Show also that bP1b9? — pP2p9! is antisymmetric under exchange of p <+ ¢. Therefore,

1
bplqu _ bp2bq1 — §€pq€7»5(b1rb28 _ b27"b15) — qu:Def(B).

4. Show that

1
Det[AB] = 3 % epgDet(A) X epgDet(B)

= Det(A)Det(B).

Problem 2.17 Let us prove

Det[AB] = Det[A]Det[B]

for 3 x 3 matrices.

X (AP A2 — A% A1) 5 (BP1592 — pP2pAL),

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

15



2.4 Factorization of Det[AB] = Det[A]Det[B]

1. Show that
Cll 012 013
@et[AB] — 021 022 C23
(731 (732 (733
e eae (AT (AT (Akpe)

3!

_ %eijkeabc(mpbm)(qubqb)(Akrb"C)

= (e AP AAR) (e P, (2.42)

where C% = Ap7, A is the ith row of A, and &’ is the jth column of B.
2. Show that

i AP AIIART = ¢ e, AT AT2 ARS
1 o
k
= €pgr X geijkemyzAmAij z

= €pgrDet(A). (2.43)
3. Show also that
€abe ppa bqbbrc _ qurfabcbla b2bb3c

1
= €pgr X gexyzeabcAmAybAzc

= epyrDet(B). (2.44)

4. Show that

1
Det[AB] = — X €pgrDet(A) X €pgrDet(B)

3!
= Det(A)Det(B). (2.45)
Problem 2.18 Let us prove that
Det(AB) = Det(A)Det(B), (2.46)

for n x n based on mathematical induction. We have shown that the relation is true for n = 2.

Let us assume that the relation is true for n = k£ and test if the relation is true for n = k + 1.

16



2.4 Factorization of Det[AB] = Det[A]Det[B]

1. By definition, Det[AB] is expressed as

Qet[AB] = meiliz---ikﬂ€j1j2"'jk+1 (A“ bjl)(/lmbp) T (AikJrlbijrl)
1 ‘ $1 $1‘ 4 1‘2 $2‘ 4 $k+l $k+l‘
= meiliz-"ikﬂejljz---jkﬂ (A b jl)(A b ]2) T (A s b ]kH)
1

_ AilxlAing L Aik+1xk+1)(

1. 2 k+1
.. . TJ1HRT™g2 BT Jk+1
6]1]2"']k+1b b b )

m (6i1i2~"ik+1
(2.47)

where (AB);; = A%, A’ is the ith row of A, and b/ is the jth column of B.

2. By mathematical induction, show that

k+1

Ana! gia® | fienett €12, b1 AL A2 L gikrr bt

1

= €12, ght1 X mEiIiQ"'ik+lEjle"'jk+1

€irig- iy €irig-ip41

AN At272 ... ATk+1TR+1

= €x1x2___$k+1©€t(14). (2.48)

3. Show also that

TJLRTEIL L, BT Tkl — L Jip232 . pkt+1lik+a
b*ip B IR = €t kb1 €y gy DD pr+ L+

1

€l gph+l X mﬁiliz---ikﬂ€j1j2~~~jk+1

€j152 - Jrt1

biljl bi2j2 . bik+1jk+1

= €$1$2___$k+1©€t(B). (2.49)

4. Show that

1
(k n 1)' X 6$1$2...$k+1®€t(14) X 6$1$2...x/€+1©et(3)

— Det(A)Det(B). (2.50)

Problem 2.19 We can carry out the previous proof in a compact way.

1. For n x n matrices A and B, show that

Det(AB) = (o) ﬁ(AB)U”‘

1 - o',
= HE(U)E(T) H(AB)
i=1
1 A
_ - o' ki pkiT;
= —e(0)e(r) | G (2.51)
i=1
where the sums are over two permutations o and 7 for (1,2,3,--- ,n). Each of n dummy

variables k; are summed from 1 to n.
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2.4 Factorization of Det[AB] = Det[A]Det[B]

2. Show that, before summation over k; for i =1, ---, n,

=1 1=1
= e(a)Det[A],
e(7) H priTi = 6(7’)%6(@) H pe'Ti
i=1 i=1
= e(a)Det[B]

3. Show that

Det(AB) = %e(a)@et[A]e(a)@et[B]

= Det[A]Det[B].

Problem 2.20 Prove, for an invertible matrix A, that

_ 1
- Det[A]

Det[A™!]
Problem 2.21 Verify the following identities:
1. Det[AB] = Det[BA].
2. Det[A"1BA] = Det[ABA!] = Det[B)].

Problem 2.22 Consider a 2 x 2 invertible matrix A

The trace of the matrix is defined by
Tr[A] = Za” =a'l+

We consider an eigenvalue problem

AXP = Ax P

)

a,22 .

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

where the number ) is an eigenvalue of A and a column vector XV is the corresponding eigen-

vector.

1. Verify the following identity:

AN — ATr[A] + Det[A] = 0.

(2.59)
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2.5 Volume element and Jacobian

2. Show that the eigenvalues are

At = % {Tr[A] - \/(Tr[A])2 — 4Det[A]] . (2.60)

3. Show that
AT+ AT = Tr[A] (2.61)

4. Show that
ATAT = Det[4]. (2.62)

5. Show that the corresponding eigenvectors are

A=AT: X0 =¢ , (2.63a)

A=A XA =¢ , (2.63D)

where ¢ and ¢ are arbitrary constants.

2.5 Volume element and Jacobian

Problem 2.23 Consider a Cartesian coordinate system that describes spatial points in the n-

dimensional Euclidean space.

1. We introduce a set of orthonormal vectors

1 0 0
0 1 0

= |, =1, -, ea=| |- (2.64)
0 0 1

E= (él By - én) ) (2.65)
Show that £ = 1.

2. Show that Det[E] = 1.
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2.5 Volume element and Jacobian

3. Let us consider another case that
A= <Clé1 C?%éy O3¢5 --- C”én> . (2.66)
Show that Det[A] = C1C?-.. O™

4. Explain how to make use of the determinant operator to compute the volume of the region

defined by
0< zb <O (2.67a)
0< 22 <C? (2.67b)
(2.67¢)
0<ant <om (2.67d)
0< 2" <(C", (2.67¢)
where (z!, 22, .-+ 2") is the Cartesian coordinates of a point in the region.

5. Consider a set of points in
X =a'A' +?A% + ..+ a"A", (2.68)
where each of real parameters o' is constrained as
0<a'<1. (2.69)
Show that the volume V of this region is
V=Detld], A=(A!A%... A"), (2.70)

where A’ is the ith column of the matrix argument of the determinant function. List all

possible cases that result in V = 0.
6. Suppose that
A= AVe) + A%y + --- AMe,,. (2.71)
Show that the matrix representation of A is

All A12 Aln

A21 AQQ--- AQn B
A= | =(a). (2.72)

Anl An2 . AT
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2.5 Volume element and Jacobian

Problem 2.24 Consider a two-dimensional Cartesian coordinate system described by the coordi-

nates (2!, 2?). The differential volume element dV in the region,
cl<azl<cl4dz', C?<z?<C?+da?, (2.73)
is
dV = da'da?, (2.74)

where (C!,C?) are the Cartesian coordinates of a fixed point at which the volume element is
defined. dx’ is an infinitesimal displacement of x’.

We can find the transformation rules from this coordinates into a polar coordinates as

zt = rcos#, (2.75a)

x? = rsiné. (2.75Db)
1. Show that the basis vectors for the polar coordinates are expressed as

€, = é1cosf + éysindb, (2.76a)

éyp = —é1sinf + é;cosb. (2.76b)

Note that &, and éy are dependent on 6 and independent of r, while é; and éy are both

independent of position.

2. Show that
€1-€1 €1 -€é € €. € €y 10
=" " = . (2.77)
€y-€1 €€y €g-€, €y €y 01
Therefore, each coordinate system has a set of orthonormal basis vectors at each point.

3. Show that the position vector & can be expressed as

x=x'é; +x%éy = ré,. (2.78)

4. Show that the infinitesimal volume element for the region C! < z! < C! + dz! and C? <

22 < C? + da? is datdz?.

5. Show that the infinitesimal volume element for the region ro < r < rg +dr and §° < 0 <

09 + db is rodrdé.
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3.1 Cramer’s Rule

6. Find the physical meaning of the following vectors:

1 2

dré, = g—fdr = él%dr + éQaairdr, (2.79a)
ox Ox! Ox?

, _ oz, . 0 5, 7Y 0. 2.
rdfég 50 do = é; 50 do + é; 50 de (2.79b)
7. Show that the volume element in the 2-dimensional polar coordinate system is

dzt 0a?

\dré, x rdfég| = rdrdd = Det | " 9 | drde. (2.80)
9zl 9z?
00 00

This determinant is called the Jacobian that is the conversion factor of a volume element of a

coordinate system into another. The new coordinate system does not have to be orthonormal

as long as it spans the same space.

Problem 2.25 Compute the Jacobian for the spherical polar coordinate system to find that

dré, - rdfég x rsin0ddéy| = r’drsin 0didp = Det
¢

Joliad
or
foliad
00
ox3

EX3

dx2
or
Ox2
00
ox?
0¢

dz!
or
Ozl
00
Ozl
¢

drdfds. (2.81)

3. Inverse Matrix

3.1 Cramer’s Rule

Theorem 3.1 Let us consider a linear equation

AX =B

: (3.1)

where A is an invertible (Det[A] # 0) n x n matrix and the unknown X and known B are column

n X 1 column vectors. Cramer rule is that

Det[AMN(B)]

. Det[All(B)] 1 Det[AZ(B))

~ DA * = 2a 5 ’ (3:2)
Det[Al(B)]
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3.1 Cramer’s Rule

where 2 is the ith element of X and All(B) is a matrix whose elements are the same as A except

that the ith column is replaced with b:

A[i](B) =

Problem 3.2 Let A~! be the inverse of A such that A=14A = AA~! = 1.

1. Show that

all

CL21

where a® is the ith column of A:

and E’ is the ith column of 1.

2. Consider a matrix

2 .

22---

n2---

12---

22---

n2---

bn

i glitl .

i g2it L
ZPRLES o S
glitl ...

q2itl ...

qnitl L.

A'B=X, A l'd=F

2100 ---
210 ---
2201 ---

2" 00 -

(3.4)

(3.6)

(3.7)

(3.8)
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3.1 Cramer’s Rule

In a similar manner, we can define " as

00---
Show for all ¢ that
2t = Det[r?].
3. Show for all 7 that
A AN(BY) = 2.
4. Show for all ¢ that
2t = Det[2’] = Det[A 1A (B)] =
This completes the proof of Cramer’s rule.
Problem 3.3 Let us solve the linear equation
AX = B,
where A, B, and X are given by
1030 1 r!
1201 0 z?
A= , B= , X =
1031 0 23
1001 0 zt
1. Show that
1030 1130 1010
0201 1001 1201
at = . a’= . a’= ,
0031 1031 1001
0001 1001 1001

10---
01---
;,;i:(El... Ei-1 x Eitl ... En): 00 ---

~ Det[Al(B)]
Det[A]

1031
1200
1030
1000

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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3.2 Calculation of Inverse Matrix

2. Show that

Det[A] =6, Detfa'] =6, Detfa’] =0, Det[a®] =0, Detfa?] = —6.

3. Show that

The following REDUCE code confirms the above calculation:

aa:

b:
al:
a2:
a3:
ad:
dd:
x1:
x2:
x3:
x4:
XX:
xf:

XX=

Problem 3.4 Let us solve the matrix equation by making use of Cramer’s rule:

=mat ((1,0,3,0),(1,2,0,1),(1,0,3,1),(1,0,0,1));
=mat ((1), (0), (0),(0));

=mat ((1,0,3,0),(0,2,0,1),(0,0,3,1),(0,0,0,1));
=mat ((1,1,3,0),(1,0,0,1),(1,0,3,1),(1,0,0,1));
=mat ((1,0,1,0),(1,2,0,1),(1,0,0,1),(1,0,0,1));
=mat ((1,0,3,1),(1,2,0,0),(1,0,3,0),(1,0,0,0));
=det (aa);

=det (al)/dd;

=det (a2)/dd;

=det (a3)/dd;

=det (a4)/dd;

=mat ((x1), (x2), (x3), (x4));

=aa” (-1)*b;

xf;

3.2 Calculation of Inverse Matrix

AX =1,

(3.16)

(3.17)

(3.18)
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3.2 Calculation of Inverse Matrix

where A is an n X n invertible matrix, X is an unknown n X n matrix, and 1 is the n x n identity

matrix. We define

A = (al P S R RS an)’

X:(x1x2___xz‘qwixiﬂ_”xn)’

1= (E1 B2 ... pi-l gi pitl ...
Al (g = (a1 Q2 gl Eogitl ..

where M; is the ith columns of an n x n matrix M.

1. By making use of Cramer’s rule, show that

Det[ AN (E)]
. 1 Det[ A (E)]
T T Det[4] :
Det[AM(E))]
2. Foranyi=1, 2, ---, n, show that
Det[ A (EY)]
; 1 Det[ARI(E")]
7T Det[A] :
Det[AlM(EY)]
3. Show that
X = (xl 562 . xi 1 7t xz-{—l xn)

Det[AN(EY)] Det[AN(E?)] - Det[AMN(EM)]
1 Det[ARI(EY)] Det[AR(E?)] - Det[ARN(EM)]

Det[A]

Det[AM(EY)] Det[AM(E?)] - Det[AM(E)]

4. Show that the (ij) element of X is

ij _ Qet[Am (E7)]
 Det[4]

5. Show that the solution X also satisfies the linear equation

XA=1.

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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3.2 Calculation of Inverse Matrix

Therefore, we have shown that

Det[AN(EY)] Det[AN(E?)] ---
1 Det[ARI(EY)] Det[AR(E?)] ---

ATl = ——
Det[A]
Det[AM(EY)] Det[AM(E?)] - Det[AM(E)]
Y DetA]
Theorem 3.5
Cll 021 Cnl
Ail _ CT _ 1 012 022 L. Cn2
Det[A]  Det[A] : ’
Cln C2n ... Onn
where O is the (ij) cofactor of the matrix A:
ol g12 ... gli-1 0 glitl .. gIn
a2l g2 ... glicl 2541 L. 20
CY = (_1)i+jM(ij) — (_1)i+j ai—11 gi=12 . gi—li=1 gimlj+1 . gi-ln]
gL git12 L il =l gl gitln
anl an2 anj_l anj+1 oo g

M) is the (ij) minor of A.

Problem 3.6 Let us compute the inverse matrix of A, where

203
A=1(010
102

Det[AMN(E™)]
Det[AZ(E™)]

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)
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3.2 Calculation of Inverse Matrix

1. Show that
103 003 003
ANEY = o10|, AVEH=[110], AYEH=|010],
002 002 102
213 203 203
AFEY =oo0|, APEH=|o10], APEH=|000],
102 102 112
201 200 200
ABEY = [o1o0], ABE)=[o11], ABEH=[o010]. (330
100 100 101
2. Show that
Det[A] = 1,
Det[AN(EY)] = 2, Det|AN(E?)] =0, Det|AN(E?)] = -3,
Det[AN(EN] =0, Det[AP(E>)] =1, Det[AP(E?)] =0,
Det[API(EY)] = =1, Det[AP(E?)] =0, Det[APN(E?) = 2. (3.31)
3. Show that
Det[AN(EY)] Det[AN(E?)] Det[AMN(E3)] 2 0-3
1
A7l = Detld] Det[AX(EY)] Det[AP(E?)] Det[AP(E3)] [ =] 01 0 |. (332
Det[AB(EY)] Det|ABI(E?)] Det[AB!(E3))] -10 2

4. Show that A~1A = AA"1 =1:

203 2 0-3 100
010 010]|=1]010], (3.33a)
102) \-10 2 001
2 0-3\ (203 100
010 010l =1(010]- (3.33b)
-10 2 102 001

We could have computed A~ by making use of MATHEMATICA:

A = {{2, 0, 3}, {0, 1, 0}, {1, 0, 2}};
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3.2 Calculation of Inverse Matrix

AInverse = Inverse[A]
A.AInverse

AInverse.A
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3.2 Calculation of Inverse Matrix

II. Euclidean Space
Test

4. Polar coordinate system in n-dimensional Euclidean

4.1 3-dimensional polar coordinates

Exercise 4.1 One of the ways to evaluate the gaussian integral,

I:/ e dy = N

—00

is to compute the double integral

o o
I? :/ e_”CQdac/ e_dey.
—0o0 —0oQ

1. We introduce 2-dimensional polar coordinate system

r= 22 +¢?,

0= arctang, 0<80<2m,
x
where 0 is the polar angle and ¢ is the azimuthal angle. Show that

T = rcosf,

y = rsinf.

2. Show that, for an arbitrary function f(z,y),

00 [e'¢) 00 27
/ dx/ dy f(x,y) :/ dr/ d9J<x’y> f(rcosf,rsinf),
—00 —0o0 0 0 7“,9

where the Jacobian J (%) is defined by

oz Oy

J(m’y> % % cos@ sinf
30 50 —rsiné rcos6

= = =T
r,0

We assume that the definite integral ffooo dx ffooo dy f(z,y) converges.

space

(4.1)

(4.2)

(4.3a)
(4.3b)

(4.4a)

(4.4b)

(4.5)

(4.6)
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4.1 3-dimensional polar coordinates

3. Show that

oo 2
I? = / re_Ter/ df = . (4.7)
0 0

4. Show that I must be real and positive. This leads to
I=/r. (4.8)

5. Show that, for any positive real numbers a and any real number b,

/ e M@0 gy = \/g. (4.9)

Problem 4.2 Let us consider the case in three dimensions:
o0 2 2 2
I = / e~ @) d dy dz. (4.10)
—00

3/2

By making use of the previous result I = /7, we know I3 = 73/2, Let us evaluate the integral

directly in the spherical polar coordinate system.

1. We introduce the spherical polar coordinate system,

F— VPR, (4.11a)

6 = arccos ;, 0<6<m, (4.11b)
¢ = arctan %, 0<¢<2m. (4.11c¢)
Show that
x = rsinf cos ¢, (4.12a)
y = rsinfsin ¢, (4.12Db)
z = rcosf. (4.12¢)

2. Show that, for an arbitrary function f(z,y),

/_Zdw/_idy/_idzf(x,y, / dr/ df /%dw(x’g’;)

X f(rsin 0 cos ¢, r sin 0 sin ¢, r cos ), (4.13)

where the Jacobian J ( ’g’ ) is defined by

o Oy 0Oz

3 B o sinfcos¢ sinfsing cosf
€,Y,z _ |6z Oy o _ . . D - 2 .
J<r,0,¢> = |5 54 G| =|rcosfcos¢ rcosfsing —rsinf| =r-sinb. (4.14)
g—z g—g g—; —rsinfsing rsinfcos¢ 0

We assume that the definite integral ffooo dx f dy f dz f(z,y,z) converges.
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4.1 3-dimensional polar coordinates

3. Show that
& 2
= Q3/ r2e " dr, (4.15)
0

where the 3-dimensional solid-angle is

2 T 21 1
Q3 = /ng :/ dqﬁ/ dfsin 6 :/ d(b/ dcos = 4m. (4.16)
0 0 0 -1

4. Show that I must be real and positive. This leads to
o
/ rle " dr = ﬁ (4.17)
0 4
Therefore,

I3 =r32 (4.18)

We can check this result by making use of the following MATHEMATICA code:
Integrate[x"2 E~(-x"2) ,{x,0,Infinity}]
Exercise 4.3 Let us consider I' function. For any natural number n,
'n)=(mn-1)!, n=1,2,3,---. (4.19)
For any integer n > 0, I'(n) has the recurrence relation
I'(n+1) =nl(n). (4.20)

In order to evaluate the radial integral (4.25), it is convenient to make use of the following integral

definition of the Gamma function:

[e.9]

[(z) = / t"le7tdt, x>0. (4.21)
0

1. Show that the definition (4.21) satisfies I'(n) = (n — 1)!

2. Show that the definition (4.21) satisfies nI'(n) = I'(n + 1).

3. Show that the integral converges for any real number x such that 0 < z < 1.

4. Show that the relation nI'(n) = I'(n + 1) can be generalized into zI'(x) = I'(z 4+ 1) to define

I'(x) for any real number x except for x = 0 and negative integers.
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4.1 3-dimensional polar coordinates

5. Show that the relation I'(x) = I'(xz + 1) can be generalized into zI'(z) = I'(z + 1) to define

I'(z) for any complex number z except for z = 0 and negative integers by making use of

analytic continuation.

Problem 4.4 By making use of the definition of I' function, we can generalize the result for the

integral I to the n-dimensional case easily:

n 00

I":H/ d:vl-efm?:ﬂ'%.

i=1Y

In this case, we define the radius

and define the appropriate polar and azimuthal angles to express x;.

1. Show that

/dxl/ dacg---/ dxnf

(4.22)

(4.23)

where 2, is the solid angle in the n-dimensional Euclidean space. We postpone to define

the polar and azithumal angles in n dimensions. Instead, we want to find the solid angle in

n dimensions.

2. Show that
/ 7471—16—7"2d70 — F(n/Q)
0 2
3. Show that
['(n/2)

n|l2 3 4 5 6 7 8

10 - --

28 2 3163 n*
Q|2 21 4 2m° S° w0 20 5

5

3

1

[\

We can check this table by making use of the following MATHEMATICA code:

o[n_] := 2 Pi~(n/2)/Gamma[n/2]
Do[Print[n, "=", Simplify[o[n]]], {n, 0, 10}]

(4.25)

(4.26)

(4.27)
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4.1 3-dimensional polar coordinates

4. Show that

r(}) = V.

(4.28)

Problem 4.5 We have shown that the solid angle of the n-dimensional Euclidean space is €, =

202 /T (n/2).

1. Show that the area A,, of the surface of a sphere with radius R defined in the n-dimensional

Euclidean space is

A, =Q,R" L.

(4.29)

2. Show that the volume V,, of a sphere with radius R defined in the n-dimensional Euclidean

space is

Problem 4.6 It is trivial to evaluate the following integral,

o0
1:/ e tdt.
0

1. By rescaling the integral by ¢ — A, show that

1 o
— = / e Mdt.
A Jo

We take the (n — 1)th derivative of the above expression:

NI - R,
<_a> 1T o _/Ot e "'dt.

Therefore, the Gamma function for any positive integer n can be expressed as

I(n)=(n-—1)!=\" (—%)nl /01 e Mdt.

2. Show that

o\t Mt ! 1 _—t
A" (——) / e Mdt = / t" e dt.

We can check this formula by making use of the following MATHEMATICA code:

F=D[(-1) " (n-1)/x,{x,n-1}]

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)
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4.2 4-dimensional polar coordinates

4.2 4-dimensional polar coordinates

Problem 4.7 Let us construct the spherical polar coordinate system defined in 4-dimensional
Euclidean space. We can introduce a Cartesian coordinates z; € R to describe the position of a
point. The distance r between a point © = (z1, z2,x3,z4) and the origin 0 = (0,0,0,0) is defined

by

r:\/a:Q:\/a:-a::\/(xi)Q:\/x%—i—x%—i—x%—kxi. (4.36)
1. We define the polar angle 6; with respect to x4 axis. Show that

x4 = rcosby, (4.37a)
\/ 22+ 23+ 23 =rsinf, 0<6, <. (4.37b)

Provide the reason why 0 < 6y < .

2. Now we consider the three-dimensional vector (z1,z2,x3,0) which is perpendicular to the
x4 axis. We define the polar angle 65 with respect to x3 axis in the three dimensional space

spanned by (z1,x2,x3,0). Show that

x3 = \/x2 + 22 + 22 cos b5, 4.38a
1 2 3

\/x%—kx% = \/x%—kx%—i—x%sinﬁg, 0<6y <. (4.38Db)

Provide the reason why 0 < 6y < 7.

3. As the last step, we define the azimuthal angle ¢ to define x1 and x2. Show that

z1 = y/z} + 23 cos ¢, (4.39a)
Ty = \/2? + 23sing, 0< ¢ < 2m. (4.39b)

4. As a result, in the spherical polar coordinate system in the 4-dimensional Euclidean space,

we need two polar angles and one azimuthal angle. Show that

21 = rsin 6y sin 05 cos ¢, (4.40a)
To = 7 sin 6y sin Oy sin ¢, (4.40b)
x3 = 18in b cos b, (4.40c¢)
x4 = 1 COSb. (4.40d)
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4.2 4-dimensional polar coordinates

Problem 4.8 We can make use of the parametrization (4.40) to find the volume element in terms

of polar coordinates.

1. Show that the volume element of the 4-dimensional Euclidean space is expressed as

/dm/d@/dm;;/du = /drr /d@l/dQQ/d¢J 1, T2, X3, T4
T, 91,92a¢
= /dT’r?’/del Sin2 91/d92 Sinag/d¢. (4.41)

2. Show that the solid angle is obtained as

™ T 21
Q= / df; sin® 6, / df sin 0, / do
0 0 0
1 1 2
:/ \/1—COS291d60891/ dcosﬁg/ do
-1 -1 0

:%xszw:Qﬁ. (4.42)

This is equivalent to Q,, = 27"/2/T'(n/2).

The following REDUCE program computes the Jacobian for the polar coordinate system in the

4-dimensional Euclidean space:

hri=sqrt(x172+x272+x372+x472) ;
x1:=r*sin(t1)*sin(t2)*cos(ph);
x2:=r*sin(t1) *sin(t2)*sin(ph) ;
x3:=r*sin(t1)*cos(t2);

x4:=r*cos(tl);

mm: =mat ( (df (x1,r) ,df(x2,r ),df(x3,r ),df(x4,r )),
(af (x1,t1),df (x2,t1),df (x3,t1) ,df (x4,t1)),
(af (x1,t2),df (x2,t2),df (x3,t2) ,df (x4,t2)),
(df (x1,ph) ,df (x2,ph) ,df (x3,ph) ,df (x4,ph)) );

let sin(t1) "2=1-cos(tl1)"2;

let sin(t2)"2=1-cos(t2)"2;

let sin(ph)"2=1-cos(ph)"2;

dd:=det (mm) ;
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4.3 n-dimensional polar coordinates

4.3 n-dimensional polar coordinates

Problem 4.9 By making use of mathematical induction, verify the following.

1. The spherical polar coordinates in the n-dimensional Euclidean space consist of radius r,
(n — 2) polar angles, and a single azimuthal angle. The Cartesian coordinates are then

expressed as

21 = rsinfysinfysinfs - --sinf,_3sin b, _s cos ¢, (4.43a)
T9 = rsinfy sinfysinbs - - -sinh,,_3sin 6,,_s sin ¢, (4.43b)
r3 = rsinfysinfysinds - - -sin @, _3cos0,_o, (4.43c¢)
24 = rsinfysinfysinfs - - - cosO,_3, (4.43d)
(4.43e)

Tp_9 = 1 8in 01 sin 6y cos O3, (4.43f)
Tp_1 = 7 sinfq cos by, (4.43g)
Xy = T COos 0. (4.43h)

2. Show that the solid angle is

Q, = / dfy sin" 2 6, / dfy sin™ 3 6 / dfs sin™ 4 65
0 0 0

s T 2m
X / df,,_ssin’6,,_3 / dByy—o Sin O,y / d. (4.44)
0 0 0
3. For any complex number a and b such that a, b # 0, —1, —2, ---, and for any complex
number n except for —1, —2, —3 -- -, show that
' ['(a)I'(b)
(1 —2)>Ydz = B(a,b) = =% 4.45
| et = Bl = T, (4.45)
! I(n+1)L(3)
1—2%)"de = B(n+1,1) = ————— -2/ 4.46
| a-a 41 h = (4.46)
4. Show that
™ 1 e T (2l
/ dfsin" 0 = / (1- :UQ)Tldx = M (4.47)
0 -1 r(1+3)
5. Show that
n=2 g . ﬂ_%—l
dfsin® 6 = . 4.48
ﬂ/o = ) (449




5.1 Angle Average

6. Show that

Q, = 2m"/2 4.49
"= Tluj2) (4.49)

This agrees with the result that we have obtained by making use of gaussian integrals.

5. Anglular Integrals

5.1 Angle Average

Problem 5.1 We have shown that

Q, = / dfy sin™ 2 6, / dfy sin™ > 6, / dfssin™ 465 - - -
0

0 0
T T 2
X / db,,_3sin’0,,_s / dbyp_osinb,_o / de
0 0 0
27Tn/2
= . Nl
T(n/2) 5-1)
1. Show that
n—1 n n

omegaln_] := 2 Pi"(n/2)/Gamma[n/2];

Simplify[omegal[n - 1]/omega[n]]

2. By integrating over the angles except for #;, show that

Q1 [T Q2 1 -
Q, = Q, % 5 ! / dfysin" 20, = #)1)/ (1—a3)"T day, (5.3)
n 0

where 1 = cos#1. Note that

1— 2 "T_Sd:vl =
_1( 1) F(%)

We can check this result by making use of the following MATHEMATICA code:

/ 1 VAT (5.4)

Gamma [n/2]/(Sqrt [Pi] Gammal[(n - 1)/2])*
Integrate[(1 - x"2)"((n - 3)/2), {x, -1, 1}]
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5.1 Angle Average

3. By integrating over the angles except for 6 and 65, show that

Q, = / dfy sin™ 2 6, / dBs sin™ 3 059,
0 0

(2 1 e 1 n—
= Qn%/ (1—$%)ng£61/ (1—$%)T4d5'32,

WP(T -1 -1

where x; = cos 0;. Note that

1 NG
1 n—4 \/7_TF ﬂ)
(1 —x%)Tdaﬁg = 7n_2 ,
/—1 L(%3)
! n= 1 ne r(252
/ (1—x%)23dw1/ (1—x%)74dx2 = Ln?)
-1 -1 I'(3)

Gamma[n/2]/(Pi Gammal[(n - 2)/2])*
Integrate[(1 - x72)"((n - 3)/2), {x, -1, 1}]*
Integrate[(1 - x"2)"((n - 4)/2), {x, -1, 1}]

Problem 5.2 Consider an integral involving n-dimensional Fuclidean vectors:

Qg
Il = Ta-n,

(5.5)

(5.6a)
(5.6b)

(5.6¢)

(5.7)

where a is a constant vector, dfl; is the solid-angle element of the unit vector n, and Q =

27™/2 /T(n/2) is the solid angle in n dimensions. It is convenient to choose the polar coordinate

system whose z,, axis is along a. Then the coordinates of n are given by n = (i, g, - -

where

711 = sinfq sinfy sinf3 - - - sin B,,_3 sin 6,,_ cos ¢,
Tig = sinfy sinfysinf3 - - -sinf,_3sin b, o sin @,
N3 = sinfy sinfysinfs - - -sinf,_3cosb,_o,

7y = sinfqsinfysinfs - - - cosb, 3,

Tip—o = sin #7 sin O cos O3,
Np—1 = sin #q cos Oy,

T, = cos b.
1. Show that in that frame,

a-n =cosb.

7ﬁn)7

5.8a)
b)
)
)
)

D.

Q0

t
(0]

(
(5.

Qo

ot
Qo

(

ot
.
g

(
(
(

D.

o

)
g
(5.8h)

(5.9)




5.1 Angle Average

2. Show that the integral reduces into

I'% 1 n—3
L = ﬁi)%l)/l(l —22) 2 (azy)dz; = 0.

It is straightforward to find that

dQy N
— /T(a.n)z +1

r(2 ! n—
_ a2k+li)/ (1 _x%)%x%kﬂdm =0, n=0,1,2,---.

VAT (55 S

3. In a similar way, show that

Iy, = /TA(a‘ﬁ)%

VAL(2Fh) J
_ a2[[k]]r(%)r(% + k)
VAT(3 +8)
where we have used
! 12T +a)l(3+0b
/ (1—x2)ax2bd:v: L+ (D)PTU +a) (2: ),
-1 2 F(a+b—|— 5)
1 _ r(HrE + k)
_ o223 2k _ 2 2
[ e T attan = S
Therefore,
r(mr(
GO0 Y
VTL(3)
5= DTG+ _ LTEING) e
V(g 1) UmerE)
o TG L THUG) st
VAL(5 +2) VEREET(g)  n(n+2)°
= o LBPG+2) 6 TGIESTG) 5l
VD(2 +2) VYALHADEZRT (1Y) T n(n 4 2)(n + 4)

Top = QQkF(%)F(% +k) o2k L(5)%5t - 330(3)
VAT +k) R ()
(2k —1)(2k —3)---3-1-a?F
n(n+2)(n+4) - (n+2k—2)’
(2k — )!(n — 2)!la?*
(n+2k—-2)11 7

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15a)
(5.15b)
(5.15¢)

(5.15d)

(5.15¢)

(5.15f)
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5.1 Angle Average

forn =0, 1, 2, ---. Here, n!! is defined by
nll =n(n—-2)(n—4)---, (5.16a)
M=9.7-5-..-1, (5.16b)
100 =10-8-6----2. (5.16¢)

We can check these results by making use of the following MATHEMATICA code:

Table[{2 k,
a” (2 k) Gammal[n/2] Gammal[1/2 + k]/Sqrt([Pil]/Gammal[n/2 + k] //
FullSimplify}, {k, 0, 3}] // TableForm

Problem 5.3 Next we evaluate

dQg R R
Jllz/—a-nb-n, (5.17)
Q

where a and b are constant vectors.

1. Show that we can choose the frame in which

a=(0,0,---, 0, a), (5.18a)

b = (0,0,--- ,bsinf,bcosb), (5.18b)
where 6 is the angle between a and b, and 7 is given by (5.8). Then we have

a-nb-n = abcosb(cos by cosf + sin by cos O3 sin 6)

= abzq(xy cos&—i—\/l—x%xgsinﬁ), (5.19)

where we have set x; = cos 6;.

2. Show that the integral reduces into

F(ﬂ) 1 2 n—3 1 2 n—4
I= ab%/ dwl(l—x1)2/ dro(1—25) 2 z1(z1cos6 + /1 — 22x9sin0)

ml(%5%) J 1 -1
=a- biﬂlj((i_g) /_11 deiz3(1 —a3)" T /_11 dra(1 — 23)"7
- bzr(rg(%z n - Iz +1)=303)
- aT (5.20)
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5.2 Rotationally Invariant Tensor Integrals

where a - b = abcos @ and the integrands that are odd functions of x; are vanishing. The

angular integrals are expressed as beta functions:

! ns /A0
dryz?(1 — 22 = n72, 5.21a
[ dmrta—ab's = S (521a)

/1 s VAT -1

NS 4

dxa(1 — QUQ)T e R
1 ’ L(%3)

(5.21b)

We can check the integral table by making use of the following MATHEMATICA code:

Integrate[x”2 (1 - x72)"((n - 3)/2), {x, -1, 1}]
Integrate[(1 - x"2)"((n - 4)/2), {x, -1, 1}]

5.2 Rotationally Invariant Tensor Integrals

Problem 5.4 Consider a vector V* and a rank-2 tensor W#%. Under rotation, they transform like

V= RIVI, (5.22a)

W' = R“RPW®, (5.22b)
where R is the matrix representing the rotation about 8 by an angle 6 = |6)|.
1. Show that there is no vector V* that is invariant under rotation:

V"= RYVJ =V for any R. (5.23)

2. Show that any rank-2 tensor W% can be decomposed into the form:

Wi = 54 4 Alid] (5.24a)
il — i 4 plid), (5.24b)
TV = %5”’ Wk, (5.24¢)
plid) — %(Wz‘j + Wi - %y‘jwkk, (5.24d)
Alid) — %(Wij _ Wil = %eljkeaka“b, (5.24e)

where the summation over a repeated index is assumed in W** = Tr(W#%). We shall find

that D) is symmetric traceless tensor and Al is antisymmetric tensor.

3. Show that S% is symmetric and Al is antisymmetric under exchange of i <+ j.
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5.2 Rotationally Invariant Tensor Integrals

4. Show that both Al“]l and D) are traceless:

Tr(D)) = DR — 0, (5.25a)

Tr(Al) = AlFF — o, (5.25b)
5. Show that T is symmetric and traceful:
Te(TY) = %(kak = WH = Te(W¥). (5.26)
6. Show that the rotationally symmetric (invariant) component of W is T%:
T'" = RR®T%® = T% for any R. (5.27)

Problem 5.5 The angular integrals of previous problems involve tensor integrals,

T = d%"n (5.28a)
T = / d%"nnﬂ (5.28b)
Tk = / d%"nnﬂn’f (5.28¢)

Tk — d%*ﬁ%ﬂﬁ’%’f, (5.28d)

Now we make use of the rotational properties of vectors to simplify above tensor integrals without

explicit angular integrations. 7% must satisfy the vector transformation under rotation:
T" = R9 T, (5.29)

where R is the matrix representing the rotation about 6 by an angle § = |@]. After the angular
integration, 7% must be a linear combination of available vectors. However, because the only

available vector 7 is already integrated out, there is no available vector left. Therefore,
7" = 0. (5.30)

1. Following the argument provided above, show that the integral 7% must satisfy the following
transformations,
7' = RieRIb T (5.31a)

T/ijk _ RiaijchTabc7 (531b)
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5.2 Rotationally Invariant Tensor Integrals

2. Show that all of the tensors 7%, T%, T%% ... are completely symmetric under exchange of
any two vector indices. Therefore, the tensor integrals T%, T%, T%* ... are invariant under
rotation.

3. Show that all of the rotationally invariant tensors that have odd numbers of vector indices

must vanish.

4. Show that 6 is the only linearly independent tensor that is invariant under rotation:
A = RIARIb A% — AU AT = 55 (5.32)
where co is an arbitrary number.
5. Therefore, we can set
T = ¢p6%. (5.33)
By multiplying 6% to both sides, we can determine the constant cp. Show that
it = Lgiipht, (5.34)
n
6. Show that the only linearly independent tensors that are invariant under rotation,
AR — pia pibpkepld gabed _ fijht. (5.35)
are 06kt 5k 3t and 5157k,
7. Therefore, we can set
TR = ¢y (6767 + 67670 + 57677), (5.36)
where we have used the rotational symmetry to set the common coefficient ¢4 for the three
contributions. By multiplying 6% 8%, or any other term on the right side, we can determine

c4. Show that

1

ikt _
n(n + 2)

(6% 5KE 1 5ik§It 4 itsikyPrag, (5.37)

Problem 5.6 Consider a rank-6 tensor T%kmn that is invariant under rotation. Show that this

tensor is decomposed into a linear combination of Kronecker deltas:

Tijkémn _ (5ijAk€mn + 5ikAj€mn + 5i€Ajkmn + 5imAjk€n + 5inAjk€m)Tppqqrr’ (538&)

1
Aabcd _
nn+2)(n+4)

(69b5° 4 sacgdd 4 sadgbey, (5.38b)

The following REDUCE program verifies the above statement:
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5.3 Scalar Integrals

vecdim n;

operator dd;

vector p,q,r,s,u,V;

for all a,b,c,d let
dd(a,b,c,d)=1/(n*(n+2))*(a.b*c.d+a.c*b.d+a.d*b.c);
tt:=1/(n+4)*(p.q*dd(r,s,u,v)+p.r*dd(q,s,u,v)
+p.s*dd(r,q,u,v)+p.uxdd(r,s,q,v)+p.v*dd(r,s,u,q));
dO:=p.qg*r.s*u.v;

dl:=p.s*r.q*u.v;

d2:=p.r*q.s*u.v;

index p,q,r,s,u,Vv;

xx1:=tt*d0;
xx2:=tt*d1l;
xx3:=tt*d2;

5.3 Scalar Integrals

Problem 5.7 Consider an integral [;(a) in the 3-dimensional Euclidean space,

aQ, 1
Il(a)=/ Q1 an (5.39)

where @ = (a1, a2, a3) is a constant vector defined in the 3-dimensional Euclidean space and 7 is a
unit vector. The magnitude of a is less than 1: |a|] < 1. The direction of 7 varies and the integral
[ dQ, is over the solid angle of ni. Here, Q = 4 is the solid angle. To evaluate this integral it
is convenient to choose the z3 axis along the constant vector a and employ the spherical polar

coordinate system, in which

a = (0,0,|al), (5.40a)

1 = (sin 6 cos ¢, sin 0 sin ¢, cos ). (5.40b)
1. Show that the integral I;(a) must be a scalar.

2. Show that the integrand of I;(a) is independent of the azimuthal angle ¢ and is dependent
upon |a| and cos §. Therefore, after integrating over the solid angle, I (a) becomes a function

of the only available scalar a?.
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5.3 Scalar Integrals

3. By integrating out the angles 6 and ¢, show that

1 /1 oL 1 [leldt  tanh™!|al
— x — - =
2 ) T Tale 2l Jy e 1 al

Ii(a) = : (5.41)

where x = cos 0.

4. Show that the Taylor series expansion of I1(a) about |a| =0 is

o _ JaP la]' [a° _|al*
22n+1 L R S e B (5.42)

Problem 5.8 In the 3-dimensional Euclidean space, we define

A, 1
I(a) = i for n=2 34, . 5.43
(a) / QO Qta-npn " (5:43)

Show that

@ =1 [
N S (NPT

1 1+|a| dt
- 2’0“ 1—|al tn
B 1 { 1 1
2(n = Dla| [(1—la))*~" (1 + [a[)"!
n—1 _ _ n—1
_ O tla)* (1 a) _
2(n —1)|a|(1 — a?)"1
First several values are
1
IQ(CL) = m, (545&)
1
Ji — 5.45b
3(0‘) (1 — (12)27 ( )
3+ a?
I = — 5.45
4(&) 3(1 — (12)3, ( C)
1+ a?
I = —. 5.45d
5(a) (1 _ a2)4 ( )
Problem 5.9 By substituting a — a/\ into I1(a), we find that
Ii(a/\) / Qs 1 1 A+|a| tanh™!)\|al
= = 1 = 5.46
X\ Q Ata-n 2al PA_|af Na| (5.46)
This can be the generating function for I,,(a). By making use of the identity,
(-prtort1 1
—_— —=—f >1 5.47
T(n) oAnL1x _ an o =0 (5.47)
show that
-1 n—1 n—1 A
(=)™ o ), At lal (5.48)

I =
n(a) 2|a|T'(n) oAn—1 A—lal|,_,
The following MATHEMATICA code confirms the above derivation:
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5.3 Scalar Integrals

fln_] := (-1)"(n - 1)/Factorialln - 1]1*#D[1/x, {x, n - 1}];
gn_] := (-1)"(n - 1)/Factorial[n - 1]*

D[(Loglx + al] - Loglx - al)/(2 a), {x, n - 1}];
Do[Print[n, "=", FullSimplify[f[n]]], {n, 1, 10}]
Do[Print[n, "=", FullSimplify[g[n] /. x -> 111, {n, 1, 10}]

Problem 5.10 Let us evaluate the integral

aQ, 1
Ii(a) :/_Qn T ah (5.49)

in n dimensions.

1. Show that, if we choose the x,-axis along the constant vector a, then we can simplify the

angular integral as

n—3

F n 1 1— 2\ 5~
Ii(a) = (2)71 / (1=a7) 2 . (5.50)
V(L) )y T+ Jale
where £ = a - n. The integral can be evaluated by expanding the denominator about = = 0:
H e 1 n—3
Li(a) = 2n Z ]a\k/ (1—2%"7 2¥da. (5.51)
— -1

Expand[Series[1/(1 + x), {x, 0, 20}] - Sum[(-1)"{k} x"k, {k, 0, 203}]]

2. Show that the z integral becomes a beta function:

-1 2 NG

(5.52)

This integral is non-vanishing only for even k.

Integrate[(1-x72) " ((n-3)/2)x"k ,{x,-1,1}]
((1 + (-1)"k) Gamma[(1 + k)/2] Gamma[1/2 (-1 + n)])/(2 Gamma[(k + n)/2])

3. Show that

o0 1
Li(a) = > ié: I é)) a?*. (5.53)
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5.3 Scalar Integrals

4. The series is expressed in terms of the hypergeometric function:

- P(k+%) 2k VT 1 2
@ = paetiles 1 g, a7l (5.54)
kzof(k+ 5) r'es) 272
Show that
Il(a) :2F1[%,1,%,G,2], (555)

where the hypergeometric function o Fj(a, b, c; z) is defined by

oFi(a,b,c;2) = Z 7;, (a)n = T (5.56)

n=0

Sum [Gamma [k+1/2] /Gamma [k+n/2] x~(2k),{k,0,Infinity}]

(8qrt [\ [Pi]] Hypergeometric2F1[1/2, 1, n/2, x~2])/Gamma[n/2]

5. Show for n = 3 that

tanh™! |al 1 1+ |al
Ii(a) = = log . (5.57)
|a 2lal " 1—]a]
This reproduces the previous result for n = 3.
Problem 5.11 Consider an integral
dQy, 1
J b) = = 5.58
n(a.b) / Q (I+a-n)(l+b-n) (5.58)
where the vectors @ = (0,0,---,0,a) and b = (0,0,--- ,bsinf, bcos ) are constant vectors defined

in the n-dimensional Euclidean space and 7 is a unit vector. The magnitudes of a and b are less
than 1: |al, |b| < 1. The direction of n varies and the integral [ dQy is over the solid angle of 7.
Here, Q is the solid angle in n dimensions. To evaluate this integral it is convenient to choose the
x, axis along a, to choose the x,_; axis so that b be on the plane spanned by z,, and x,_; axes,

and to employ the spherical polar coordinate system:

a = (07 707’0“)7 (5593‘)

b=(0,---,|b|sinb,|b|cosh), (5.59b)
where 6 is the angle between a and b.
1. Show that

n=(e1, e, en), (5.60)
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5.3 Scalar Integrals

where
e1 = sinfysinfysinfs - - -sinf,_gsin b, o cos ¢,
€9 = sinfysinfysinfs---sinf, _gsinf, o sin @,
e3 = sinfqsinfysinfs - - -sinb,,_gcosb,_o,
e4 = sinfqsinfysinfs - - - cosb,,_3,
én—o = sin 7 sin 0 cos O3,
én—1 = sinf; cos 05,
e, = cosby.
2. Show that the integrand is independent of the polar angles 63, 04, - - -, 8,,_2 and the azimuthal
angle ¢.
3. Show that
a-n = acosby, (5.61a)
b-n = b(cos b cos by + sin @ sin b cos 0), (5.61b)

(I1+a-n)(1+b-n) = (14 acosb;)[1+ b(cos b cosb + sin by cos By sin b)]

= (1+ax)[1+blcx + syv1—a?)], (5.61c)
where ¢ = cosf, s =sinf, x = cos 1, and y = cos .

4. By integrating out these angles, show that

4

G Y N ¢ S N ¢ S
T b) = )/ I /1dy(1—|—aw)[1+b(cx+sym)]’ (5.62)

where ¢ = cosf, s =sinf, x = cosfq, and y = cos f>. The evaluation of this integral is quite

involved.

5. We introduce the Feynman parametrization

1 ! dt
AB :/0 (1— DA+ B2 (5.63)

F=1+( (1-t)A+t B )"2

Integrate[1/F,{t,0,1}]
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5.3 Scalar Integrals

which can be verified in a straightforward way. By making use of the Feynman parametriza-

tion, show that

1 oy, 1
Jll(a’7b) :/ dt/ 0 1+ A]Q

2 / / 1—30 7
(%5 1—|—]c
_ i/ldtzaﬁ-l)( 1)Fle(t )|’€/1 (1 22)"F b da
VLt Jo = -1
L(3) I3 +k) (1
_ (Z)Z (721_{_ )/ dt|c(t)|2k
VT = D5+ E) Jo
n 00 1
. I'(3) ZF(ZJF "a‘2k+1 ‘b‘2k+1‘
2ﬁ|a—b| =0 F(g +
1
= ——la}2Fi(3,1,2,a%) — |b]2F1 (3,1, 2, b 64
a2 F (31 5@~ bR (31, 5,0) (5.64)
where ¢(t) = (1 —t)a +tb = a + (b — a)t and we have used
1 e 1 kT 4k (n=l
/ (1—x2)73xkd:n: + ()" IS (k2 ), (5.65a)
1 2 ZF(HT)
1 e (L + k)D(251)
1—22)"7 2% de = —2 2 5.65b
J R R (5.65b)
1
1
dtle(®)|* = ———_||q|?k+1 _ |p|2k+1| 5.65¢
| e = g [l o (5.650)
TE+k
27(2 k)\a!%“ lal2Fi(3,1,2,a?). (5.65d)
k=0 (5 +F)
6. Note that
laloFy (1,1 g,a2)‘ _, = 2tanh ™ [a]. (5.66)
Show for n = 3 that
1 Max[lal,[b]] 74
J11(a b) o a—
|b—a| Min[jal,jb]] 1 — 12
_ 'Og (1+[6)(1 —|al)
2|b —al| 7 (1 —[b])(1+]al)
_ !tanh*1 |b| — tanh ™! lal| (5.67
B |b — a ' 67)
By setting b = 0, we find that the integral reproduces
tanh~! |a|
Fi(la]) = S (5.68)
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5.4 Reduction of Tensor Integrals

Problem 5.12 Let us make use of the generating function approach to evaluate the integral

a0, 1
Jmn(a,b)Z/ S (Ersr iy (5.69)

For simplicity, let n = 3.

1. By making an appropriate rescaling of Ji1(a, b), show that

Tula/ecb)5) _ [ 1% 1 _ o B+ 16 (0 — [a)

af Q (a+ta-n)(f+b-n) 2|ab—PBal| = (6—[b)(a+]al)
(5.70)

2. Show that
(=pme ot ot 1 (8 + |b))(a — |a])
Imn(a,b) = g 5.71
(@8 = ST 9T 95 [ab— pal |8 (G bla + fal) o_py” 7
5.4 Reduction of Tensor Integrals
Problem 5.13 We consider a vector integral
: dQ, A

T = | % ——— 5.72
Q l1+a-n’ (5.72)
where a = (a',a?,--- ,a") is a constant vector defined in the n-dimensional Euclidean space and

the integral is over the solid angle of the unit vector n.
1. Show that 7% must transform like a vector under rotation and it must be expressed as

T = ca'. (5.73)

2. By multiplying the constant vector a’ to both sides, determine the coefficient ¢ to find that

gl dQdy a-n
T"=— [ =2 — | 5.74
a2/ Q 1+a-n (5.74)

3. Show that the vector integral is completely determined in terms of a single scalar integral:

, ‘ dQs 1
7i=2 [1— "7] (5.75)

a? Q 1+a-n

Problem 5.14 We consider a vector integral

A, i
Ti = 5.76
/ Q I+ta n)1+b-n) (5:76)
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5.4 Reduction of Tensor Integrals

where a = (a',a?,--- ,a") and b = (b',b?,--- ,b") are constant vectors defined in the n-dimensional

Euclidean space and the integral is over the solid angle of the unit vector n. In order to simplify

our analysis, we assume that a and b are perpendicular to each other:
a-b=0. (5.77)
1. Show that 7" must transform like a vector under rotation and it must be expressed as

T = cra’ + cob'. (5.78)

2. By multiplying the constant vectors a’ and &' to both sides, we obtain two simultaneous
linear equations for ¢; and cy. Determine the coefficients ¢; and co to find that

Cal [ d9Qy a-n b dQy b-n
Ti= 2 n — n . 5.79
a2/ Q (1+a-ﬁ)(1+b-fz)+b2/ Q (I1+a-n)(1+b-n) (5.79)

3. Show that the vector integral reduces into the form

Ti_a_i/dfzﬂ 1 +b_f‘/d9ﬂ 1
a2 Q 1+b-nn b2 Q 1+a-n
a b dQ 1
- =+= n . 5.80
<a2+b2>/ Q (1+a-n)(1+b-n) (5.80)

The following REDUCE program is useful to check the above derivation:

vector p,q,u;

tl:=p.u;
t2:=q.u;
LHS:=n.u;

RHS:=cl*t1+c2*t2;

index u;

ss:=solve ({LHS*t1=RHS*t1,LHS*t2=RHS*t2},{c1,c2});
remind u;

ans:=sub(ss,RHS);

let p.qg=0;

ans;

ansf:= n.p*p.u/p.p + n.g*q.u/q.q;

ans-ansf;
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5.4 Reduction of Tensor Integrals

Problem 5.15 We consider a tensor integral

y dQ, At
T — [ Z2m_ 5.81
Q 1+a-n’ (5:81)
where a = (a',a?,--- ,a") is a constant vector defined in the n-dimensional Euclidean space and

the integral is over the solid angle of the unit vector n.

1. Show that T% is symmetric under exchange of the two vector indices and the tensor must

be expressed as a linear combination
TY = 169 + coa’ad?, (5.82)

where §% is invariant under rotation. Notice that a*a? is not invariant under rotation, while

a'a’ is symmetric.

2. By multiplying the constant vector 7 and a'a’, we find two linear equations for ¢;. Show

that the solution is

i 59 dQs a® — (a - n)? alal dQ; a® —n(a - n)?
T = hl = (5.83)
(n—1)a? Q l14+a-n (n—1)a* Q 1+a-n
3. Show that
/dQﬂ (a-n)? _/dQﬂ1—1+(a n)>
Q 1+a-n Q l1+a-n
[dQ 1 +/dQﬁ(a A1)
Q 1+a-n Q
dQy, 1
= -1 R L 5.84
* Q2 1+a-n (584)

5

T — _ ~
(n—1)a?

4. By making use of the reduction formula (5.84), show that
dQﬁ a2 —-n
. (5.85)

1+/dQﬂ a®—1 atal +/
Q 1ta-n| (m—1at|" Q 1ta-n

The following REDUCE program confirms the above derivation:

vecdim d;
vector q,u,v;
tl:=u.v;
t2:=q.u*xq.v;
LHS:=n.u*n.v;

RHS:=cl*t1+c2*t2;
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5.4 Reduction of Tensor Integrals

index u,v;

ss:=solve ({LHS*t1=RHS*t1,LHS*t2=RHS*t2},{c1,c2});
remind u,v;

let n.n=1;

ans:=sub(ss,RHS);

ansf:=

(9.9- n.q"2)*u.v/(d-1)/q.q
-(q.q-n.q"2*d)*q.u*xq.v/(d-1)/q.q9"2;

ans—-ansf;

Problem 5.16 Let us consider the rank-3 tensor integral T%* defined in the n-dimensional Eu-

clidean space:

g dQp nIRIRk
Tk — n__ 5.86
/ Q 14+a-n ( )

where a is a constant vector and the integral is over the solid angle of the unit vector fi and 2 is

the solid angle in n dimensions.

1. Show that T%* is symmetric under exchange of any two indices and T%* must be expressed

as the following linear combination:
TU* = ¢1(6Ya" 4 7% a® + 6Fa?) + cpata’a®, (5.87)
where ¢; and ¢y are scalars.
2. Find the values for ¢;.

3. Find the most compact expression for T%* that contains the minimum number of the scalar

integrals.

Problem 5.17 Let us evaluate the integrals I, I, and I% that are defined by

dQy,
N L .
/ An(1+on-q) (5.88)
. Qi
= [ —2at 5.88b
/4w(1+5ﬁ.fj)’ (5.88D)
’ dQpii
79 — LA 5.88
/4W(1+5ﬁ.fj)’ (5-88¢)

where ¢ is a unit constant vector, § is a positive real number (0 < § < 1), and the integral is over
the direction of the unit vector ni. All of the Euclidean vectors are defined in 3 dimensions. In this

problem, we demonstrate how to evaluate tensor integrals component by component.
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5.4 Reduction of Tensor Integrals

1. It is convenient to choose a frame of reference in which ¢ is along the z axis so that

i = (0,0,1), (5.89a)
7. = (sin  cos ¢, sin 6 sin ¢, cos 0). (5.89b)
Show in that frame that
n-q = cosf =z, (5.90a)
dQp = d(cos0)d¢ = dxdg, (5.90b)

where —1 < x =cosf < 1.

2. Show that I, I, and I/ reduce into

I=— 91
/dcos@/1+5cosa (5.91a)
I' = dcosﬂ/ 1—|—50059 (sin @ cos ¢, sin O sin ¢, cos 6)", (5.91b)
]
sin?@ cos? ¢  sin? @sin ¢ cos ¢ sin O cos O cos ¢
1= —/dCOSH/ 1+5 sin?fsingcos¢  sin®fsin’¢  sinfcosfsing |- (5.91c)
sin @ cos @ cos ¢ sin 6 cos 6 sin ¢ cos® 0

3. Confirm the following integral table:
1 2m

il do =1 5.92
5 | do=1 (5.923)

1 2 1 2 1 21
— / dpcos = — / dpsinp = — / d¢sin pcosp = 0, (5.92b)
27'(' 0 27T 0 27T 0

1/%@¢ 2 = 1/%@¢'2¢—1 (5.92¢)
27[_ ) COS = 271' . S1n = 2 . C
4. Show that
1 /1 1
I==[ de——nr .
2/1 B TS (5.93a)
~ 1
I'=2 [ dx 5.93b
2 / 1+ 0z’ ( )

ij

1t 1
1Y = — dcos ) ——— Lsin2
2/1 o8 1+ dcosf 0 gsin®6 0

59 1 1 — o2 sing ol 2
:Il/ dp— = + 114 / dwxi, (5.93c)
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where

i i
100 000

s7=1o10| and ¢¢@=1]000
000 001

5. Verify the following integral table:

1 /1 1 tanh~ 1§

- dx = ,

2 -1 1 +6.I 6

1 /1 z § —tanh™ 1§

— dx = ,

2 -1 1 +6.I 62

11 1—-2> §—(1-6*tanh !0

1) e T 203 ’
-1

1 /1 d x? =0+ tanh™! §

2/, Tior 83 ’

F1=Simplify[Integrate[1/(2(1+d x)),{x,-1,1}]]
F2=Simplify[Integrate[x/(2(1+d x)),{x,-1,1}]1]
F3=Simplify[Integrate[(1-x"2)/(4(1+d x)),{x,-1,1}]]
F4=Simplify[Integrate[x~2/(2(1+d x)),{x,-1,1}]1]
Simplify[  ArcTanh[d] /d -F1]
Simplify[(d-ArcTanh[d])/d"2 -F2]
Simplify[(d-(1-d~2)ArcTanh[d])/(2d4"3) -F3]
Simplify[(-d+ArcTanh[d])/d"3 -F4]

6. As the last step, verify the following integral table for I, I?, and I%.

[:tanhfléj
0
i i L -1
I'=g 5—2(5—tanh 9),
. 1 (1 N i _
IJ:g{iéﬁ[é—(l—ng)tanh 15]+qq1[—5+tanh 15}}-

6. Radial Integrals

Problem 6.1 We introduce an intgral

(5.94)

(5.95a)
(5.95b)
(5.95¢)

(5.95d)

(5.96a)
(5.96b)

(5.96¢)

(6.1)




where p = (p',p?,--- ,p") is a vector in the n-dimensional Euclidean space and the range of the

integration is given by

d'p n 00 dpk
= —_— 6.2
Jas=11 % (62)
k=1
1. By rescaling the integral
1:/ e~ tdt, (6.3)
0

show that

1 o
]m = / 6_(p2+m2)tdt. (64)
0

2. Show that

o d"p _, 2
I(m?) = [ dte™™" / P 6.5
mt) = [ et [ S (65)

and that p integral is a product of n gaussian integrals:

dnp —tp? 1 - /OO —tx?
e = e kdry. (6.6)
/ @) o L
3. By making use of the previous result, show that
I 2\ _ 1 > d - _m?t
(m ) = W ; tt 2e . (67)

4. By rescaling the integral over t with m?t — u, show that

o0 n 2 n
dtt 2e ™t =m0 (1- <), (6.8)
0 2

Therefore, I(m?) reduces into the form:

2\2 -1 n
I 2:%1“(1——). 6.9
5. Note that the I'(x) diverges for z = 0, —1, —2, - - -. Show that the integral I(mz) is convergent

only for n = 1 and diverges for all integers n > 2. For example, if we put n = 2, then the
integral is divergent logarithmically o log A as the cutoff (upper bound) ppax = A — oc.
This is called the logarithmic ultraviolet (UV) divergence. If we put n = 3, then the integral
is divergent linearly as the cutoff A. For n = 3, I(m?) diverges quadratically : I(m?) oc A2

These divergences are called the power UV divergences.
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Problem 6.2 We evaluate the integral I(m?) in an alternative way. We notice that the integrand
of the integral (6.1) is independent of the direction of p. Therefore, we can integrate over the whole

solid angle easily.

1. By integrating over the angles first, show that

d"p 1 9 00 1
I(m®) = = dp——— 6.10
o / @2m)"p?+m?  T'(n/2)(4r)"/2 /0 D 2 (6.10)

where
p =/ p2 (6.11)

2. By rescaling the integral with p = m¢t, show that

anfQ o0 tnfl
I(m?) = —— dt——. 6.12
() = T2y am)y 2 /0 2+ 1 (6:.12)
3. By changing the variable ¢2 = u, show that
m—2 00 u%—l
I(m?) = ———— d . 6.13
(%) = T/ @my2 /0 “Tru (6.13)
4. By changing the variable
1
=1-1 6.14
T (6.14)
show that
00 uafl 1
/ du = / dtt* (1 —t)"% = B(a,1 —a) = T'(a)T(1 — a). (6.15)
0 IL+u o
Therefore,
2\2-1 n
I(m? :%PQ——) 6.16
m?) = Tt (1-5). (6.16)

This reproduces the previous result in Eq. (6.9).

Problem 6.3 I(m?) can be used as a generating function of the following radial integrals:

d" 1
Io(m?) = / (27:)’” s (6.17)

1. Show that

I (m?) = — (—W>a_l I (m?). (6.18)




Do[Print[n,"=",D[(-1) " (n-1)/x/Gamma[n] ,{x,n-1}]1]1,{n,1,20}]

2. Show that
n—2
2y M _n
Iﬂnz)-—(4wyv2f(1 2), (6.19a)
n—4 T (2 _ ﬂ)
2y . m 2
I(m?) = G T (6.19b)
n—6 T (3 _ ﬂ)
2y . m 2
I3(m?) = G @ (6.19¢)
3. Show that
oy d"p 1 B mnr—2 T (a — %)
o) = | G e = G T (6:20)
Do[Print[n, "=",

FullSimplify[(m~2)"(n/2 - a) Gammal[a - n/2]/Gammala] -
Gamma[1l - n/2]*
D[(-1)"(a - 1)/Gammala] x~" (/2 - 1), {x, a - 1}] /.
x ->m"2]], {a, 1, 20}]

Problem 6.4 Let us consider an example of a parametrization scheme called the Feynman

parametrizations:

1 ! 1
—_— = d . 6.21
AB /0 “TA+ (B - Au]? (6:21)
Note that the two factors in the denominator, A and B, are merged into a square of a singe

variable at the expense of the introduction of an integration over a new parameter x. This method

is particularly useful in evaluating loop integrals in perturbation theory.

1. Verify the partial fraction identity,

L1 (11 (622
AB B—-A\A B)° ‘

2. Show that

B
dt 1 1




3. From the previous problems, we obtain

1 1 B gt

By making use of this result, verify the Feynman parametrization formula in Eq. (6.21).

4. It is trivial to show that the parametrization in Eq. (6.21) is symmetric under exchange of

the coefficients x <> (1 — z):

! /ﬂd ! /&d ! (6.25)
- = €T = T . .
AB o [(1—x)A+xzB]? o |[tA+ (1 —x)B]?
We notice that the sum of the coefficients for A and B is always unity. By introducing the
integral of a Dirac delta function, show that the Feynman parametrization in Eq. (6.25) can

be written in a symmetric form:
/ d / i Gk y) (6.26)
AB v mA+yB) '

Problem 6.5 Let us generalize the result in Eq. (6.26) into the case of three factors in the de-

nominator:
(l—xz—y—2)
—— =2 d d d 6.27
ABC / x/ y/ : xA—FyB—i—zC) ( )
1. By making use of the partial fraction for 1/(BC), show that
11 11 (625
ABC C-B\AB CA)’ %)

2. By making use of Eq. (6.25), show that

R S S [
AB CA Jy [xA+(1—-2)B)2 Jy [zA+ (1 —2)C)?
! 1 1
d — , 6.29
- [ e{m - Fra—ae—or) (629
where F =zA+ (1 —z)B.
3. Verify the following definite integral:
/ﬁdt-—l LY g w0 (6.30)
e T a\a B or n . .
Therefore,
1 1 (=2)(C=B) g4
- =2 / —_—. (6.31)
F [F+(1—2)(C—B)? 0 (F+1)
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4. Changing the variable ¢t = (C' — B)y, show that

L 2/1d /m dy (6.32)
= €T . .
5. Substituting F' = zA + (1 — x)B, we find that
1 1 1—x 1
—— =2/ d d . 6.33
ABC /0 x/o oA+ (1 —z—y)B+yCP (6.33)
Verify the following symmetric version of the Feynman parametrization for 1/(ABC):
(l—z—y—2)
—— =2/ d d .34
ABC / x/ y/ :cA+yB+zC) (6:34)

Problem 6.6 There are quite a few modified versions of the above Feynman parametrization.

Show that all of the following parametrizations are equivalent among one another.

1 (l—z—y—2)

ABC / dm/ dy/ :UA+yB+zC) (6:35)
1 11—z

—— =2/ d d .35b

ABC / ﬂC/ yxA+yB+(1—x—y)C]3’ (6.35D)
1 1-2z

ABC / d””/ Ry 1—x)[tB+(1—t) SiEh (6-35¢)

1
ABC /dx/ dt 1—:c)A+w[(1—t)B+tC]}

(6.35d)

Problem 6.7 By applying mathematical induction, show that

1 01—z —zo— -+ —xp)
- 1! d d dx, . 6.36
AjAy - A, (n / o / 2 / ! (1 A1 + 2240 + - + 2 An)" (6.36)

Problem 6.8 Consider the following integral

d" 1
-/ C ) (s e (6.57)

where q is a constant vector in the n-dimensional Euclidean space.

1. By making use of the Feynman parametrization, we can combine the two denominator factors

I_/ dt/ 1 . (6.38)

P +m?) + (1= D)l(p - ) +m?] |

as

Show that

1 d"p 1
I= dt " . (6.39)
/0 / (2m) {[P— (1 —t)q]2+t(1 —t)q2+m?}2
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2. Show that the integral is invariant under translation of the integral variable
p—k=p—(1-1t)q, (6.40)

where k is a new integral variable. Then we have

! d"k 1
" /0 dt/ (2m)" B2+ 11— t)g + m2]2. o

3. The integrand is now independent of the direction of k and we can integrate over the angles
easily. The radial integral can be computed by making use of the integral table (6.20). Show
that

mtAT (2 - 2) 1 -
J=— 2/ dt|t(1 —t)q* 20 6.42

Integrate[(t (1 - t) - 1/4)"(n/2 - 2), {t, 0, 1}]

ConditionalExpression[(I"n 2°(4 - n))/(-3 + n), Rel[n] > 3]

4. Show that the integral becomes UV divergent at n = 4.
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III. Group Theory

7. Group

Definition 7.1 A group G is a set of elements g; that satisfies the following conditions:
1. For all g1, g2 € G the product g;gs is also an element of G.

2. There exists an element e € G called the identity such that for any g € G,
ge =eg =g. (7.1)
3. The multiplication of three elements satisfies the associative law:

91(9293) = (9192)93, (7.2)
for any g; € G.

1

4. For any g € G, there exists an element g~ called the inverse of g such that

99 =g g=e. (7.3)

Exercise 7.2 Verify the following statements.

1. The identity e of a group G is uniquely defined.

2. The inverse g~! of an element g € G is uniquely defined.
Exercise 7.3 Show that the following sets of numbers satisfy the group requirements.

1. R —{0} = {z|z is a real number and = # 0}.

2. C—{0} ={z|z is a complex number and z # 0}.

3. The general linear group GL(V,IR) is a set of N x N real matrices A with Det[A] # 0.

4. The special linear group SL(N, C) is a set of N X N complex matrices A with Det[A] = 1.
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5. The orthogonal group O(N,R) is a set of N x N real matrices A defined by
O(N,R) = {4 € GL(N,R)|ATA = AAT =1}, (7.4)
where 1 is the N x N identity matrix.
6. The special orthogonal group SO(N,R) is a set of N x N real matrices A defined by
SO(N,R) = {A € GL(N,R)|ATA = AAT = 1 and Det[A] = +1}. (7.5)
This group is also called the rotation group.
7. The unitary group U(N) is a set of N x N complex matrices defined by

U(N) = {A € GL(N,C)|ATA = AAT = 1}. (7.6)

8. The special unitary group SU(N) is a set of N x N complex matrices defined by

SU(N) = {A € GL(n,C)|ATA = AAT =1 and Det[4] = +1}. (7.7)

8. SO(N)

Exercise 8.1 In general we need N? real parameters to represent an arbitrary real N x N matrix.

Suppose e; is the ith row vector of a matrix R € O(N).
1. Show that the condition RTR = 1 is equivalent to e; - ej = 0;; fori, j=1,2,---, N.

2. The number of constraints is

N N(N2— 1 _ N(N2+ D, 5.1)

where N constraints are for ¢ = j and %N (N — 1) constraints are for i # j. Show that we

need 3N (N — 1) real parameters to represent an arbitrary matrix in O(N).
3. Show that Det[RT] = Det|R] and Det[R] = +1.

4. SO(N) is a subset of O(NV) that satisfies Det[R] = 1, for any R € SO(N). Show that SO(N)

is a continuous subgroup of O(N).
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8.1 SO(2)

8.1 SO(2)

Exercise 8.2 Therefore, we need only a single real parameter to represent matrices in SO(2).

1. By making use of this result, show that the following matrix

cosf —sinf
R(0) = , (8.2)
sinf cos6

represents any element of SO(2) where 6 is a real number.
2. Show that any element A € O(2) with Det[A] = —1 can be parametrized by
A(9) = R(0)PPq, (8.3)
where Py represents the reflection, x — —x, whose matrix representation is given by

-1 0
P, = : (8.4)
0 1

Show also that the {A(0)|A(8) = R(6)P1, 0 € R} is not a group. Therefore, every element
of O(2) can be parameterized by

0(2) = {M|M = R(6) or R()P1, 0 € R}. (8.5)

3. Let us consider the parity transformation P = —1. Show that P is an element of O(2) by
finding the parameter 6 to satisfy R(0) or R(0)P;.

4. Show that {1,PP} is a subgroup of O(N).

5. Show that {1,P1, P9, P} is a subgroup of O(V), where IP; represents the reflection of x; —

—x; and P is the parity.

P, = , Py= , P=—1. (8.6)
0 1 0-1

Problem 8.3 We observe that every element of the matrix representation R(#) for SO(N) is

analytic: R(6)¥ is differentiable to any order for any value of the parameter 6.

1. Show that R(0) = 1.
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8.1 SO(2)

2. Show that for any integer n > 0,
R(0) = [R(0/n)]". (8.7)
3. Show that
R(O/n) =1 + %G—i—O[(@/n)Q], (8.8)

where G is a traceless anti-hermitian matrix which is defined by

0—1
G = . (8.9)
10

It is trivial to show that G** = (—1)"1 and G*"*! = (-1)"G.

4. Show that
6 n
R(0) = lim (]1 + —G) = 99, (8.10)
n—00 n
where the exponential of an N x N matrix A is defined by
et = 0 (8.11)
k=0

5. Provide the reason why the terms in Eq. (8.8) of order (6/n)? or higher are consistently

negligible without introducing any errors to Eq. (8.10).

6. By an explicit calculation of the matrix exponential, show that

cosf —sinf
e = . (8.12)
sinf cos@

7. Because R(0) = 1 is well defined and R(#) is analytic for any #, we can make a Taylor series

expansion about # = 0. Show that

d2n "
%R(Q)\H = (-1, (8.13a)
d2n+1
WR(H)‘G:O = (-1)"G. (8.13Db)
8. Tt is now straightforward to show that the Taylor series expansion of e?“ about 6 = 0

reproduces the right side of Eq. (8.12). We define the generator L = iG:
0 —i
L= . (8.14)
i 0

Show that L is a traceless hermitian matrix and

R() = e L, (8.15)
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8.2 SO(3)

8.2 SO(3)

Problem 8.4 We consider SO(3). We need three real parameters 8!, #2, and 63 to represent a
matrix R(@) in SO(3), where 8 = (6',62,03). Evidently the identity matrix 1 is an element of
SO(3). We set R(0) = 1, where 0 = (0,0,0). We assume that R(0) is analytic with respect to

every component of 8. We define

LF= z'%R(e){ 9—o- (8.16)
R(0) =1 —iL*0* + 0(6?), (8.17)

where we use the Einstein convention for summation of repeated indices.

1. We choose the parameters 6* to be the angle of rotation about the axis 2°. Show in this case

that
R(6',0,0) = ¢ 10", (8.18a)
R(0,6%,0) = ¢ 0 (8.18b)
R(0,0,6%) = ¢ 7% (8.18c¢)
where
000 00 0—i0
'=|oo-i|l, L*=[o0o00|, L*=]i00]. (8.19)
0i 0 —i00 000

These three rotation matrices can be parametrized by
R(0) = e 0L, (8.20)
We would like to show that the set SO(3) = {R(0)|0° € R} is a group.
2. Show that 1 € SO(3).
3. Show that the inverse of R(0) is
R(6)"! = [R(0)]T = R(-6). (8.21)
4. As the last step, we need to show that there exists a three-vector ¢ such that

R(61)R(6) = R(¢). (8.22)
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8.2 SO(3)

Show that if 8¢ is parallel or anti-parallel to 65, then
R(Gl)R(Gg) = R(Gl + 92) (8.23)
However, this is not true if 81 and 6 is neither parallel nor anti-parallel.

Problem 8.5 Now we know that
cosf —sinf 0
R(0,0,0) = e 2" = | sin@ cosf 0 (8.24)
0 0 1

represents the matrix that rotates a vector about 2 axis by an angle . We introduce a rotation

matrix O that transforms 2 to fn = (A!, A2, A3):

—_

0 A
Olol=1a2]l. (8.25)
1 n3

Let R(0) be the rotation matrix that rotates a vector about an axis parallel to a unit vector 7 by

an angle 6.
1. Show that
R(8) = OR(0,0,0)07, (8.26)
where 6 = 0n.

2. We set n = (0,—1,0) that can be obtained by rotating 2 about & by 7/2. Show that

100
O=R(Er,00=[00-1]. (8.27)
01 0
3. Show that
R(6) = OR(0,0,0)0T = R(—63). (8.28)

ril:=mat((1,0,0),(0,c,-s),(0,s,c));
r2:=mat((c,0,s),(0,1,0),(-s,0,c));

r3:=mat((C,_S,O),(S,C,O);(O;O,l));
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8.2 SO(3)

oh:=mat ((1,0,0),(0,0,-1),(0,1,0));

sub({c=0,s=1},r1)-oh;

oht:=tp(oh);

X

y

zZ:

:=mat ((1), (0),(0));
:=mat ((0), (1),(0));

oh*x-x;

oh*xy-z;

oh*xz+y;

oh*r3%oht-tp(r2) ;

Problem 8.6 Let us continue to show the closure property of SO(3).

1. As asimple case, we consider R(0'&!) and R(#?%?). Suppose [L!, L?] is a linear combination

of the generators L*:
[LY, L% = e1 LY 4 o L2 + c3 L3, (8.29)

where ¢; is a number. Show that, if the condition (8.29) is satisfied, then there exists a vector

¢ = ¢n such that

R(0'& ) R(6%%?) = R(9). (8.30)

. By making use of the matrix representation (8.19) for L!, show that

(L', L% =iL3. (8.31)

. By making use of the matrix representation (8.19) for L?, show that

[Li, 7] = i€k Lk, (8.32)

where summation over k = 1, 2, 3 is assumed and €7 is a totally anisymmetric tensor. The

antisymmetric tensor €* is the structure constant of SO(3).

L1:=mat((0,0,0),(0,0,-1),(0,1,0));
L2:=mat ((0,0,1i),(0,0,0),(-1,0,0));
L3:=mat((0,-1,0),(i,0,0),(0,0,0));
L1*L2-L2*L1-(i*L3);
L2+L3-L3*L2-(i*L1);

L3*L1-L1*L3-(i*L2);
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8.3 Baker-Campbell-Hausdorff formula

4. Generalizing the results shown above, show that SO(3) is closed under multiplication. This
verifies that SO(3) is a group. Therefore, any multiple rotations can be expressed in terms

of a finite rotation about a fixed angle:

R(6,)R(02) - - R(6,) = R(). (8.33)

8.3 Baker-Campbell-Hausdorff formula

Exercise 8.7 Consider two matrices A and B € GL(N,R). We would like to find a matrix C

such that edeP = eC.
1. Show that

Aepb
Z I (8.34)
0b=0

a=

2. The logarithmic function is known to be analytic for any complex number z such that
z ¢ C—[1,00) and log1 = 0. Show that for any z ¢ C — [1,00), log z can be expanded in a

Taylor series expansion about z =1 as

log z = log[l + (2 — 1)] Z (z — 1), (8.35)
k=1

Normal [Series[Log[1+x],{x,0,10}]]

x - x°2/2 + x°3/3 - x"4/4 + x°5/5 - x°6/6 + x"7/7 - x°8/8 + x"9/9

In a similar manner, we can define the logarithm of a matrix C' € GL(V,R) as

1ogcziﬂ(c—n)k (8.36)
- . .
k=1
3. Show that
o) 1 ke 1 o] (_1)k71NAale1 . Aakak
1 — 1)k = 8.37
og(e kzzl ) ; P oo a0 (837

where ) denotes the summation over all of the indices a; and b; except for a single case

4= =ap=by = =b =0.
4. We would like to reorganize the summation as

log(e? ZP A, B), (8.38)
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8.3 Baker-Campbell-Hausdorff formula

where P, (A, B) is the matrix version of a homogeneous polynomial of degree n. For
example, 22 + 22y + y? is a homogeneous polynomial of degree 2. Let us compute P, (4, B)

order by order. We define F}, such that
4B\ CUM a s v
log(e”e ):ZFk, Fy, = T(e e’ — 1)~ (8.39)
k=1
Show that
F=(?-1)=1+A+ LA+ A%+ YA +B+ 4B+ 4B%+ ) -1

= A+ B+ 4(A*+ B?) + AB + £(A* + B%) + L(A’B + AB?)

+1(A*+ BY + L(A°B+ AB®) + ;5 A’B* + - - . (8.40a)
1
By = —5(6%3 —1)% (8.40b)
1
Fy = 5(eAeB —1)3 (8.40c)

5. We also define a projection operator II,, that projects out a homogeneous polynomial of A

and B of degree n. Show that

I, (Fy) = A+ B, (8.41a)
I (F,) =0, k>2. (8.41b)
Therefore, we have shown that
Pi(A,B)= A+ B. (8.42)
6. Show that
II,(F) = 4(A* + B?) + AB, (8.43a)
II,(F,) = —3(A + B)?, (8.43b)
I (F,) =0, k>3. (8.43c)
It is straightforward to show that
2
Py(A,B) =Y Ty(Fy) = 3[4, B). (8.44)
k=1
7. Show that
II3(Fy) = 3(A® + B®) + 3(A*B + AB?), (8.45a)
I3(Fy) = —(A% + B%)(A+ B) — (A + B)(A? + B?), (8.45D)
II3(F3) = 2(A+ B)?, (8.45¢)
M3(F,) =0, k>4 (8.45d)
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8.3 Baker-Campbell-Hausdorff formula

It is straightforward to show that

3
P4, B) = Y Ta() = g5 (14,14, B1) + 14,5, 51 (5.46)
k=1

The general expression for P, (A, B) was first computed by Dynkin [ Dynkin, E. B., Evalua-
tion of the coefficients of the Campbell-Hausdorff formula, Dokl. Akad. Nauk SSSR 57, 323

(1947).]
o0 _ b1 pa b a b
_1)n-1 A BT A2 B> ... A% B’
log(ee?) = E =0 E [ n ] ’ (8.47)
n
n=1 a0 ay b laglbo! - an!bp! Y (i + bi)
=1

where the nested commutator is defined by

[AmB" A= B . XY = [A,[A,...[A,[B,[B,...[B, ... [A[A,...[A[B,[B,... B]|..].

al ;: ;:L bn
(8.48)
In summary,
eeB =exp |[A+ B+ 3[4, Bl + 15 ([A, [A, B]] + [[A, B], B]) +--- | (8.49)

Problem 8.8 If we restrict ourselves to SO(N) and SU(N), then an element g of a group is always

parametrized by
® = {glg = e " oF e R}, (8.50)
where the generator G, which is traceless and hermitian, satisfies the commutation relations:
(GY, QY] = i fIRGE. (8.51)

Here, f%* is the structure constant of the group which is real and totally antisymmetric. By
making use of the Baker-Campbell-Hausdorff formula in Eq. (8.49), prove that the product of two

elements g7 and g9
g1 = e_iakaa g2 = e_iﬂka7 (852)
is also an element of the group by finding a set of real numbers +* such that

giga = e E", (8.53)
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8.3 Baker-Campbell-Hausdorff formula

Problem 8.9 Show that, if [A, [A, B]] = [[A, B], B] = 0, then

1 1
AgB — (A+BoIAB] _ o3 A B A+B,

e e =
1 1
eBeA — AtB3AB] _ ~5[ABlA+B
_1 _1
GA+B _ ~3AB]AB _ ,AB,~}[AB]

1 1
_ 3lABIBA _ BASIAB]

AP = ¢BeAlABl

eBelABl

(8.54a)

(8.54D)

(8.54c)
(8.54d)

(8.54e)

Problem 8.10 Consider two matrices A and B € GL(N,R). We define a matrix M (\) by

Ak
_ AN p XA _
M(X\) = e Be _ZHC’“’
k
where X is a complex number and Cj € GL(N,R) is independent of A.

M) = MCe™, « Cy=B

a]\g)(\)\) = MO M =eMA, Ble™, «— C1=[A,B]
2
’ é\iy\) = MOy M = eM[A[A,Blle ™, « Cy=[A[A B
OFM(N) Mo A
U e Cre ,
MM (A - -
8)\k+§ ) = e)‘ACkHe A4 :GM[A7 Cyle MU Cry1 = [A, Cy]

Therefore, the Taylor series expansion of M () about A = 0 is then

_ N ORM(N) > NF
M) =eMBe M=) ‘)\:0 = 271Gk
k=0

k! ONk
k=0
where
Cy = B,
Cr1 = [A, Crl,
for any k£ > 0.

(8.55)

(8.56a)

(8.56h)

(8.56¢)

(8.56d)

(8.56¢€)

(8.56f)

(8.57)

(8.584)

(8.58b)
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8.3 Baker-Campbell-Hausdorff formula

1. Show that

ABet = B[4, B] + (A [4, B + g4, [4,[4, B]] + - (8.59)
2. By making use of Eq. (8.59), show that

elePe =exp (A +[A,B] + %[A, [A,B]] + %[A, [A,[A, B]|] + - ) : (8.60)

3. Show that
et = 1. (8.61)

This confirms that

(eMt=e4 (8.62)

Problem 8.11 Suppose R(0) is the rotation matrix that rotates a 3-dimensional Euclidean vector

about an axis by an angle 6 = |6):

R(0) = e 0L, (8.63)
1. Show that
[R(8)] ! = R(—0) = ™0, (8.64)
2. By making use of the fact that
[R(O) " = [R(O)], (8.65)
show that
L' =@ =L. (8.66)

Problem 8.12 The angular momentum generator is given by
[JE, J7) = i€k k. (8.67)

Let us consider the transformation of the operator O = .J3 under rotation about the y axis by an

angle 6. The operator in the new coordinate system must be expressed as
0'=2(69)0 D (69)) ", (8.68)
where

D (09) = e 07" (8.69)




1. Show that

(—i0)? (—i0)®

TIPS = J g (=ib) [P, 1] g LR P g R LR R )
%—gzigliLJQ,LJQ,LJQ,LJQ,J3HH +—ﬁzé?)i[JQ,[JQ,[JQ,[JQ,[JQ,J3HH]+----
:Jhwﬂ—gﬂ—§f+§ﬂ—§ﬂ+m. (8.70)
2. Show that
e~ 07 307 = 13 cos 6 + J'sin 6. (8.71)

Explain the reason why the right-hand side does not have the contribution proportional J2.
3. If we set # — /2, then we find that
o107 3 +i0J% _ g1 (8.72)
Interpret the physical meaning of this identity based on rotation.
Problem 8.13 Show that

_igy2 i9y2 :
e 297532997 = 53 cos 0 + ol sin 6. (8.73)

9. SU(N)

Definition 9.1 The special unitary group SU(N) is the set of N x N complex matrices U that

satisfies the following conditions:

U =1, (9.1a)

DetlU] = 1. (9.1b)
Exercise 9.2 Show that the set of matrices that satisfies the conditions (9.1) is a group.

Exercise 9.3 In general we need N2 real parameters to represent an arbitrary N x N matrix

whose elements are all real.
1. Show that we need 2N? real parameters to represent an arbitrary N x N matrix.

2. Show that we need N2 — 1 real parameters to represent an arbitrary matrix in an SU(N)

group.
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9.1 Generators

Problem 9.4 Consider a group SU(2).
1. Show that any matrix U of the SU(2) group can be expressed as
U=a-o=dd, (9.2)
where a = (a',a?,a?) is a three-dimensional vector whose components a'’s are real and o*’s

are the Pauli matrices:
01 0 —3 10
10 7 0 0 -1

2. Show that any 2 X 2 hermitian matrix H can be expressed as
H=d"1+a-o, (9.4)
where 1 is the 2 x 2 identity matrix and a’ is real for i = 0, 1, 2, and 3.

3. Show that o¢ is traceless and hermitian.

9.1 Generators

We expand an element A(a) € SU(N) C GL(N,C) near Al = 0) = 1, where a =

2 N2—1)

(a',a?, - a is a set of N2 — 1 real variables a’. A(a) is assumed to be analytic with

respect to every variable af. Then for any finite a®, the Taylor series expansion of A(a) about

a=0is
_ L PA@)] et 9*Ae)
A(a) = exp [a . VZ]A(Z) o 1+« e 2l dasdab | _,
— exp [ —iax- (Z-Vz)]A(z)L:O, (9.5)
where
(0 0 0
Vz:(@;@f“aW)' (96)

We define the generator T for a = 1, 2, ---, N? — 1 for the SU(N):

T = (T, 7TV ") =iV, A(z)| . (9.7)
z=0
Problem 9.5 1. Show that for any finite o € R,
. { " i T
Ala) = lim (1 ——a-T ) =e "% (9.8)
n—o00 n
where o - T = o®T*® and the summation over a =1, 2, ---, N2 — 1 is assumed.
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2. By making use of Baker-Campbell-Hausdorff formula, show that

[A(a)] ! = et T = A(—a). (9.9)

3. By making use of the property of A(a) € SU(N), [A(a)]™! = [A(a)]!, show that T is

hermitian:
T' =T, a-T'=a-T. (9.10)

Therefore, there exists a unitary matrix

.I.
1
U= ||, (9.11)
where 1); is an eigenvector of o - T':

4. Tt is straightforward to show that Uca - TU is diagonal. Show that

e™ 0 0
0 e ™2 (o ...
UA(a)UT = , : (9.13)
0 0 e s ...
5. Show that
Det[A(a)] = e T T] = 47, (9.14)

The condition of the determinant requires that the o - T is traceless for any a. Therefore,

the generator of SU(N) is traceless:
Tr[T¢] = 0. (9.15)
Problem 9.6 Suppose H € SL(NV, C) is hermitian:
H' = H. (9.16a)

Assume that there exists eigenvalues A; and corresponding eigenvector ;, an N-dimensional column

vector whose elements are complex numbers, that satisfy

Hab; = \ith. (9.16b)
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9.2 Structure constant f2%¢ of SU(IV)

1. Show that eigenvectors of distinct eigenvalues are orthogonal to each other:

Ylpy =0 if N # N (9.16¢)

2. Show that eigenvalues are real.

3. Provide a way to construct an orthonormal set of eigenvectors. Describe a way how to

construct an orthonormal set of eigenvectors if any two eigenvalues are identical.
4. We have constructed an orthonormal set of eigenvectors that satisfies
w;ri/}j =0;; and wJij = Ai0jj. <= 1O sum over g (9.16d)

Let us construct a matrix A such that

o
A= 1/;; and Al = <1/;1 o ) . (9.16¢)

Show that A is unitary:

ATA =1. (9.16f)
5. Show that AHA' is diagonalized:
MO O -
0 Xy O -
AHAT = : (9.16g)
0 0 A ---

We have shown that any hermitian matrix has real eigenvalues and can be diagonalized.

9.2 Structure constant f¢ of SU(N)

The structure constant f2%¢ of SU(N) is defined by the commutator of two generators:
[T, T° = ifeeTe. (9.17)

Problem 9.7 We would like to show that f*° is antisymmetric under exchange of any two adja-

cent indices.
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9.2 Structure constant f2%¢ of SU(IV)

1. By makig use of the relation (7%)" = T%, show that € is real.
2. By making use of the definition (9.17), show that

fabc — _fbac. (9.18)

3. Show that

fobe = —TLFTr([Ta,Tb]TC) it Te(T°T") = Tpo®. (9.19)

4. By making use of Tr(AB)=Tr(BA), show that

Tr(ABC) = Tr(BCA) = Tr(CAB). (9.20)

5. Show that
fabc — fbca — fcab _ _facb — _fbac — _fcba. (921)

Therefore, we have shown that f¢ is totally antisymmetric under exchange of any two

adjacent indices.
6. By multiplying 7 to the following Jacobi identity,
[T, (T°, 7)) + [T°, [T, T)] + [T°, [T*, T")] = 0, (9.22)
and taking the trace, show that

fabdfcde + fbcdfade + fcadfbde —0. (923)

Problem 9.8 Consider an arbitray hermitian matrix H € GL(N,C): Hf = H.
1. Show that the number of free real parameters that determines H is N2.

2. We have shown that there are N? — 1 traceless hermitian matrices 7% € GL(N, C) that are
the generators of SU(V). In addition, 1 is a real diagonal matrix whose trace is Tr(1) = N.

Show that H is completely determined by
H="1+a- T, (9.24)

where a = (al,a?, - - ,aNQfl) and o e Rfori=0,1,2,---, N2—1.
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9.2 Structure constant f2%¢ of SU(IV)

3. By making use of the commutation relations [T%,T%] = if®°T¢, show that the condition
o = 0 must be satisfied if [H,T?] = 0 for any a. Thus any hermitian matrix that commutes

with all of the generators T of SU(N) must be proportional to 1.

Problem 9.9 Let T be a generator of the fundamental representation for SU(/N) whose commu-

tation relations satisfies Lie algebra:
[T%,T% = ifebere. (9.25)
The Casimir operator Cp for the fundamental representation of SU(V) is defined by
Cp = T°T", (9.26)
where a is summed over.
1. Show that Cr is hermitian.
2. Show that Cp commutes with any of the generators 7.
(Cp, T = T[T, T + [T%,T°]T* = 0. (9.27)
In summary, Cp is proportional to the identity matrix:
Cr = Crl, (9.28)
where CF is a real number that depends on the normalization of 1.

Problem 9.10 The generator 7% of the fundamental representation for SU(N) is traceless, her-

mitian, and satisfies the commutation relation
[T%,T% = ifebere. (9.29)
1. Show that, for any a # b,

Te[T°TY =0 for a#b. (9.30)

2. By making use of the relation Crp = Cr1, show that
Tr(T°T*) = CpN, (9.31)

where a is summed over. We can always change the normalization of each T%. The conven-
tional choice of the normalization for T is

1
Te(T9T°) = Tpd®, where Tp = g (9.32)
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3. Show that

_ Tp(N?-1) N?*-1
Cr= v = <N (9.33)

4. Show that any hermitian matrix H € GL(N, C) can be expressed as

H=—Tr(H) + =—Tr(HT"). (9.34)

Problem 9.11 The Pauli matrices o%’s are the generators of the fundamental representation for

SU(2). They are traceless and hermitian, and satisfy the commutation relation:
(0%, 09] = ifiikgh, (9.35)
1. Show that
olod =691 4 iekok, (9.36)
2. Find the structure constant f“*.

3. By making use of the relation Crp = Cp1, show that

Tr(o'c’) =2Cr and Tr(o'c?) = Tpé™. (9.37)

4. Show that

Tr =2 and Cp=3. (9.38)

5. Show that any hermitian matrix H € GL(2, C) can be expressed as

1 ‘ ,
H = STa(H) + %Tr(Hal). (9.39)

Problem 9.12 Let us consider SU(3).
[T, T = ifabere, (9.40)
1. By making use of the relation Cr = Cr1, show that

Te(T°T%) = 3Cr and Tr(TT%) = Tpé®. (9.41)

2. Show that

1
Tr = 3 and Cp= . (9.42)
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9.2 Structure constant f2%¢ of SU(IV)

3. Show that any hermitian matrix H € GL(3, C) can be expressed as

1
H= gTr(H) +27TTr(HT?). (9.43)

Problem 9.13 The product of any two hermitian matrices A and B can be expressed as

1 1
It is trivial to show that the anticommutator {A, B} = AB+ BA is hermitian and the commutator
[A, B] = AB — BA is antihermitian:

{A, B} ={A,B}, [A, B]' =—[A, B]. (9.45)
1. Show that
7T = %{T“, T} + % fabere, (9.46)
where T is the generator for the fundamental representation of SU(XNV).

2. Because {7 T"} is hermitian, we can parametrize {7, T°} as

2T
{T°, T} = TFaab]l + debere, (9.47)
Show that
arb Tr ab 1 abc - pabc\ e
3. By making use of Eq. (9.48), show that
Tr(N? —1)

Cp=TT*=Cpl, Cp= ~ (9.49)
This result reproduces Eq. (9.33).
Problem 9.14 Let us find properties of d**°.

1. By making use of Egs. (9.32) and (9.47), show that

dbe = iTr({Ta T°}7°) (9.50)
T ) . .
2. Show that d®¢ is totally symmetric:

dabc — dbca — dcab — dacb — dbac — dcba. (951)

Problem 9.15 Show that d”* =0 for all i, j, k=1, 2, 3 in SU(2).
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9.3 Completeness relation

9.3 Completeness relation

We have shown that any hermitian matrix H € GL(N, C) can be expressed as

i = 2 + v
—NI‘ TFI‘ .

The ij element of the matrix H is

1

1
Hij = 570ij Hw + T

Problem 9.16 H;; can be expressed as
Hij = 050, Hig.
By making use of this trick, solve the following problems.
1. By comparing the coefficients of Hj, on both sides of Eq. (9.53), show that

1 1
5iZ5jk = Néijéké + TFE(;T]?Z.

Therefore,
TTE, =T, ! 0;:0 0500
il = AF  — 3% ke + 03005k | -
This identity is called the completeness relation.

2. By multiplying ;5 to both sides, show that

Tr(N?2 -1
@inF(N )y,

3. By making use of the completeness relation, show that

1 T
(T*T*T)ie = TGTHT = TjiTr (—N@ﬁu + 5ie5jk> = —WFT&-
Therefore,
Tr
T°T T = — =27
N

4. By making use of Egs. (9.57) and (9.59), show that

2/(A72 _ 1)\2
ToTeTtT? = TorhTiTe = 03 = L Z 1) 1,
N2
TT T = —ETI’TC,
N
TrCr TZ2(N? —1)
ToT Tt = — 1= 77
N N2

(9.52)

(9.53)

(9.54)

(9.55)

(9.56)

(9.57)

(9.58)

(9.59)

(9.60a)

(9.60b)

(9.60c¢)
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5. Show that
Te(T9) =
Te(TOT?) = Tps,
Te(TT*) = CpN = Tp(N? — 1),
Te(T°TPT?) =
6. Show that
Te(T°TeT TY) = Te(T°T°TPT*) = C%4N = W
Te(T°T*TTY) = —TpCp = —w,
Te(TeTTT?) = Tr(T°T*T*T) = CpTr(T°T?) = CpTpé™ = %5“%
Te(T°TTT®) = Tr(TTT’T®) = —%Tr(T“Tb) = —TW%&“.

Problem 9.17 Let us consider a hermitian matrix H € GL(2, C). We have shown that

1 o o
and the ij element of the matrix H is
1 1, o
Hij = §5z]Hkk: + 50’in@]€ng.
1. By comparing the coefficients of Hj;, on both sides of Eq. (9.64), show that
1 1, .
(Sig(sj‘k = 551']'619( + 50'1-]0']%.

Therefore, the completeness relation is

U%UZZ = —(51']'(5“ + 252153’]9

2. By multiplying ;5 to both sides, show that

(DF:3><]1.

3. By making use of the completeness relation, show that

(UaO'bO'a)Zg = szajkakg = O' g (—0i0ke 4+ 20;0051) = —O'Zbe.

Therefore,

(9.62a)
(9.62D)
(9.62¢)

(9.62d)

(9.63)

(9.64)

(9.65)

(9.66)

(9.67)

(9.68)

(9.69)




9.3 Completeness relation

4. By making use of Egs. (9.67) and (9.69), show that

00 to" = g% eb0® = 9 x 1,
O_ao_bo_ao_c — _O_bo_c
oc%to? = —3 x 1.
5. Show that
Tr(c%) = 0,
Tr(c%?) = 269,
Tr(c%®) = 6,
Tr(0%%c%) = 0.
6. Show that

Problem 9.18 According to Eq. (9.36),

olod = 5§91 + ik gk,

o°c°0%") = Tr(c%0%°0¢) = 3Tr(0%") = 652,

= Tr(c%C0b0%) = —Tr(c%") = —2%.

(9.70a)
(9.70D)

(9.70c)

(9.73)

Carry out the following calculation by applying this relation without relying on the completeness

relation.
1. Show that
O_ao_bo_a — _O_b
2. Show that
0%0%Pc® = 0% cbo® =9 x 1,
c%cc%¢ = —aP0°,
o%lc%e? = —3 x 1.

(9.74)

(9.75a)
(9.75b)

(9.75¢)




9.4 Adjoint representation

3. Show that
Tr(c%) = 0, (9.76a)
Tr(0%?) = 209, (9.76b)
Tr(c%0®) = 6, (9.76¢)
Tr(c%b0®) = 0 (9.76d)
4. Show that
Tr(0% %) = Tr(c%c%0%) = 18, (9.77a)
Tr(c%0%°) = —6, (9.77b)
Tr(0%0C0%?) = Tr(cc%0b0®) = 3Tr(0%") = 66, (9.77¢)
Tr(0%0% 0?) = Tr(0% cb0®) = —Tr(c%®) = —26%. (9.77d)
9.4 Adjoint representation
Problem 9.19 We recall that
fabe = —TiFTr(TC[Ta, ). (9.78)
We define the generator t¢ of the adjoint representation of SU(N):
tS, = —if = —%Tr(Ta[Tb,TC]) = —%Tr(Tb[TC,T“]) = —%Tr(TC[T“,T”]), (9.79)
where a, b, c =1,2,---, N2 —1. Note that the number of generators t¢ is N2 —1 and each generator
is an (N2 — 1) x (N? — 1) matrix. According to Eq. (9.23), we have
fabe pede | pbee pade - peac gbde _ () (9.80)
1. We define sets of permutations of (a, b, c) as o(a,b,c):
o(a,b,c) = o (a,b,c) Uo (a,b,c), (9.81a)
ot (a,b,c) = {(a,b,c), (b,c,a),(c,a,b)}, (9.81b)
o (a,b,c) = {(a,c,b),(b,a,c),(c,ba)}. (9.81c)

Let (x,y,z) be a permutation of (a,b,c). We define a sign function € for a permutation:

e(r,y,2) = +1, if (z,y,2) €ot(a,b,c), (9.82a)
e(z,y,2) = -1, if (x,y,2) € o (a,b,c), (9.82b)
6(.%'7y7 Z) =0, if (1’,y,2) ¢ O'(G,, b7 C)' (9820)
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9.4 Adjoint representation

Show that

2' ! / !
pabe — _3112 > e(d v, Te(T T T¢), (9.83)
T (@b eaabe)

where €(a, b, ¢) is totally antisymmetric.

2. Show for any a =1, 2, --- , N2 — 1 that t® is traceless and hermitian:
Tr(t*) =0 and (t%)7 = t2. (9.84)
3. Show that
fabe pede —  pabege (9.85a)
(896)cq = teotgg = —foefo = —feac o, (9.85D)
(‘tbﬂ?a)cd _ ﬂ:Ic)e gd _ _fcebfeda _ _i_fbcefacle7 (9.850)
(69, ¢%)cq = if?¢8S,. (9.85d)

In summary, the structure constant of the adjoint representation is the same as that of the

fundamental representation of SU(N):
[t2, t°] = ifabete. (9.86)

4. The Casimir operator for the adjoint representation of SU(/V) can be defined by

C4 =t~ (9.87)
Show that
[C 4, t9] = t2[t%, t°] + [t¢, 6°]6 = 0, (9.88)
foralla=1,2,---, N> —1.
5. According to Eq. (9.19),
1
fabe = —— ([T, T°|T°). (9.89)
Tr
Show that
(Ca)ab = (67)ay (8o = F*V*F7°
1
— — S Te([T%, TY|T) Te([T%, TY|TY).
TF
2
=5 [Tr(TmTyT“)Tr(TmiTb) - Tr(TxTyT“)Tr(TxTyTb)] . (9.90)
F
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9.4 Adjoint representation

6. By making use of the completeness relation,
Ty, =T 164-6 000, 9.91
ijke—F—NUkﬁ-w]k, (9.91)
show that

Te(T* AYTR(T*B) = (T2 Aj;) (T, Bex) = Tr [—%Tr(A)Tr(B) + Tr(AB)} L (9.92)

7. By making use of the identity (9.92), show that

Te(T*)Tr(T%) = 0, (9.93a)

Te(T*T*)Te(T*T) = T2, (9.93b)

8. Show that

1
Te(T*TYT*)Te(T*TYT) = Tp —NTr(TyT“)Tr(TyTb) + Tr(TyT“TyTb)}

[ T2 T2 273
T F(Sab F(Sab F5ab 9.94
FITN N N (9.94)

Te(T*TYT)Te(TYT*T) = Te(T*TYT*)Te(T*T°TY)

1
=Tr —NTr(TyT“)Tr(TbTy) + Tr(TyTaTbTy)}

[ TR TEIN?=1) ] TR(N? —2)
It is straightforward to show that
(CA)ap = 2T N6, (9.96)
Therefore,
Csp=Cxyl =2TpNT. (9.97)
9. Show that
fabpfabq — CA(;pq’ (998&)
fabegabe — O, (N? —1) = 2TpN(N? —1). (9.98Db)
Problem 9.20 According to Eq. (9.50),
4 = %Tr({T“,Tb}TC). (9.99)
F
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9.5 Gell-Mann matrices

1. Show that
dabp faba — ), (9.100)

2. Show that
dwvedryb = T%% Te(T*TYT) Te(T*TYT?) + Te(T*TYT*)Te(TYTT?)| . (9.101)

3. Show that
gabe gabd _ QTFU]VV S ) ea. (9.102a)
Jobe gabe _ 2Ty (N? — 4)(N? — ) (9.102b)

N
Problem 9.21 According to Eq. (9.47),

{T% 1"} = %5@61 + debere, (9.103)

By multiplying % to the above identity, show that

d*® =0, (9.104)
where a is summed over a = 1, 2, ---, N2 — 1. Show also that
A = d** = 4" = 0. (9.105)

[NEEDTOBEEDITED, Adjoint representation of SU(2) is the rotational generator of SO(3)]]

9.5 Gell-Mann matrices

Exercise 9.22 We have shown that the number of generators for the SU(N) is N2 — 1. Therefore,
SU(3) has 8 generators. We also have shown that the generators for SU(N) are traceless hermitian.

Conventional choice of the generators is
o 1
T = 5)\,1, a=12,---,8, (9.106)

where )\,’s are called the Gell-Mann matrices. It is convenient to construct 3 x 3 traceless
hermitain matrices by making use of the 2 x 2 Pauli matrices that are also traceless hermitian. Note
that o1 and o9 have vanishing diagonal elements. The only Pauli matrix that has non-vanishing

diagonal elements is og.
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9.5 Gell-Mann matrices

1. Show that only two elements are independent among the diagonal elements of Gell-Mann

matrices.

2. The first three entries of A, are chosen so that the ij element is identical to o, for i, j =1, 2:

010 0—i0 100
AM=1100|, A=[i00], A3=]0-10]- (9.107)
000 000 000

3. The next two entries A\, are chosen so that the ij element is identical to o1 and o9 for ¢,

j=13:
001 00 —i
AM=1000|, A=]000 |- (9.108)
100 i00

4. Two more entries are chosen so that the ij element is identical to o; and o9 for i, j = 2, 3:

000 00 0
A=1001], A=[00—i]- (9.109)
010 0i 0

5. Now we determine the last entry. Because off-diagonal elements are already fixed com-
pletely, we have to find an entry that has non-vanishing diagonal elements. Because
A3 = diag[l,—1,0], we can choose a diagonal matrix whose diagonal elements construct

a 3-dimensional vector that is orthogonal to (1, —1,0). A simple choice is

100
Ag = % 010 |- (9.110)
00 -2
6. Show that
Tr(A\,) = 0, (9.111a)
AL = A, (9.111b)
Tr(AaXy) = 204 (9.111c)

Problem 9.23 According to Eq. (9.19) and Eq. (9.106),

fabe = —iTr([)\“, APIA). (9.112)
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9.5 Gell-Mann matrices

1. Show that nonvanishing structure constants f%¢ are given by

f123 — 1’

FIAT — 165 _ 246 _ £257 _ p345 _ £376 _ 1

V3
F458 — f678 R

)

We can use the antisymmetric properties to find other permuations:

For example,

2. Show that

fabc _ fbca _ fcab _ _fbac — _facb — _fcba

f123 — f231 — f312 — +17

FAUB g1z g2 g

fabCfabc _ 24’

(9.113a)

(9.113b)

(9.113c)

(9.114)

(9.115a)

(9.115b)

(9.116)

where repeated indicies are summed over. The following REDUCE program can be used as

an independent check of above derivations.

procedure ta(n);

begin scalar m;

if n=1 then m:

if n=2
if n=3
if n=4
if n=5b
if n=6
if n=7
if n=8
return

end;

then
then
then
then
then
then
then

m/2;

m:

=mat ((0,1,0),(1,0,0),(0,0,0));
=mat ((0,-i,0),(i,0,0),(0,0,0));

:=mat ((1,0,0),(0,-1,0),(0,0,0));

:=mat ((0,0,1),(0,0,0),(1,0,0));

:=mat ((0,0,-1),(0,0,0),(i,0,0));

:=mat ((0,0,0),(0,0,1),(0,1,0));

:=mat ((0,0,0),(0,0,-1),(0,i,0));

:=mat ((1,0,0),(0,1,0),(0,0,-2))/sqrt(3);

procedure f(a,b,c);
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9.5 Gell-Mann matrices

begin scalar aa,bb,cc,xx,ans;
aa:=ta(a);

bb:=ta(b);

cc:=ta(c);

XX :=aa*bb-bb*aa;

XX :=2%XX*CC;

ans:=trace(xx)/i;

return ans;

end;

cas:=mat ((0,0,0),(0,0,0),(0,0,0));
id:=mat((1,0,0),(0,1,0),(0,0,1));
for a:=1:8 do <<x:=ta(a);cas:=cas+x*x>>;cas-4/3*id;
for a:=1:8 do <<x:=ta(a);write a,trace(x*x);>>;
£(1,2,3)-1;

£(1,4,7)-1/2;

£(1,6,5)-1/2;

£(2,4,6)-1/2;

£(2,5,7)-1/2;

£(3,4,5)-1/2;

£(3,7,6)-1/2;

£(4,5,8)-sqrt(3)/2;
£(6,7,8)-sqrt(3)/2;

24-for a:=1:8 sum for b:=1:8 sum for c:=1:8 sum f(a,b,c) " 2;
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9.5 Gell-Mann matrices

IV. Minkowski Space

10. Minkowski space

10.1 Metric tensor

Exercise 10.1 In the n-dimensional Euclidean space, the distance d(x,y) between two points

x=(x', 22, - ,2") and y = (y*,y?, - ,y") is defined by

dz,y) =V (z-y?=(z-y) (-y), (10.1)
where the scalar product of the Euclidean vectors  and y is
x -y =gy (10.2)
This can be expressed in terms of the metric tensor §% in the n-dimensional Euclidean space:
x -y =zoyl. (10.3)

Show that the matrix representation of the metric tensor of the n-dimensional Euclidean space is

100 ---
010 ---
(’5ij — (l)ij =1001 X (10.4)
Problem 10.2 1. Show that the metric tensor 6% of the n-dimensional Eucliean space is in-
variant under rotation:
6% = R*(@)R7*(6)5, (10.5)
where
R(0) = R(9n) = exp [ — ifn - J| (10.6)
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10.1 Metric tensor

is the rotation matrix about an axis n by an angle 6. For example,

1 cos 0
0 0

in three dimensions. Therefore, the metric tensor is the same in any frame of references that

are related by rotation.
2. Show for n = 3 that the matrix representation of the generator J;; = (Jilj, Jizj, Jf}) is
I = —iek (10.8)

Problem 10.3 Show that the scalar product is invariant under rotation:

-y =z vy, (10.9)
where the primed vector is obtained by rotation:

2" = RY(0)a’. (10.10)
Exercise 10.4 The (n + 1)-dimensional Minkowski space consists of a single time component

20 = ct, (10.11)

where c is the speed of light and ¢ is the time, and n spatial components defined in the n-dimensional

Euclidean space. An element x of that space is called a four-vector:
= (202 2" = (2% ). (10.12)

We use a Greek letter to represent an index for the four-vector. For example, the puth component is

0

xH. In the (n+1)-dimensional Minkowski space, the distance d(z,y) between two points z = (z°, x)

and y = (y", y) is defined by

dz,y) = (@ -y = V(e —y)- (z—y) = V(@ —¢°) — (x — y)?, (10.13)
where the scalar product of two four-vectors x and y is

z-y=2ax"y’ —x y=2%"— 2%’ (10.14)
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10.1 Metric tensor

We introduce two ways to express components of a four-vector. One way is the contravariant

form z# and the other way is the covariant form z,:

o = (20, 4x), (10.15a)

z, = (a° —x). (10.15b)
Note that

2V = o = ct, (10.16a)

o= ot = (10.16b)

Ty = —x? = —y, (10.16¢)

T3 = —x° = —2, (10.16d)

in 3 + 1 dimensions.
1. Show that the scalar product of two four-vectors x and y can be expressed as
x-y=axuyt =aty,. (10.17)
2. Show that

x -y # 2y, Ty, (10.18)

Therefore, in any pair of repeated four-vector indices, one must be covariant and the other

must be contravariant.

3. Show that the scalar product = - y can be expressed as

-y = xuyyguy - xuyyguy7 (1019)
where
+1, p=v=70,
9" =guw=4-1, p=v=1,2,3,--,n, (10.20)
0, p#v.

4. The tensor g"” is called the metric tensor of the Minkowski space. Show that its matrix

representation is

1%
10 0-- 10 0--
o lo-1 0. 0-1 0--
g’ = v G = . (10.21)
0 0-1 0 0-1
nv
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11.1 Definition

5. Show that the matrix representations of g, and g,” are given by

o
1 0 0-
. 01 0-
9" = 9" gow = , (10.22a)
0 0 1
1 0 0
y o 0 1 0-.-
9u = Gua9g = . (10.22b)
0 0 1
“w

Note that we must not use the form g;; which is ambiguous.

11. Lorentz transformation

11.1 Definition

Problem 11.1 Lorentz transformation represents the rules of the coordinate transformations
of physical quantities X in an inertial reference frame S to the corresponding quantities X’ in an-
other inertial reference frame S’. If there is a physical quantity s defined in S that is invariant under
Lorentz transformation, s = s’, then we call s a Lorentz scalar. Under Lorentz transformation,

a four-vector z¥ defined in S transforms into z'* as
't = AT (11.1)

where the summation over the repeated index v is assumed for p = 0, 1, 2, and 3. We restrict
ourselves for n + 1 Minkowski space. Because we have required that the scalar product of two
four-vectors is invariant in any inertial reference frame, the scalar product must be a Lorentz

scalar:
2y =x-y. (11.2)

An implicit way defining Lorentz transformation is to require the transformation matrix A in

Eq. (14.1) to respect the invariance of the scalar product.
1. Show that the metric tensor g"” is invariant under Lorentz transformation:

g = Ao AV 5g°0. (11.3)
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11.1 Definition

2. Parity transformation P flips the sign of each spatial component and keeps the time

component of a four-vector:

o
1 00 0
, 0-1 0 0
2" =PH,a’, PF, = . (11.4)
0 0-1 0
00 0-1

v

Show that P? = 1 guarantees the invariance of the scalar product, where

o
1 0 0 0
01 0 0

1#, = (11.5)
00 1 0
00 0 1

v
Therefore, the parity transformation (11.4) is a Lorentz transformation. {1,P} forms a

discrete group.

3. Time reversal transformation T flips the sign of the time component and keeps the

spatial components of a four-vector:

m
-1 0 0 0
, 0 1 0 O
oH=TH, 2¥, T+, = (11.6)
0 0 1 0
0 0 0 1
Show that T? = 1 guarantees the invariance of the scalar product. Therefore, the time

reversal transformation (11.6) is a Lorentz transformation. {1, T} forms a discrete group.

4. Pure rotational transformation R keeps the time component the same and transforms

the spatial components according to rotation. Show that

R%(07)

1, (11.7a)
R%(#n) = Rip(9n) =0, i=1,2,3, (11.7b)

Ri;(07) = exp [— iR -J] ", i,j=1,2,3. (11.7¢)

%
5
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11.2 Rotation Generators J

where
000 O 0000 00 0O
) 000 0 , 000i , 00 —i0
(S, = . (I, = . (TP, = . (11.8)
000 —2 00O0O0 0z 0O
00z O 0—-200 00 0O

Show that R? = 1 guarantees the invariance of the scalar product. Therefore, the pure

rotation is a Lorentz transformation. Show also that pure rotation forms a continuous

group.

5. Show that there exist three more generators to represent complete set of Lorentz transfor-

mation of a four-vector. These generators represents Lorentz boosts.

Problem 11.2 Under a Lorentz transformation
't = At 2", (11.9)

where the summation over the repeated index v is assumed for p =0, 1, 2, and 3.

1. Show that
0 0
— A¥
o, A T (11.10)
2. Show that
0 L0
o~ Mg (11.11)
Therefore, we write
0 0
= — =—. 11.12
? ox,’ O Oz ( )
3. Show that
10 10
H = _— — = [
9 <cat’ V>7 Au[[=]] <cat’+v>' (11.13)

11.2 Rotation Generators J

Problem 11.3 We would like to find the rotation matrix R’;(##) for a rotation about an axis
parallel to a unit vector . = (n!, n2,73) by an angle . Under the transformation, the 3-dimensional

position vector transforms like

a" = R';(0n)2’. (11.14)
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11.2 Rotation Generators J

1. Show that

' = x[[cos 0] + i x £sinf + A(n - x)(1 — cosb). (11.15)

2. By making use of the above relation, read off the matrix element R’ j(6n) to find that

RY;(07) = 6 cos 6 + 'Rl (1 — cos §) + €A sin 6. (11.16)

3. Check this relation for special cases:

1 0 0
R';(0%) = &'27 + (§'9’ + 2°27) cos 0 + (—g'27 + 2'97)sinf = | 0 cos§ —sin @ (11,17a)

0 sinf cosf

J
cosf 0 sinf Z

R';(09) = 997 + (&'@? 4+ 2°27) cos O + (—2'a7 + &'27)sinf=| o 1 0o (L1,17h)
—sinf 0 cosf ;

cos@ —sinf 0

R';(02) = 2'27 + (&'27 + §'97) cos O + (—&'9’ + §'@’)sinf = [ sinf cosh 0(11.17c)

0 0 1

Problem 11.4 We recall the matrix representations for the generators for the rotation.

w 2
000 0 0000 0000

" 000 0 - 000 - 00—i0

(J)", = , (IR, = . (e, = . (11.18)
000 —i 0000 0i 00
004i 0 0—i00 0000
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11.2 Rotation Generators J

1. Show that
o
0000
0000
(Jl)Qnuu - (Jl)ual(‘]l)alag(Jl)OQag e (Jl)OQnI/
0010
0001
o
0000
0100
(JQ)QnMu - (JQ)Mal(JQ)alag(JQ)a2a3 U (JZ)OQnI/
0000
0001
o
0000
0100
(Jg)Qnuu - (Jg)ual(‘]g)alag(‘]g)a2a3 e (Jg)OQnI/
0010
0000
2. Show that
1\2n+1 1 1I\«a 1\« 1\a2n _ 1
(J ) Mu (J )Mal (J ) lag(J ) 2a3 (J ) : +11/ (J )Mlﬂ
2\2n+1 2 2\« 2\« 2\a2n _ 2
(J ) uu (J )Hal (J ) lag(J ) 2a3 (J ) 2 +11/ (J )ulﬂ
3\2n+1 3 3\« 3\ 3\a2n 3
(J ) uu (J )Hal (J ) lag(J ) 2a3 (J ) 2 +11/ (J )HV
3. Show that
1 0 0
- G —it)" ni
]RZJ(HQJ)ZZ( n!) (Jl) ;= |0 cos —sinf ,
n=0
0 sinf cos@ A
J
cosf 0 sinf
) ~ G (_Ze)n ni
R';(09) = > — =1 o 1 0 ;
n=0
—sinf 0 cosf/)
J
- cosf —sind 0
j = " j = | siné cosf O
n=0

0 0 1

(11.19)

(11.20)

(11.21)

(11.22)
(11.23)

(11.24)

(11.25)

(11.26)

(11.27)
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11.3 Boost Generators K

Problem 11.5 The Lorentz boost,
2t = BH,(Ba1)x”, (11.28)

along the & axis transforms the four-momentum of a rest particle from p to p’

me E/c

H 0 = p 2)2 2

P = 0 — pr= o | E = +/(mc?)? + (pc)?. (11.29)
0 0

According to the special theory of relativity, the mass m’ of a moving particle with velocity v = B¢

increases by

1
m' =ym, v=-—=x (11.30)

V1-— 32

where m is the rest mass. Therefore, the energy E and momentum p of that moving particle

become
E=m'c¢* =ymc®, p=m'v=myv. (11.31)
1. Show that
pc E
== = —. 11.32
b=TF 1= (11.32)
2. Show that
o
ypy 0 0
0 0
B, (621) = o (11.33)
0 0 1 0
0 0 0 1

v

3. Generalizing the results to the boosts along &5 and @3, show that

W H
v 08y 0O v 0 0py
) 01 00 ) 010 0
B, (B#2) = , B (Bz3) = (11.34)
By 0 v O 0010
000 1 By 0 0 ~

v
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4. Show that BH,(B&1), B*,(B&2), and BH,(S&3) satisfy the condition 2’ -y' = x -y of the

Lorentz transformation.

5. Show that det[B*,(5&;)] = +1 for i =1, 2, 3.

Problem 11.6 We notice that the spatial components that are perpendicular to the axis of boost

remain unchanged in the Lorentz boost. Let us consider a boost by 3 = 5,3 along a unit vector in

a frame, where a particle is at rest. We define

BB-x)
B2

scl:sc—a:”:ac—

x| =

1. Show that
x’O:’y(xO—i-,B-a:).
This condition determines the first row of the boost matrix as
B’,(8) = (v VB8t 7B 753),}
2. Show that

x! =73<6w0+ﬁ-w>+w—5(3-w)

-1

Therefore,
_ _ A -1
2 =B + a2’ + ’Ygz—ﬂlﬁjx]-

3. Show that the first column of the boost matrix is determined as

I

4. Show that the ¢j element of the boost matrix is determined as

B;(8) = 6" + 7 6 5 B = (13x3 + 52

B@BT>

(11.35a)

(11.35b)

(11.36)

(11.37)

(11.38)

(11.39)

(11.40)

(11.41)
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11.3 Boost Generators K

where

100 Bt

lpa=|o010f, B=|g|. B7=(sp2p), BeB"),=p6H.

001 B3

5. In summary, the boost matrix is completely determined as

gl 78! v8? VB '
W1+ (=D (=B (-1
B*,(8) = - . - )
V82 (v =1BBY 1+ (v = 1)(5)? [[(y - DA
W8 (v =DBE (v =1 1+ (- 1)(5°)?)
where
. B
=t
6. Show that det[B*,(8)] = +1 for i =1, 2, 3.
Problem 11.7 Let us consider [B*,(8%1)].
1. By making use of the relation,
72(1 - /82) = 17

show that [B*,(8%1)] can be expressed of the form

cosh ¢ sinh¢ 0 0
(Bl)“y(qﬁ) _ B#,(8dy) = sinh ¢ cosh¢ 0 0 ’
0 0 10

0 0 01

cosh ¢ 0 sinh¢ 0

0 1 0 O
(B?)",(¢) = B, (B2) = ,
sinh ¢ 0 cosh¢ 0

0O 0 0 1

cosh ¢ 0 0 sinh ¢
0 10 0

(B*)",(¢) = B, (Bi3) = ,

0 01 O

sinh ¢ 0 0 cosh ¢

(11.42)

(11.43)

(11.44)

(11.45)

(11.46a)

(11.46D)

(11.46¢)
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11.3 Boost Generators K

where

~ = cosh ¢,

v = sinh ¢.

2. For an infinitesimal parameter ¢, show that each boost matrix becomes

(B, (¢) = 1 —i¢K' + O(¢?),

where

I

0:00 0020

1000 0000
v 9

0000
0000

(K
i000

0000

v

3. Show that for any finite ¢,

[[ lim_]]

n—oo

(B, (¢)

n

4. Show that

(K22t = (K2)F, (K%,

(BEPmH, = (), (K2, (B) 2, -

2

5. Show that

I
000 ¢

0000
0000
1000

14

<l—i¢Ki>nM = exp [—ipK' "
= p[ ZQBK]U.

1000
0100
0000
0000

(), = (1)

1000
0000
0010
0000

1000
0000
0000
0001

.. (Kl)a2n+1

.. (KZ)OQ”“

. (K3)Oé2n+1

(=" (K-
y = ()" (K"

(=)™ (K),.

(11.47)

(11.48)

(11.49)

(11.50)

,(11.51a)

,(11.51b)

.(11.51c)

(11.52a)

v

(11.52b)

v

(11.52¢)




11.4 Commutation Relations for J and K

6. Show that
“w
cosh ¢ sinh¢ 0 0
1 (—ig)" . sinh ¢ cosh¢ 0 0
B, (0) = 3 T (kg = S
n=0 ’ 0 0 10
0 0 01
“w
cosh ¢ 0 sinh¢ 0
X (—id)" 0 1 0 O
@), (0) = 3 T g2y, = L s
v nl v .
n=0 : sinh ¢ 0 cosh¢ 0
0 0 0 1
o
cosh¢ 0 0 sinh ¢
N (=)™ s 0 10 0
@y, (0) = 3 T (e, = S )
=0 ' 0 01 0

sinh¢ 0 0 cosh ¢

11.4 Commutation Relations for J and K

Problem 11.8 Show that the Lorentz transformation with determinant +1 must be expressed as
A,(0,¢) = exp [—i' T —i¢' K] (11.56)
and is a group of SO(4).

Problem 11.9 Let V' be an arbitray three-vector operator. Under rotation, this operator must

transform like
V' = [[R"Y(#n)VR(On) = R(6n)TVR(An) = R(—An)V R(6n),]] (11.57)
where
R(6n) = exp [—ifn - J]. (11.58)
1. For an infinitesimal angle # and an arbitrary unit vector n, show that

V' =V +60nxV +0(6?). (11.59)

2. For an infinitestimal transformation (# — 0), show that

V' = V[[+]]if[n - J, V] + O0(6?). (11.60)
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11.4 Commutation Relations for J and K

3. Based on these results, show that
(1[[+]]ibn - HV(L1[[-]]ibn - T) =V +6n x V. (11.61)
We can read off the coefficient of 7 to find that
[J8, V] = ielikyk, (11.62)

4. Based on the fact that the angular momentum must be a vector operator, the following

commutation relation must hold.
(8, J7] = ielik gk, (11.63)
Problem 11.10 We generalize the previous result for the three-vector operator to the four-vector
operator V. We consider an infinitesimal rotation operator R(6n) with 6 — 0.
1. For an infinitesimal angle # and an arbitrary unit vector 7, show that

Vi=(VOV) = (VO V4+0axV)+00% =V +(0,0n x V) + 0. (11.64)

2. For an infinitestimal transformation (¢ — 0), show that
V0 =vY (11.65a)
V' = V[[+]ib[n - J, V] + O(6?). (11.65b)
3. Based on these results, show that
T4,V =0, (11.66a)
[J8, V7] = ieTkyk, (11.66b)
4. We define antisymmetric tensor operator M*? such that
MZ2=_M'=73 MB=-M®=J', M'=-M"D=J2 (11.67)

Based on the previous results, show that

(MY VO] =0, (11.68a)
(M2 VY = [J3, VY =iV? = iV, (11.68b)
(M2 V2] = [J3, VY = —ivi = ivig®, (11.68¢)
(M2 V3] = [J3, VP =0, (11.68d)
(M2 VE] = i(VigP —v2gtk), (11.68¢)
(MY VF = i(Vight — Vigky, (11.68f)
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11.4 Commutation Relations for J and K

Problem 11.11 We consider an arbitrary boost by ¢ = tanh™! 3 along an arbitray axis.

A¥, = exp [~igp- K]",

(11.69)

1. For any parameter ¢ = tanh™! 8 and an arbitrary boost along a unit vector 7, show that

(VO V) = [AT @)V, VIA($) = A(=¢)(V°, V)A().]

(11.70)

2. For an infinitestimal transformation ([[¢]] — 0), show that four-momentum transforms like

VO=V'4+ 8- V4+0(5) =V +¢n-V+0(4%,
V' =BV +V +0(8%) = ¢onV° + [[V]] + O(¢?).
3. Based on these results, show that

(L[[+)lign - K)VO(1[[-]lign - K) = VO + 60 -V,

(1[[+]]ign - K)V (1][<]lipn - K) = V 4+ ¢pnV°.
We can read off the coefficient of 7 to find that
(K, VO] =[]V,

(K V7] = ([0 VO = [[JiV°g7,

4. We define antisymmetric tensor operator M*? such that

MO = g0 gt 02 = _pgl20) — g2 008 = _ (800 — g3,

5. Based on these results, show that

[MiO’ VO] — [[_]][KZ7 VO] — Z-Vigoo — i(vz‘goo o Vogi0)7

(MO, VO) = (K V') = =iVigh = i(V0g = Vig™),
M0,V = [ V) = =iV g7 = (Vg — VoY),
MO,V = K V) = Vg9 = (Vg = Vig)

(11.71a)

(11.71b)

(11.72a)

(11.72b)

(11.73a)

(11.73b)

(11.74)
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11.4 Commutation Relations for J and K

Problem 11.12 We have shown that

(M3, VO] = j(Vigh® — Vi gi0), (11.76a)
(M, V] = §(Vigit — vigiky, (11.76Db)
(MO, V0] = (Vig? — v0gi0), (11.76¢)
[M% VO] = §(VOq0 — 1ig00), (11.76d)
[MZ'O’ Vj] _ i(Vigoj _ Vogij)7 (11.766)
(MO, Vi] = i(VOgi — Vighi). (11.76f)

Show that this result is equivalent to
(M, Vo] = i(Vig" — V). (11.77)

Problem 11.13 We investigate the commutation relations among the 6 generators of the Lorentz

transformation:
(P, Q)F, = P'.Q%, — Q" Py (11.78)
1. Show that
(T8 Tk, = TR (gRye (11.79a)
[K® KIP ) = —iddk(Jhym | (11.79b)
[J KM = iedk(KP)r . (11.79¢)
2. Based on the commutation relations
(T8 I = iR (TR (11.80a)
[, KR = ik (KRyH (11.80b)
show that both J and K are vector operators.
3. Based on the commutation relation
(K% K7 = —ie TR (TR (11.81)

confirm that a set of successsive boosts along & and g results in a rotation about the axis

along 2.
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11.4 Commutation Relations for J and K

11:=mat((0,0,0,0),(0,0,0,0),(0,0,0,-1),(0,0,1,0));
12:=mat((0,0,0,0), (0,0,0,i),(0,0,0,0),(0,-i,0,0));
13:=mat ((0,0,0,0),(0,0,-i,0),(0,i,0,0),(0,0,0,0));
k1:=mat((0,i,0,0),(i,0,0,0),(0,0,0,0),(0,0,0,0));
k2:=mat ((0,0,1,0),(0,0,0,0),(i,0,0,0),(0,0,0,0));
k3:=mat ((0,0,0,1i), (0,0,0,0),(0,0,0,0),(i,0,0,0));

11%12-12%11-(i*13);
12%13-13%12-(i*11);

13%11-11%13-(i*12);

k1xk2-k2*k1-(-i*13);
k2xk3-k3*k2-(-i*11) ;

k3*k1-k1xk3-(-i*12);

11%k2-k2%11-(i*k3) ;
12xk3-k3%12- (i*k1) ;
13xk1-k1%13-(i*k2) ;
matrix al,a2,a3,bl1,b2,b3;
al:=(11+ix%k1)/2;
a2:=(12+i*k2)/2;

a3:=(13+i*k3)/2;

bl:=(11-ixk1)/2;
b2:=(12-i%k2)/2;
b3:=(13-1*k3)/2;
alxbl-blx*al;
al*b2-b2*al;
al*b3-b3*al;
a2*bl-blx*a2;
a2*b2-b2*a2;
a2*b3-b3*a2;

a3*bl-bl*a3;
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11.4 Commutation Relations for J and K

a3*b2-b2*a3;

a3*b3-b3*a3;

al*xa2-a2*al-(i*a3);
a2*a3-a3*a2-(i*al);
a3*xal-al*a3-(i*a2);
b1*b2-b2xb1-(i*b3) ;
b2*b3-b3*b2-(i*bl);

b3*b1-b1*b3-(i*b2) ;

Problem 11.14

We define
(A, = (T + K,
P —
1. Show that
[A", B, =0,

[AL ATR = etk (ARY R |

(B, B, = i (B,

2. Show that SO(4) is equivalent to the direct product of two SU(2) groups:

SO(4)

v

= SU(2) ® SU(2).

(11.82a)

(11.82b)

(11.83a)
(11.83b)

(11.83c)

(11.84)
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11.5 Commutation Relations for MH*¥

11.5 Commutation Relations for M*”

Problem 11.15 We recall the 6 generators of the Lorentz transformation A¥, =
exp[—i0 - J —i¢ - K", with det(A*,) = +1:
000 0 0000 0000
1 000 0 9 0001 3 00—¢0
(), = , (I, = , (P, = . (11.85a)
000 —¢ 0000 07 00
00: 0 0—-200 0000
0¢00 0070 00074
1 1000 9 0000 3 0000
(K)F, = , (KO)F, = , (KO, = . (11.85b)
0000 1000 0000
0000 0000 1000

The argument of the exponential function in the transformation matrix can be expressed as

. ©
A, =exp[—i0-J —i¢ - K|, = exp {—%waﬁM‘lﬁ} , (11.86)
where the matrices (M®? )”V are defined by

(M), =0, (11.87a)
(M[[Oiﬂ)uy = _(M[[ioﬂ)uy — (Ki)“y, (11.87b)
(MPY = — (MY = k(R (11.87c¢)

1. Show that
(‘]1)“1/ = (MlQ)Ml/’ (JQ)MV = (MQg)MV’ (J3)NV - (Mgl)ul/' (1188)

2. Show that
(Kl)uy — (M[[Olﬂ)uw (KQ)“V — (MHOQH)“V, (K3)“V — (M[[Oi%ﬂ)uy_ (11.89)

3. Show that
(01,6%,0°) = (wa3,wa1,wi2) = — (w2, w13, wWa1 ). (11.90a)
(9", 9%, ) = [[(wo1,wo2, wo3) = — (w10, wa0, w30)-]] (11.90b)
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11.5 Commutation Relations for M*Y
4. Show that both (J*)* and (K*)** are antisymmetric:
(Y = =)™, (11.91)
(K = —(K")"™. (11.92)
5. Show that the commutation relations
(8, JIP, = ieldk (g (11.93)
is equivalent to
(M3 M= = [JH T, =0, (11.94a)
M2, MY, = [, = i), = i), (11.94b)
P MB, = (120, = =i, = —i(M),, (11.94c)
and similar relations that can be obtained by the replacements: (1,2,3) — (2,3,1) and
(1,2,3) — (3,1,2).
6. Show that the commutation relations
(K% KI# = —ie TR (JF)r (11.95)
is equivalent to
(MO pothe - — (kY KR =, (11.96a)
(M OM pl02 e = (KN K2 = (TP, = —i(M2), (11.96b)
(MU0 a0 = (K2 KYH = i(JP)H ) = i(MI2)R (11.96¢)
and similar relations that can be obtained by the replacements: (1,2,3) — (2,3,1) and
(1,2,3) — (3,1,2).
7. Show that the commutation relations

[T KM =i TP (KRe (11.97)

is equivalent to

(M2, MO — [t KR =0, (11.98a)
(M2, MO = (Y K2, = ik, = (O3 (11.98b)
(MO 2B = (K2 g = —i(K3)¢, = —i(M O3k | (11.98c)
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11.5 Commutation Relations for MH*¥

and similar relations that can be obtained by the replacements: (1,2,3) — (2,3,1) and

(1,2,3) = (3,1,2).

8. Show that the previous relations are equivalent to

(M, M%), = 0, (11.99a)
(M M3 = i(MP2) = —i(MP ) = i(MP g®3)r | (11.99b)
(M, MP), = —i(MP), = i(M2gP),, (11.99¢)
g0 o — g (11.99d)
[M[[OH]’MHO?H]MV = —i(M2)" = —i(M2g%)" (11.99¢)
(MU0 a0 - — (M2 = (MY = —i(M? g0 (11.99f)
(M2, M0 — g (11.99¢g)
(23, MO — (03— (3022 ym | (11.99h)
(M2 Ap2)e = (03— (B0 — —i(A03 g2k (11.99i)

9. Show that all of the above relations are completely obtained from

[M“”,M“B]pg — Z‘[(Muﬁgm _ leﬁgua> _ (Muagl/ﬁ _ Mvaguﬁﬂp

loa

_ z’[(Muﬁgm +guﬁMW> - (M“O‘g”ﬁ +g“O‘M”B>r . (11.100a)
g

Problem 11.16 We recall that

000 0 0000 0000
" 000 0 - 000 - 00—i0
(I, = (IO, = . (TP, = , (11.101a)
000 —i 0000 0i 00
004 0 0-i00 0000
0i00 00i0 000 i
. i000 , 0000 , 0000
(KO, = , (KO, = , (KM, = . (11.101b)
0000 i000 0000
0000 0000 i000
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11.5 Commutation Relations for MH*¥

1. Show that

0000
(g _ |00 00
000 i
00—i0
0-i00
i 000
0000
0000

(MOI)/,U/ —

By definition, (M®%)* is antisymmetric under exchange of a < §.

)

(M31);ux _

(MOQ)/,U/ —

000 O
000 —¢
000 O
0700
00—20
0000
1000
0000

(M*P)™ is antisymmetric under exchange of p < v.

2. Show that

(MO = j(gOrglv — glugOv
(MO2) = (P12 — g2ngOv
(MO3Y = (01 gd — gongOv
(M2 = j(gtrg? — g2nglv
(M2Y = (g g% — gong?
(M3 = j(gPrglv — glugd

)

(MlQ)MV _

(MOB),LW _

0000
000

(1
0—-00
0000
000 —¢
000 O

(1
000 O
1000

In summary, the explicit values of the matrix elements (M )#,, is given by

3. By making use of the relation

show that

[MHY Maﬁ]pv

(MM Mﬂéﬁ]pa

.

~.

, = i(g™g

= i(g™" g™ — gPrg™),

ﬁu - gﬁugay

M gro Muﬁgua> _ < NpregvB _ e g
MEBgrer | g Mua) _ < NpegVB 4 ghe 8
Muﬂgl/a MVﬁgMOé> _ <leégVB Mvaguﬂ
Muﬁgva 4 guﬁMVa> _ <Muagl/5 + gualeﬁ

.102a)

.102D)

We have shown that

(11.104a)

(11.104b)

(11.105)

(11.106a)

(11.106b)




11.6  Orbital Angular Momentum L#*¥

4. The commutation relations for the generators M of the Lorentz transformation constructs

a Lie algebra:
(M MOPJpe = frvab \ (MH)P (11.107)
Show that the structure constant is given by

fuuaﬂ/@)\ _ <guagw@gﬁ>\ o guagw@gﬁ)\) o (guﬁgungoz)\ _ guﬁgw@ga)\> ) (11108)

11.6 Orbital Angular Momentum L*¥

Problem 11.17 We generalize quantum mechanical orbital angular momentum operator L =

x X p in the 3 + 1 Minkowski space:
LY = agtp” — 2"p! = i(a"0” — zV0M). (11.109)

Note that L*? is not a matrix for a given o and 3, while (M*# )#, is a matrix. We define

LY? = 17t =13, (11.110a)
LB = 32 = i (11.110Db)
3 = 1B = 2l (11.110c)
Lol — _poll — g1 (11.110d)
L2l — _ R0 — g2 (11.110e)
L3l — _pl3o] — g3 (11.110f)
1. Show that
(L}, L7] = ie* ¥, (11.111a)
(L}, K9] = ieF KF, (11.111b)
[K' K] = —ie"F K", (11.111c)
2. We define
(A = %(Lz‘ LR (11.112a)

(BY" = %(L@' —iKH" . (11.112b)
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11.7 Pauli-Lubanski operator W#

Show that
[Ai’Bj]MV = 0’
[Ai,Aj]MV _ ieijk(Ak)Mw
(B, BI)", = i (BY)",.
3. Show that
[z#,2"] = 0,
[p!,p"] =0,
[z, p"] = —ig"”

4. By making use of the identity
[A, BC] = [A, B]C + B[A, (],
show that

(L7, p%] = illp"Nlg"™ = [lp"1]g"),

(L2, 2%) = i(atg"™ — 2"

(11.113a)
(11.113b)

(11.113¢)

(11.114a)
(11.114b)

(11.114c)

(11.115)

(11.116a)

(11.116b)

5. Show that L satisfies the commutation relation that is identical to that of MH#:

[LW,Laﬁ] _ i[(L“ﬁg”a _ Lvﬁgua) _ (LuagVB _ Lvaguﬁ)}

11.7 Pauli-Lubanski operator W#

Problem 11.18 The Pauli-Lubanski operator W* is defined by

i[(L“ﬁgm + g“ﬁL”O‘) — (L“O‘g”ﬁ + g“O‘L”B)} . (11.117a)

WH = %euyaﬁpyﬂ4@5, (11.118)

where €, is a completely antisymmetric tensor and conventionally €p123 = —€9123 = 1 and
MW = LF + SH, (11.119a)
LW = ghp” — pta¥ = (a0 — ¥ oM). (11.119b)

Here, M* is the generator for the total angular momentum, L* is for the orbital angular mo-

mentum, and S*¥ is for the spin angular momentum.

116



11.7 Pauli-Lubanski operator W#
1. Show that the contribution of L*" vanishes completely:
WH = %e””aﬁpysaﬁ. (11.120)
2. Show that W,p* = 0.
3. Show that
[, W"] = 0. (11.121)
Therefore, W# must be invariant under translation.
4. Show that
Ik = ek, (11.122a)
0k — ik, (11.122b)
0k — ik (11.122c)
IR0 — ik, (11.122d)
Note that our convention is €giaz = —€0123 = €123 = €93 = 1.
5. Show that
IRkt — 95t (11.123)
6. Show that
WO = (=) (—pi) (+57)
_ %eijkpiejkésﬁ
=p-8S, (11.124)
where the angular-momentum operator J is defined in Eq. (11.101a). This operator is
proportional to the helicity operator:
A:ﬁ-szp'—s. (11.125)
p|
7. Show that
Wi = %ei“aﬁpuSag
= % (EinkPOSjk +€9%p. Sor, + Gijkopjsko)
= ST 4 (e ) (- 5%) + ) -5
— (ES[[-]]p x K)", (11.126)
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11.7 Pauli-Lubanski operator W#
where the operators J = S and K are defined in Egs. (11.101a) and (11.101b), respectively.
Therefore, we have shown that
Wk =(p-S,ES[[-]]p x K). (11.127)
We observe that W9 is a scalar and W is a three-vector under rotation.
8. Because p is a three-vector,
[, p7) = ierp/. (11.128)
Confirm this relation by an explicit computation.
9. Because W% = p - S is a scalar under rotation,
(S, W = 0. (11.129)
Confirm this relation by an explicit computation:
(ST, WO = [S%,p/§7] = ie"F (pF ST + p/ SF) = 0. (11.130)
10. According to our previous calculation, W = ES[[—]]p x K. Provide an argument that the
following commutation must be valid:
(ST, W] = TPk, (11.131)
Confirm this commutation relation that states that W is a three-vector by an explicit cal-
culation.
11. Provide an argument that the following commutation must be valid:
[K', W) = [[-]liW", (11.132a)
(KW = [[<])iw 6% = [[|lig" W. (11.132b)
Confirm this commutation relation by an explicit calculation.
12. Show that
(S W] = i(WHg"™ — WY ghe). (11.133)
13. Show that
(S WaWe] = 0. (11.134)
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11.7 Pauli-Lubanski operator W#

Problem 11.19 We would like to find the commutation relations for [W# W¥]|. Note that we

have derived

[P WY =0, 11.135

(LI, WY = 0, 11.136

(LY, W] = iedkw*,

e e e e
—_
—_
—_
w
N
—_— Y ~—  — —

(KT, WO = iW?, 11.138
[K', W] = iW06%. 11.139
1. Show that
[WH WH = 0, (11.140)
where there is no sum over pu.
2. Show that
[AB,C] = A[B,C] + |A,C]B, (11.141)
[A, BC] = [A, B]C + B[A,C] (11.142)
3. Show that
WO W'] = [ L7, W]
=P/ [, W]+ [, WL
= id*pIWF = —i(p x W)! = i(W x p)’
= §"kp W, = i p, W, (11.143)
(Wi WO = ie0p, Wp. (11.144)
4. Show that

(Wi, W] = [EL" + ¢ p K™ W]
= E[L, W] 4 ¢“mp! [K™, W]
_ Z-Ez‘jkpowk +i€i€jp£W0
= i(—"TF)po (— W) + 3" (—p) Wy
= i 1% pa Wi + i 70, W,

= 1%, Wp. (11.145a)
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In summary, we have shown that

[WH WY = it Pp, W,

12. Poincaré transformation

(11.146)

Problem 12.1 Lorentz transformation has 6 generators: 3 for rotations and 3 for boosts:

2 = Aty

(12.1)

The transformation can further be generalized to include 4 generators that generates translational

operation:
't = AF a2 + av.
This is called the Poincaré transformation and is represented by P(A,a). Show that
P(A2,b)P(A1,a) = P(A,c),
where
A =Ny, =N a” +bM
Therefore, the set of Poincaré transformations forms a group.
Problem 12.2 The translational operation:
¥ =zt + at
can be obtained by multiplying an operator
U(a) = exp [—iasp®] = exp [aa0°] .
where p® is the relativistic quantum mechanical version of the momentum operator
0

p* =i0% =i—

0%y

1. Show also that the generators p* satisfy the following commutation relations:

[p",p"] = 0.

(12.2)

(12.3)

(12.4)

(12.5)

(12.6)

(12.7)

(12.8)
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2. Show that for an arbitrary scalar function ¢(x) transforms under the translation like
¢(z) = Ula)p(z) = ¢(z — a). (12.9)
Problem 12.3 The Pauli-Lubanski operator W is defined by
1 vaf
W = 2" *p, Map. (12.10)
where M,z is the generators for the Lorentz transformation and

1. Show that W* is orthogonal to p*:

W,pt = 0. (12.11)

2. Prove the following commutation relations:

[P, W"] =0, (12.12a)
(MM W] = i(WHg'® — WP ghe), (12.12b)
[WH W] = i *Pp, W, (12.12¢)
3. Show that
[P, WoW,] = [P, W Wq + W pH W,] =0, (12.13a)

[M* WOW,] = [MF WO W + Wo MM, W]
= ((WHg"* — WY gl )W, + iWo (WG — WY gh?),

= i(WHFWY — WYWH) 4 i(WYWH — WHWY) = 0. (12.13b)

Therefore, W? = WW,, is invariant under Poincaré transformation.

4. Show that
T e por = — 4l = —24. (12.14)
5. Show that
ey gy = —3lgH . (12.15)
6. Show that
M erpgr = —2! 9 9| _ —2(9"59"7 — 9"+9"5)- (12.16)
95 9"+
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7. Show that

' 95 9"

EAHVQEAKJT = — g”ﬁ gl’a g”T . (1217)
9% 9% 9%~
8. Show that
M, M™ = Mo M + MioM™ + M;; M"Y
= 2(J? - K?). (12.18)
9. Show that

PPl = p (piﬂ) J

= pf<ﬂpi —l—ieijkpk> Jt
=(p-J)P?+ip-pxJ

— (p-J)>. (12.19)

10. Show that in the rest frame, where p = (mec, 0), we have

PP Mua M*P| = p'p;Moi MY + pPpo Mo M™ + p po M;; M™ + pPp; Mio M + p py M M*
0,.0 3 7i0 7,70
=-pp M"M
= —(mc)*K>. (12.20)
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11. Show that
W2 = WW,
gO"T gaoz gaﬂ

1 .
= _Zpon/pTMaﬁ ghT ghe g“ﬁ — [M,umpﬂ'] = Z(p,u.gm— - pl/gm—)

gl/T gl/a guﬁ
gO'T gaa gaﬁ
1 .
= = 1Po PrMyuw +i(Pugur = Pugur)]l Mag | g7 g'* g
gV’T gua guﬁ
) gO'T goa goﬁ
= _Zpapr ghT gh® g“ﬁ MuuMaﬁ
gVT gua guﬁ
p* p* p°
1

= —=PoDr |p* gM® g“ﬁ MuuMaﬁ

pz/ gz/a gz/B

N R N

(2p° My MM — 2p°pg Mo MPP + 2p™pg M0 MPH)
— 1 2 uv o 6]
= 5P My M + pps Mo M.
p-p*( - al.muxbe.nu + al.nu¥be.mu)
+ al.mu*be.p*nu.p
- al.nuxbe.p*mu.p
- al.p*be.mu*nu.p
+ al.p*be.nu*mu.p;
vector p,s,u,v,ta,al,be;
mm:=mat((s.ta,s.al,s.be),
(u.ta,u.al,u.be),
(v.ta,v.al,v.be));
dd:=det (mm) ;
index s,ta;operator m;
xxl:=p.s*p.ta*m(u,v)*m(al,be)*dd;
index u,v;

xx2:=p.s*ix(p.uxv.ta-p.v*u.ta)*dd;’ zero

[pQ(g’“‘g”ﬁ — g"P ") — g'pp’ — g Pptp® + gMPp p® + g ptp” ] M,y Mg

(12.21)
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12. Show that in the rest frame, we have
W2 = —(mc)*J> (12.22a)
Note that W? is invariant.
13. Show that the following operators are Casimir operators:

[P(A,a), P?] = 0, (12.23)

[P(A,a), W?] = 0, (12.24)
where P2 = PFP, and W2 = WHEW,.

vector al,be,mu,nu;
index al,be,mu,nu;
n4:=eps(al,be,mu,nu)*eps(al,be,mu,nu);
x4 :.:=-24;
n3:=eps(al,be,mu,u)*eps(al,be,mu,v);
x3:=-6%u.v;
n2:=eps(al,be,u,v)*eps(al,be,x,y);
m2:=mat ((u.x,u.y),

(v.x,v.y));
x2:=-2det (m2) ;

y2:=-2%(0.X*V.y-U.y*V.X) ;

nl:=eps(al,u,v,w)*eps(al,x,y,z);

ml:=mat((u.x,u.y,u.z),
(v.x,v.y,v.z),
(w.x,w.y,w.2));

x1:=-det(ml);

n2-x2;

n2-y2;

nl-x1;

remind mu,nu,al,be;

mml:=mat(( p.p, p.al, p.be),
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(mu.p,mu.al,mu.be),
(nu.p,nu.al,nu.be));
zz1l:=-det (mml) ;
zz1f:= p.p*( - al.muxbe.nu + al.nu*be.mu)
+ al.mu*be.p*nu.p
- al.nuxbe.p*mu.p
- al.p*be.mu*nu.p

+ al.p*be.nu*mu.p;
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V. Four-Vector

13. Lorentz Covariance

13.1 Metric tensor

Exercise 13.1 In the 3-dimensional Euclidean space, the distance d(x,y) between two points

x = (2!, 22, 2%) and y = (y',y?, y>) is defined by

dx,y) = (z-y)?=(z-y) (x-y), (13.1)
where the scalar product of the three-vectors x and y is
x -y =y’ (13.2)
This can be expressed in terms of the metric tensor 4% in the 3-dimensional Euclidean space:
x -y =6yl (13.3)
Show that the matrix representation of the metric tensor of the 3-dimensional Euclidean space is

100
=¥ =1010]. (13.4)
001

Problem 13.2 Show that the metric tensor 6”7 of the 3-dimensional Eucliean space is invariant

under rotation:
6% = R(0)R*()5%, (13.5)
where
R(0) = R(0n) = exp [ — ifn - J | (13.6)

is the rotation matrix about an axis n by an angle 6. For example,

1 cos 0
R(62) | 0| = | sind |, (13.7)
0 0
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13.1 Metric tensor

in three dimensions. Therefore, the metric tensor is the same in any frame of references that are
related by rotation.
Problem 13.3 Show that the scalar product is invariant under rotation:

-y =z vy, (13.8)
where the primed vector is obtained by rotation:

z" = RY(0)a’. (13.9)
Exercise 13.4 The (3 + 1)-dimensional Minkowski space consists of a single time component

0 _
x° = ct, (13.10)

where c is the speed of light and ¢ is the time, and 3 spatial components defined in the 3-dimensional

Euclidean space. An element x of that space is called a four-vector:
= (202!, 2% 23) = (a0, x). (13.11)

We use a Greek letter to represent an index for the four-vector. For example, the puth component is

a#, where =0, 1, 2, 3 while i = 1, 2, 3 for a three-vector. In the (3 + 1)-dimensional Minkowski

0

space, the distance d(x, %) between two points z = (2°, ) and y = (y°, y) is defined by

d(z,y) =V (@ —y? = (e —y)- (z—y) = V(@ —y°)? - (x — y)?, (13.12)

where the scalar product of two four-vectors x and y is
z-y=a"y’ —x y=2%"— 'y’ (13.13)

We introduce two ways to express components of a four-vector. One way is the contravariant

form z# and the other way is the covariant form z,,:

o = (20, 4x), (13.14a)

z, = (2", —x). (13.14b)
Note that

29 = o = ct, (13.15a)

r) = —a' = —ux, (13.15b)

Ty = —a? = —y, (13.15¢)

T3 = —x° = —2, (13.15d)

in 3 + 1 dimensions.
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13.1 Metric tensor

1. Show that the scalar product of two four-vectors x and y can be expressed as
x-y =yt = aty,. (13.16)
2. Show that

z-y # 'y zuyp. (13.17)

Therefore, in any pair of repeated four-vector indices, one must be covariant and the other

must be contravariant.

3. Show that the scalar product = - y can be expressed as

z-y=2"y"gu = xuy09", (13.18)
where
+1, p=v=70,
¢ =gw=9-1, p=v= 1,2 3, (13.19)
0, p#v.

4. The tensor g"” is called the metric tensor of the Minkowski space. Show that its matrix

representation is

1%
1 0 0 O 1 0 0 O
5 0-1 0 O 0-1 0 O
gt = S . (13.20)
0 0-1 O 0O 0-1 O
0 0 0-1 0O 0 0-1
1%

5. Show that the matrix representations of g, and g,” are given by

nw
1 000
. 01 0 0
9", = 9" gav , (13.21a)
0 0 1 0
00 0 1
14
14
1 000
, W |01 00
9 = Guad = (13.21b)
0 0 1 0
00 0 1
1%

Note that we must not use the form g;; which is ambiguous.
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14.1 Definition

14. Lorentz transformation

14.1 Definition

Problem 14.1 Lorentz transformation represents the rules of the coordinate transformations
of a physical quantity f in an inertial reference frame S to the corresponding quantity f’ in another
inertial reference frame S’. If there is a physical quantity s defined in S that is invariant under
Lorentz transformation, s = s’, then we call s a Lorentz scalar. Under Lorentz transformation,

i

a four-displacement z¥ defined in S transforms into 2'" as

't = At 2", (14.1)

where the summation over the repeated index v is assumed for p = 0, 1, 2, and 3. We restrict
ourselves for the 3 + 1 Minkowski space. Any physical quantity f# that transforms like Eq. (14.1)
is a four-vector.

Because we have required that the scalar product of two four-vectors is invariant in any inertial

reference frame, the scalar product must be a Lorentz scalar:
oy =x-y. (14.2)

An implicit way defining Lorentz transformation is to require the transformation matrix A in
Eq. (14.1) to respect the invariance of the scalar product.

Show that the metric tensor g*” is invariant under Lorentz transformation:
g = A“aA”ﬂgaﬁ. (14.3)
Problem 14.2 Let us consider the Lorentz transformation of four-displacement z":
't = At 2" (14.4)

We assume that the transformation matrix A is independent of the position. By taking appropriate
partial derivatives of Eq. (14.4), verify the following identities. Note that the identity (14.3) is

particularly useful for that verification.

1. The derivative operator 8_2,, transforms like a contravariant four-vector z":
0 0
— = At — 14.5
(9:611 Yox, ( )

129



14.2 Four-displacement and proper time

2. The derivative operator 8?,, transforms like a covariant four-vector z,:
0 0
— =AY 14.6
ox'v H v ( )
Therefore, we are justified to write
0 0
ot=— 0,=—. 14.7
Oz, B g ( )
3. Show that
10 10
oM=(-—,-V oy=|-=,+V|. 14.8
(c@t’ >’ a <08t7+ > (148)
14.2 Four-displacement and proper time
Problem 14.3 We recall that the four-displacement z = (ct,«) transforms covariantly under
Lorentz transforamtion
't = At 2, (14.9)
where A¥,, is the Lorentz transformation matrix and its square is Lorentz invariant:
1? = g2t = gt = 2P (14.10)
We define the proper time
2
r=2" (14.11)

C

which is a Lorentz scalar.

1. Show that in the rest frame S of a particle, the four-displacement of that particle is expressed

as
x = (c1,0). (14.12)
2. Suppose that there is a frame S’ in which that particle is moving with the constant velocity

v. We denote 2/ by the displacement of that particle in the frame S’. Show that the

four-diplacement 2’ of the particle at time ¢ must be
' = (ct,x), (14.13)
where

x = vt. (14.14)




14.3  Four-velocity

3. Show that the invariance constraint 2 = 22

requires
t =T, (14.15)
where
1 v
— ’ = . 14.16
14.3 Four-velocity
Problem 14.4 We recall that the four-displacement z = (ct,«) transforms covariantly under
Lorentz transforamtion
o't = A2 (14.17)

We can take the derivative with respect to a Lorentz scalar to keep the transformation rule the
same as that of the four-displacement. If we take the derivative with respect to the proper time

7 = Vx2/c, then we find that

u't = AP, (14.18)
where u is the four-velocity,
dx
= —. 14.19
u=— (14.19)

1. Show that in the rest frame S of a particle, the four-velocity of that particle is expressed as

u=(c,0). (14.20)

2. Show that in any inertial reference frame the square of the four-velocity is invariant:
u? =2 (14.21)
3. Suppose that there is a frame S’ in which that particle is moving with the constant velocity

v. We denote 2/ by the displacement of that particle in the frame S’. Show that the

four-velocity u’ of the particle is

u = (ye,yv). (14.22)

4. By squaring v’ explicitly, show that

u'? = c? =t (14.23)




14.4 Four-momentum

14.4 Four-momentum

Problem 14.5 We recall that the four-velocity u = (e, yv) transforms covariantly under Lorentz

transforamtion

ut = A u” (14.24)
and

u? = = (14.25)

We multiply the rest mass m, the mass of a particle measured when it is at rest, to the four-velocity

to define the four-momentum:
P = mau. (14.26)

1. Show that in the rest frame S of a particle, the four-momentum of that particle is expressed

as

p = (mc,0). (14.27)

2. Show that in any inertial reference frame the square of the four-momentum is invariant:

p? =m2c (14.28)

3. Suppose that there is a frame S’ in which that particle is moving with the constant velocity
v. We denote 2/ by the displacement of that particle in the frame S’. Show that the

four-momentum p’ of the particle is

/

P’ = (myc, myv). (14.29)

4. By squaring p’ explicitly, show that

p? =m?? =p°. (14.30)

Problem 14.6 Let us interpret the expression for the four-momentum:

p = (mye, myv). (14.31)
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14.4 Four-momentum
1. Show that the three-momentum p is of the form
dx dx
= R pu— R p— . 14-32
p=m_—=my_ =myw (14.32)
Therefore, the three-momentum is the product of m~ and velocity v. Here, the mass of a
moving particle is m-~y that is greater than the rest mass m:
m
my= ——. 14.33
2. We can compute the force F on a particle of rest mass m. Show that
d d
_wp_ 4 mv (14.34)
dt dt 1— (U/C)2
3. We can compute the kinetic energy T by evaluating the work done on the massive particle
from the instant at rest to the instant when the velocity reaches v
:/F-dm:/v-dp. (14.35)
Show that
- i/\h ~(v/o)dp? (14.36)
2m ’ ’
4. Show that

22

T: / mc
\/7
- /d 1+m2

2
= /(mc?)? — mc? (14.37)

5. Show that the time-component p° of the four-momentum is

2
T
P’ = myc=/(mec)? + p? = me L (14.38)
c

Therefore, it is natural to interpret this result as
p = —, (14.39)

where F is the energy of a particle:

E=myc® =mc* +T. (14.40)
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15.1 Maxwell’s equations

In addition, a particle of rest mass m has the intrinsic energy mc? when it is at rest. We
call mc? the rest energy of that particle. We conclude that the four-momentum of a free

particle of rest mass m is

E
p= <—,p> . E=myc. (14.41)
&

15. Four-vectors in Electrodynamics

15.1 Maxwell’s equations

Problem 15.1 Let us derive Maxwell’s equations of differential form from the integral form. We

first consider the expressions in the MKSA unit system.
1. Gauss law for the electrostatic field F in free space is given by

1

E - do = Q = —/ pdV, (15.1)
)% €0 € Jv

where €q is the electric permittivity of free space, do is the differential surface element on

the closed surface OV which is the boundary of a connected volume V. @ is the net charge

contained in the volume V and p is the charge density at a point inside the region V.

(a) By making use of the divergence theorem, show that the differential form of this equa-

tion is
V-E=—. (15.2)

(b) Show that the electric field at a point r due to a point charge ¢ at the origin is given

by
q T
E=——" —, 15.3
dmeg r? (15.3)
where # = r/r and r = |r|.
2. Gauss law for the magnetic field B in free space is given by
B -do =0, (15.4)

ov
where do is the differential surface element on the closed surface V' which is the boundary

of a connected volume V.
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15.1 Maxwell’s equations

(a) Explain why this equation implies that there is no magnetic monopole.

(b) By making use of the divergence theorem, show that the differential form of this equa-

tion is
V. B=0. (15.5)
(c) Show that there must exist a vector field A that satisfies
B=V x A. (15.6)

We denote A by the vector potential.
(d) Show that the vector potential A that gives the magnetic field B is not unique. You
can check this by computing V x A’, where
A =A—-Vy. (15.7)
Here, x is an arbitrary scalar field.

3. Faraday’s law of induced electric field in free space is given by
d
E-dt=—-—— | B-do, (15.8)
as dt Js
where df is the differential displacement on a closed curve 95 which is the boundary of a

connected surface S and do is the differential surface element on S.

(a) By making use of the Stokes’ theorem, show that the differential form of this equation
is

0B

VXxFE=——. 15.9
x pr (15.9)
(b) We can choose a vector potential A that satisfies

B=V x A. (15.10)

Show that there must exist electrostatic potential ¢ which is a scalar field such that

E=-Vp-—. (15.11)

(c) Show that the transformation of the vector potential

A = A—Vy, (15.12)

135



15.1 Maxwell’s equations

requires the simultaneous transformation of the scalar potential ¢ as

B
¢ =¢+ a—f- (15.13)

Therefore, we have a freedom to choose the scalar and vector potentials ¢ and A that
yield given electromagnetic fields E and B, that are physical and uniquely defined.
This is called the gauge degree of freedom and under the electromagnetic gauge

transformation,
0
(6, A) = (¢, A') = (¢ v a_;(’ A- VX), (15.14)

the electromagnetic fields E and B are invariant.

4. Maxwell-Ampere’s law of induced magnetic field in free space is given by

d
B-dE:,uo/J-da—i—,uo—/eoE-da, (15.15)
s s dt Jgs

where df is the differential displacement on a closed curve 39S which is the boundary of a

connected surface S and do is the differential surface element on S. Here, pg is the magnetic

permeability, J = pv is the electric current density and ¢ E is the electric displacement

vector of free space whose time derivative is called the displacement current density.

(a)

(b)

(d)

Explain the mechanism of inducing magnetic field when there is no physical flow of

electric charge in space by making use of the displacement current.
By making use of the Stokes’ theorem, show that the differential form of this equation

is

OF
V x B = uo(J + eOE) (15.16)

Show that the magnetic field induced by the electric current I flowing around a closed

circuit C' is

B- /jl_ofj{ df;; T (15.17)
T Jc

which is called Biot-Savart’s law. Here, d£ is the differential line element of C', r is

the displacement vector from the line element to the field point, and 7 = r/r.

Show that the Lorentz force on a charged particle in an electromagnetic field is

F =q(E +v x B). (15.18)
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15.2  Propagation of electromagnetic field

15.2 Propagation of electromagnetic field

Problem 15.2 Let us consider the propagation of the electromagnetic field in free space. Thus

we set p = 0 and J = 0. Then the Maxwell’s equations reduce into the form:

V-E =0,
0B
E=———
V x 5
V-B=0,
oF
B = .
V x Hoco—7,
1. Show that
0 0’E
0 9°B
V x (V X B) = MOEOEV x B = —Mo&oﬁ,

which lead to
H? 9
— — EF=0
(Moeo BT v ) ,
0?2 9
(‘UJOEOW_V )B—O

(15.21a)

(15.21b)

2. It has been experimentally confirmed that the electromagnetic fields propagate in free space

with the speed ¢ = 299792458 m/s, which is exact. Show that

1
€§ — —&.
Ho€o 2

3. Show that the following set of plane waves are solutions to the wave equations:

_ ~  —jwttik-x
= Ee ,
_ kxé p—iwttika
== ,
where
2
v o_ k2
2 - Y
c
and
eE-k=0

(15.22)

(15.23a)

(15.23b)

(15.24)

(15.25)

Therefore, the electromagnetic fields are perpendicular to the propagation so that there are

two degrees of freedom in choosing €: The polarization vector € is on the two-dimensional

plane that is perpendicular to k.
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15.3 Heaviside-Lorentz unit system

15.3 Heaviside-Lorentz unit system

Problem 15.3 In particle physics, it is conventional to use the Heaviside-Lorentz unit which is
most natural. In this unit system, Lorentz force, Coulomb’s law, and Biot-Savart law are written

in the form

FEu&E+ExB) (15.26a)

C
q 7

p_ 47 15.26b
A r2’ ( )
I dé x r

= 15.26

4dme r2 ’ ( 2

1. Show that the F and B are of the same physical dimension in the Heaviside-Lorentz unit

system.
2. Show in the Heaviside-Lorentz unit system that

charge = current x ¢ X time. (15.27)

3. Show in the Heaviside-Lorentz unit system that the Maxwell’s equations in free space are

expressed as

V.-E =p, (15.28a)
V.B =0, (15.28b)
10B
E=- -2 15.2
V x v (15.28¢)
1 OE
V><B::E<J4—EE). (15.28d)

4. Show in the Heaviside-Lorentz unit system that

10A
E==Vo= "%

B =V x A. (15.29b)

(15.29a)

5. Show in the Heaviside-Lorentz unit system that the electromagnetic fields are invariant under

gauge transformation:

10x

s 15.
¢ = ot oo (15.30a)
A — A-Vy, (15.30b)

where y is an arbitrary scalar field. From now on, we employ the Heaviside-Lorentz unit

system instead of MKSA unit system.
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15.4 Field-strength tensor

Problem 15.4 Let us reconsider the propagation of the electromagnetic field in free space in the

Heaviside-Lorentz unit system. Then the Maxwell’s equations reduce into the form:

V-E =0,
1
VXE:——a—B,
c Ot
V- -B =0,
1
VxB:—a—E.
c Ot
1. Show that
10
E) = —-— B =
V x (V x E) Cath
10
VxB)=-—VxE=
V x (V x B) “5 V%
which lead to
1 02 5
(Zp - v*)E=0.
1 0% 9
(zap - v)B=0

2. Show that the following set of plane waves are solutions to the wave equations:

E = €e
Lo o —iwttik
B =k x e Witk
where
2
w__k2
2_ Y
c
and
e-k=0

15.4 Field-strength tensor

Problem 15.5 We define the electromagnetic field strength tensor F" as

L

where A* is the electromagnetic four-vector potential:

A= (¢, A).

~ _—iwttik-x

(15.33a)

(15.33b)

(15.34a)

(15.34b)

(15.35)

(15.36)

(15.37)

(15.38)
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15.5 Covariant form of Maxwell’s equations
1. Show that A = (¢/c, A) in the MKSA unit system.
2. Show that F*¥ is antisymmetric so that
FO = pll — p22 — 33, (15.39)
3. Show that the antisymmetricity of F*¥ requires that there are only 6 independent elements.
FOl _ _FIO F02 _ _F20 F03 _ _F30
F12 — _F21 F23 — _F32 F31 — —F13. (1540)
4. By making use of the fact that
10A
E - _ _ -z 15.41
V¢ c at Y ( 5 a)
B =VxA, (15.41b)
show that
FY% = _F' =12, 3. (15.42a)
F2=_p3 F® = B F3 = B2 (15.42b)
Therefore,
wy

0 —-FE!—-E? _F3
+E!' 0 —-B3 +B?

P = ) (15.43)
+FE24+B3 0 -—B!

+E% —B? +B' 0

We have not proved that A is a four-vector. This can be confirmed in the next problem.

15.5 Covariant form of Maxwell’s equations

Problem 15.6 We would like to show that the equation for the Lorentz force reduces into the

form,

Here,

= - %F“”u,,. (15.44)

7 is the proper time, u is the four-velocity, and F*¥ is the electromagnetic field strength

tensor.
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15.5 Covariant form of Maxwell’s equations

1. Derive the relation (15.44).

2. By making use of the fact that both p and u are four-vectors, verify that F*” = g+ A¥ — ¥ A*

must be a Lorentz covariant tensor.
3. Show that A must be a four-vector.
Problem 15.7 Show that F* transforms like
FoB = A% AP, P (15.45)
under Lorentz transformation.

Problem 15.8 In classical electrodynamics, dynamincs of the electromagnetic field is described

in terms of the Lagrangian density
1 1
L=——F"EF, —-J-A, (15.46)
4 c
where F* is the electromagnetic field strength tensor:
FH =gt AY — 9% AH. (15.47)
Here, A is the electromagnetic four-vector potential:
A= (6, A), (15.48)
and J is the electromagnetic four-current:
J = (cp,J). (15.49)

In the Heaviside-Lorentz unit system, Maxwell’s equations are written in the form:

V.E =), (15.50a)
V.B =0, (15.50b)
10B
E = - — 1 .
V x -, (15.50¢)
1/ OFE
V x B = E(J + E)' (15.50d)

1. Show that the Euler-Lagrange equation for the field A” that minimizes the action

S = /d4m£ (15.51)
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15.5 Covariant form of Maxwell’s equations

is

oL oL
1 _ — 15.52
9 {a(amv)} gar = (15.52)
which leads to
O F" = ~ (15.53)

2. Show that 9,F" = J"/c is equivalent to two of the Maxwell equations:

V.E=p, (15.54a)
1 OF

3. Let us define the dual field strength tensor

1
FH = —§eﬂ“a5Fa5. (15.55)

Show that
O F™ =0 (15.56)

is an identity that follows directly from the definition (15.55). Show also that this equation

is equivalent to the two remaining Maxwell’s equations:

V-B =0, (15.57a)

VXxE=--22, (15.57b)

Problem 15.9 We recall that the electromagnetic fields are invariant under the gauge transfor-

mation
10x
A 15.58
A— A—-Vy. (15.58b)

We also have found that non-vanishing elements of the field strength tensor F*” are electromagnetic

fields.
1. Show that the gauge transformation (15.58) is equivalent to the following covariant form:

AP 5 AT = AF 4 9Py (15.59)

2. Show that the field strength tensor F* is invariant under gauge transformation:

FIM = QM(AY 4+ 0"x) — O (AF 4 9X) = F™. (15.60)
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16.2 Invariant Mass

16. Four-momentum and mass

16.1 Momentum and Mass

Exercise 16.1 Suppose p = (p°, p', p?,p3) = (E/c,p) is a four-vector. Show that p? is a Lorentz

scalar and its value is given by

2 E2 2 2.2
pr=pppt =5 - P =mic (16.1)

where m is the rest mass. For convenience, we set the speed of light to be unity: ¢ = 1.

16.2 Invariant Mass

2

Problem 16.2 Let us consider the collision of two particles with momenta p; and p, with p? =m;.

The invariant mass of the two particles is defined by

mig = v/ (Pl +p2)2. (162)

We define p = p1 + po.

1. Show in the rest frame of p that

p=(Vi20). (16.3)
2. Show in any inertial reference frame that
1 1
p1-p2 = 5(102 —pi—p5) = 5(7”%2 —mi —m3). (16.4)

3. Show that the energy E; of particle 7 in the rest frame of p is given by

B =R (16.5)
a4
4. (a) Show that
1
p-p1=pe-pr+mi= §(m%2 +m? — m%), (16.6a)
1
p-p2 =Dp1-p2+ m% = §(m%2 — m% + m%). (16.6b)
Therefore,
2 2 2
misg +mij —m
g o= M2 1 2 16.7
! 2m12 ’ ( a)
2 .2 2
gy = M2 —mitmy (16.7b)

2m12
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16.2 Invariant Mass

(b) For m; = may, show that

* * 1

(c) For m; = m and mg = 0, show that

B = miy + mi
2m12

E; _ m%2 — m% )
2m12

(16.8)

(16.92)

(16.9D)

5. Show that the magnitude of the momentum |p;| of particle i in the rest frame of p is given

by

(p-pi)? — pp?
pi| =\ E} —mj = \/#-

(16.10)

6. It is trivial to show that p; 4+ ps = 0 in the p rest frame. Therefore, p; = —py = p* in this

frame.

(a) By making use of this fact, show that

/p2 — \/m%—l—p*Q—l-\/m%—i-p*Q.

(b) Show that

/2 2 2
|p*|:—p A(l,ﬁg;m_;>’
2 p° D

where

Ma, b, c) = a® + b* 4 ¢* — 2ab — 2bc — 2ca.

7. Let us investigate the mass dependence of the formula.
(a) Show that

1,a,b) = 1+a®+ b* —2ab — 2b — 2a,

(16.11)

(16.12)

(16.13)

(16.14a
(16.14b
(

16.14c

~—_ —  —

(16.14d
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16.3 2 — 2 reaction and Mandelstam variables

(b) For my = mg = m, show that

* 2 .2 2
M — \l/2 <1, m_, m_) —./1= 4&, (16.15)
/2 2 P2 2
(c) For my = m and mg = 0, show that
2| p* 2 2
A" _ a2 (1, %,0) —1-= (16.16)
\/p? % %
(d) For my = mg = 0, show that
2 *
\‘/"LJ = AY2(1,0,0) = 1. (16.17)
p

Problem 16.3 Show that

a2, b2, c?) = [aQ - (b+c)2] [az —(b— 0)2} =(a+b+c)la—b—c)la+b—c)(a—b+c). (16.18)

16.3 2 — 2 reaction and Mandelstam variables

Problem 16.4 Let us consider the 2 — 2 scattering 1(p1) + 2(p2) — 3(p3) + 4(pa) with

pi=mi, ps=mj, pi=mi pi=mi (16.19)

We define Mandelstam variables that are invariant under Lorentz transformation:

s = (p1+p2)° = (p3 + pa), (16.20a)
t = (p1—p3)* = (p2 — pa), (16.20b)
w = (p1—pa)* = (p2 — p3). (16.20c)

1. Show in any inertial reference frame that

s =m? +2E,Fy —2p1 - py +m3 = m3 + 2E3F, — 2p3 - py + m3, (16.21a)
t = m% — 2K FE3 4+ 2p1 - p3 + m% = m% —2FE5FE,4 + 2ps - ps + mi, (1621b)

u=ms—2E1Ey+2p; - ps+mi=m3 —2E,E3 + 2py - p3 + m%, (16.21c)
where p; = (Eiapi)'
2. Show that

s+t+u=m?+ms+mi+ms (16.22)
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17.1 Two-body phase space

17. Phase space

17.1 Two-body phase space

Problem 17.1 Let us consider the decay of a particle A into two massive particles 1 and 2:

A(p) = 1(p1) + 2(p2), (17.1)

where p, p1, and py are the momenta for A, 1, and 2, respectively. We assume that the particles
are on their mass shells:
p*=M? pi=mi, p3=mj. (17.2)

1. The conservation of energy and momentum is equivalent to the four-momentum conser-

vation:

P = p1+ D2 (17.3)

Show that the following factor
/d% e !PT = (2m) 6™ (p — p1 — p2) (17.4)

guarantees the four-momentum conservation and is invariant under Lorentz transformation.

Here,

1

W (p—p1 —p2) = 3(° — pY — pDS(p' — pi — PS(P* — P — P3)S(P® — P —p3).  (17.5)

2. Show that the following factor

/ a0 ()6 (p? — m?) (17.6)

guarantees that 7 is on its mass shell and the expression is invariant under Lorentz transfor-

mation. Explain the role of the factor 6(pY).

3. The phase space of the two-body final state d®2(p — p1 + p2) is defined by the product of
phase-space elements d3p;/(27)3 and d3py/(27)3 for the two final-state particles multiplied

by the four-momentum conservation factor and the on-shell condition factor:
d'pr
(2m)?

0 2 2 d4p2 0 2 2
0(p1)0(p1 — m1)—350(p2)d(p3 — m3).

d®a(p — p1+p2) = (%)45(4) (p—p1—p2) (27)

(17.7)

Show that this expression is valid in any inertial reference frame because the phase space is

invariant under Lorentz transformation.
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17.1 Two-body phase space

Problem 17.2 Let us continue to consider the two-body phase space (17.7).

1. By integrating over p{ and pJ, show that
d*py d*py
Vm3 + p? (2m)32/m3 + p3
1
— e i~ k4 p - g+ - miP]
% d*pr
4y/mi +pivm3 + (p— p1)?

d®y(p — p1 4 p2) = 2m) W (p—py —
2(p = p1 p2) (2m) (P P1 pQ)(%)?,Q

(17.8)

where
P = p1 + p2. (17.9)

2. Let us choose the p rest frame, where p° = \/p2, p = 0, and ps = —p;. Show that

1 d3
it i), = o [ = gy | e
_ 1 p1| 1| Ip1|2dQ2
@2m)? | Vmi+pl  Vm3+pl]  4/mi+piy/mi+pl
_ ! Vmi +pty/m3 + pi |p1[*dQ2
- (em? [p1 (\/m% +pi+/m3 +p%> 4y/mi + piy/m3 + pi
1 2|py| d

877\/]?47T

1 )\( m? m%)@dcos&

(17.10)

87 P2 p2 )2 2

where 0 and ¢ are the polar and azimuthal angles of particle 1 in the p rest frame.

3. For m; = my = m, show that

1 4m?2 d¢ d cos 0
4 ( = 122 . 17.11
2(p ot p2) p rest 8 p2 27 2 ( )

4. For m; = m and ms = 0, show that

1 m?2\ do¢ dcos b
4o ( -~ (1)@ . 17.12
2(p —hn +p2) p rest 8 ( p2 > 27 2 ( )

5. For mqy = mo = 0, show that

1 d¢dcosb

prestzgg 2

d®2(p — p1 + PQ)‘ (17.13)
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17.2 Three-body phase space

Problem 17.3 We can define one-body phase space:

d4
d®,(p — p1) = (27)'6W (p — p1) (2:)13 0(p)(p} — m3). (17.14)
Show that
d® (p — p1) = 216(p” —m3). (17.15)

Here, we do not need 0(p°) because p” > 0 is manifest since p is the initial-state momentum that

is physical.

17.2 Three-body phase space

We consider a three-body decay A(p) — 1(p1) + 2(p2) + 3(p3).

Problem 17.4 The phase space of the three-body final state is defined by

d4
d®3(p — p1+p2 +p3) = 21)*6W (p — p1 — p2 — P3)ﬁ9(17(1))5(17% —mj})
d*py 0 2 2 d*ps 0 2 2
X (@) 0(p3)d(p3 — mQ)WQ(P?,)(;(P?, —m3). (17.16)
1. Show that
1= /d4P125(4) (P12 = p1 — p2) /dm%@(p%ﬁ(p%z —mis). (17.17)

2. Show that the three-body phase space can be expressed as

d®s(p — p1 + p2 + p3)

1
=5 /dm%g(zﬂ)%@) (p12 —p1 — p2)

d*py 0 2 2y d'p2 0 2 2
x (27T)39(P1)5(P1 —mj) (2m)3 0(p2)d(pz —m3)

2 V45@ (1 — pro — ﬂg 0§ (p2 — 2&9 N§(p2 — m2 17.18
x(2) (P — P12 P3)(27T)3 (")d(p1a m12)(2ﬂ_)3 (p3)d(p3 —m3). (17.18)

3. Show that

1
d®s3(p = p1+p2 +p3) = Py /dm%qu)z(p — p12 + p3)dPo(p12 — p1 +p2).  (17.19)

4. Show that the physical range of the invariant mass mis is

mi1+mo < mjg < \/p2 — ms. (17.20)
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17.2 Three-body phase space

We can generalize the result for the three-body phase space to the phase space calculation for an

n-body system.

Problem 17.5 We consider a four-body decay A(p) — 1(p1) + 2(p2) + 3(p3) +4(p4). If 1 4+ 2 and
3 4+ 4 are decay products of X and Y, respectively, then it is convenient to break the phase space

into the following form:
d‘I’4(p — P1 —|—p2+p3+p4) X dXQdYQdQ(I)(p — X+Y)d2(I)(X — P1 —l—pg)dgq)(y — p3+p4). (1721)
For convenience, we choose the rest frame of A.

1. Show that

AX2dY? X |0, [pi1d; [p31d0y
(2m)® 4 /p? AVX2 4VY2'

where X™* and df2% = d¢ydcos @y are the three-momentum and the solid angle of X in

d®4(p — p1+pa+p3+pa) = (17.22)

the A rest frame, respectively, p] and d€)] = d¢jdcos 0] are the three-momentum and the
solid angle of 1 in the X = p; 4 po rest frame, respectively, p3 and d€23 = d¢3d cos 03 are the

three-momentum and the solid angle of 3 in the Y = p3 + p4 rest frame, respectively.

2. Show that the physical ranges of the integration variables are given by

my +my < VX2 < \/1? — (m3 + my), (17.23a)
mz+mq < VY2 < \/p? — VX2, (17.23b)
0< 6F <m, (17.23c¢)
0< ¢ <2m, (17.23d)

fori = X, 1, and 3.
Problem 17.6 Let us consider the three-body decay A(p) — 1(p1) + 2(p2) + 3(ps3), where
pP=M pi=mi, pi=mj pi=mi (17.24)
We define
Pij = Di +Dpj,  Mij = /D (17.25)
We recall that the three-body phase space reduces into the form

1
d®s3(p — p1 +p2 +p3) = Py /dm%qu)z(p — p12 + p3)dP2(p12 — p1 + p2). (17.26)
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17.2 Three-body phase space
1. Show that
miy +mis +m3 = M? +m? +m3 +m2. (17.27)
2. Show that
2 _ 2 g2 2
mip = (p —p3)” = M” +m3 — 2M E3, (17.28)
where Fj3 is the energy of the particle 3 in the A rest frame.
3. Show that
dmiz|p7||ps|dSidQ2s
A®a(p — = 17.29
3(p — p1 +p2 +p3) SM (27) ) ( )
where p] and 2] are the three-momentum and its direction of particle 1 in the pio rest frame.
p3 and g3 are the three-momentum and its direction of particle 3 in the A rest frame.
4. Show that
7 _ 212 _ _ 2
pt| = VImiy — (m1 + ma)?|[m3, — (my —my) ], (17.30a)
2m12
M2 — 2112 — — 2
jpg) = Y7 = (s +m32) ]\y (muz = ma)7) (17.30D)
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