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I. Matrix

1. Permutation and Parity

1.1 Permutation

Definition 1.1 Consider an ordered set (a1, a2, · · · , an−1, an) of n different numbers out of

{1, 2, 3, · · · , n}. Permutation σ is a mapping of an ordered set of numbers (a1, a2, · · · , an−1, an)

to another

(a1, a2, · · · , an−1, an)
σ−→ (σa

1

, σa
2

, · · · , σan). (1.1)

Note that

{a1, a2, · · · , an−1, an} = {σa1 , σa2 , · · · , σan−1

, σa
n} = {1, 2, 3, · · · , n}. (1.2)

1.2 Parity and Levi-Civita Symbol

Problem 1.2 Show that there are n! distinct mappings for the permutations σ that permutes

(1, 2, · · · , n).

Definition 1.3 The parity of a permutation σ of (1, 2, · · · , n) is called even (odd) if it is obtained

by an even (odd) number of two-element exchanges. We define the parity operator ǫ such that

ǫ(σ) =

{
+1, if σ is even,

−1, if σ is odd.
(1.3)

Show that

ǫ(σ2σ1) = ǫ(σ2)ǫ(σ1). (1.4)

Definition 1.4 We say that a permutation σ is the inversion if

σ(a1, a2, · · · , an−1, an) = (an, an−1, · · · , a2, a1). (1.5)

Problem 1.5 Let us find the parity of the inversion for any positive integer n ≥ 2.
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1.2 Parity and Levi-Civita Symbol

1. Show that the number N(n) of exchanges for the inversion of (1, 2, · · · , n) to obtain the

permuatation (n, n− 1, · · · , 2, 1) is

N(n) =
n−1∑

k=1

k =
n(n− 1)

2
. (1.6)

2. It is trivial to check N(2) = 1, N(3) = 3, N(4) = 6, N(5) = 10, N(6) = 15, · · · . Therefore,
the inversion changes the parity (even ↔ odd) for n = 2 and 3. However, for n = 4 and 5,

the parity is invariant under inversion.

(a) Show that parity is invariant under inversion for n = 4k or 4k + 1 for k is a positive

integer.

(b) Show that the parity changes under inversion for n = 4k + 2 or 4k + 3 for k is a

non-negative integer.

3. Show that there are n!/2 even permutations of (1, 2, · · · , n) for n ≥ 2.

4. Show that there are n!/2 odd permutations of (1, 2, · · · , n) for n ≥ 2.

Problem 1.6 There is only a single way of exchanging two adjacent elements like

(· · · , a, b, · · · )→ (· · · , b, a, · · · ). (1.7)

Therefore, the exchange of two adjacent elements is well defined.

1. Let us consider the change of parity after exchanging two elements in a permutation

(· · · , a, b, c, · · · )→ (· · · , c, b, a, · · · ). (1.8)

Show that the permutation can be decomposed into an odd number (3) of exchanges of two

adjacent indices:

(· · · , a, b, c, · · · )→ (· · · , b, a, c, · · · )→ (· · · , b, c, a, · · · )→ (· · · , c, b, a, · · · ). (1.9)

2. Let us consider the exchange of two elements a and c

(· · · , a, b1, · · · , bn, c, · · · )→ (· · · , c, b1, · · · , bn, a, · · · ). (1.10)

This permutation σ can be decomposed into

σ = σ2σ1, (1.11a)

σ1(· · · , a, b1, · · · , bn, c, · · · ) = (· · · , c, a, b1, · · · , bn, · · · ), (1.11b)

σ2(· · · , c, a, b1, · · · , bn, · · · ) = (· · · , c, b1, · · · , bn, a, · · · ). (1.11c)
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1.2 Parity and Levi-Civita Symbol

Show that the parity of ǫ(σ1) = (−1)n+1 and ǫ(σ2) = (−1)n. Therefore, the parity of

σ = ǫ(σ2)ǫ(σ1) = −1 that is independent of n.

Problem 1.7 Consider a permutation of an ordered set of two numbers (1, 2).

1. Show that there are two permutations σ(1, 2) = (1, 2) and σ(1, 2) = (2, 1).

2. Show that the identity permutation σ(1, 2) = (1, 2) is even.

3. Show that σ(1, 2) = (2, 1) is odd.

Problem 1.8 Consider a permutation of an ordered set of three numbers (1, 2, 3).

1. Show that there are 6 permutations.

2. Show that the permutations σ(1, 2, 3) = (1, 2, 3), (2, 3, 1), (3, 1, 2) are even.

3. Show that the permutations σ(1, 2, 3) = (3, 2, 1), (1, 3, 2), (2, 1, 3) are odd.

Problem 1.9 Consider a permutation of an ordered set of four numbers (1, 2, 3, 4).

1. Show that there are 24 permutations.

2. Show that the permutations all possible even permutations of the form (a, b, c, 4) are

σ(1, 2, 3, 4) = (1, 2, 3, 4), (2, 3, 1, 4), (3, 1, 2, 4).

3. Show that the permutations all possible even permutations of the form (a, b, 4, c) are

σ(1, 2, 3, 4) = (2, 1, 4, 3), (3, 2, 4, 1), (1, 3, 4, 2).

4. Show that the permutations all possible even permutations of the form (a, 4, b, c) are

σ(1, 2, 3, 4) = (1, 4, 2, 3), (2, 4, 3, 1), (3, 4, 1, 2).

5. Show that the permutations all possible even permutations of the form (4, a, b, c) are

σ(1, 2, 3, 4) = (4, 2, 1, 3), (4, 3, 2, 1), (4, 1, 3, 2).

6. Show that the permutations all possible odd permutations of the form (a, b, c, 4) are

σ(1, 2, 3, 4) = (2, 1, 3, 4), (2, 3, 1, 4), (1, 3, 2, 4).

7. Show that the permutations all possible odd permutations of the form (a, b, 4, c) are

σ(1, 2, 3, 4) = (1, 2, 4, 3), (2, 3, 4, 1), (3, 1, 4, 2).
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1.3 Algebra involving Levi-Civita Symbols

8. Show that the permutations all possible odd permutations of the form (a, 4, b, c) are

σ(1, 2, 3, 4) = (1, 4, 3, 2), (2, 4, 1, 3), (3, 4, 2, 1).

9. Show that the permutations all possible odd permutations of the form (4, a, b, c) are

σ(1, 2, 3, 4) = (4, 2, 3, 1), (4, 3, 1, 2), (4, 1, 2, 3).

σ(1, 2, 3, 4) can be generated by making use of the following MATHEMATICA command:

Permutations[{1, 2, 3, 4}]

1.3 Algebra involving Levi-Civita Symbols

Definition 1.10 An antisymmetric permutation symbol ǫ for an ordered set of numbers

(a1, · · · , an) = σ(1, 2, 3, · · · , n) where ai ∈ {1, 2, 3, · · · , n} is defined by

ǫ(a1, · · · , an) =
{
+1, if σ is even,
−1, if σ is odd,
0, if {a1, · · · , an} 6= {1, 2, 3, · · · , n}.

(1.12)

ǫ is also called the Levi-Civita symbol. Note that the last case is that there exists at least one

pair such that ai = aj for i 6= j.

Problem 1.11 Let us consider the permutations of (1, 2).

1. Show that

ǫ11 = 0, ǫ12 = 1, ǫ21 = −1, ǫ22 = 0. (1.13)

2. Show that

∑

i,j

ǫij = 0. (1.14)

3. Show that

ǫ211 = 0, ǫ212 = 1, ǫ221 = 1, ǫ222 = 0. (1.15)

4. Show that

∑

i,j

ǫ2ij = 2!. (1.16)

We use Einstein’s convention that any repeated indices are assumed to be summed over:

ǫijǫij =
∑

i,j

ǫijǫij. (1.17)
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1.3 Algebra involving Levi-Civita Symbols

Problem 1.12 Let us consider the permutation of (1, 2, 3).

1. Show that the only non-vanishing elements ǫijk are

ǫ123 = ǫ231 = ǫ312 = +1, (1.18a)

ǫ321 = ǫ132 = ǫ213 = −1, (1.18b)

2. Show that

∑

i,j,k

ǫijk = 0. (1.19)

3. Show that

ǫ2123 = ǫ2231 = ǫ2312 = +1, (1.20a)

ǫ2321 = ǫ2132 = ǫ2213 = +1, (1.20b)

4. Show that

∑

i,j,k

ǫ2ijk = 3!. (1.21)

Problem 1.13 Let us consider the permutation of (1, 2, 3).

1. Show that the only non-vanishing elements ǫijk are

ǫ1234 = ǫ2314 = ǫ3124 = +1, (1.22a)

ǫ2143 = ǫ3241 = ǫ1342 = +1, (1.22b)

ǫ1423 = ǫ2431 = ǫ3412 = +1, (1.22c)

ǫ4213 = ǫ4321 = ǫ4132 = +1, (1.22d)

ǫ2134 = ǫ2314 = ǫ1324 = −1, (1.22e)

ǫ1243 = ǫ2341 = ǫ3142 = −1, (1.22f)

ǫ1432 = ǫ2413 = ǫ3421 = −1, (1.22g)

ǫ4231 = ǫ4312 = ǫ4123 = −1. (1.22h)

2. Show that

∑

i,j,k,ℓ

ǫijkℓ = 0. (1.23)
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1.4 Application of Levi-Civita Symbols to Vector Analysis

3. Show that

ǫ21234 = ǫ22314 = ǫ23124 = +1, (1.24a)

ǫ22143 = ǫ23241 = ǫ21342 = +1, (1.24b)

ǫ21423 = ǫ22431 = ǫ23412 = +1, (1.24c)

ǫ24213 = ǫ24321 = ǫ24132 = +1, (1.24d)

ǫ22134 = ǫ22314 = ǫ21324 = +1, (1.24e)

ǫ21243 = ǫ22341 = ǫ23142 = +1, (1.24f)

ǫ21432 = ǫ22413 = ǫ23421 = +1, (1.24g)

ǫ24231 = ǫ24312 = ǫ24123 = +1. (1.24h)

4. Show that

∑

i,j,k,ℓ

ǫ2ijkℓ = 4!. (1.25)

Problem 1.14 By making use of mathematical induction, show that

ǫi1i2···inǫi1i2···in = n!. (1.26)

1.4 Application of Levi-Civita Symbols to Vector Analysis

Problem 1.15 Let us consider vectors defined in a 3-dimensional Euclidean space. By making

use of Levi-Civita symbols, prove the following identities.

1. BAC − CAB rule:

A× (B ×C) = B(A ·C)−C(A ·B). (1.27)

2. Jacobi identity:

A× (B ×C) +B × (C ×A) +C × (A×B) = 0. (1.28)

3. Verify the identity and interpret the answer based on permutation and parity:

(A×B) · (C ×D) = (A ·C) · (B ·D)− (A ·D) · (B ·C). (1.29)

4. Verify the identity and interpret the answer based on trigonometry:

(A×B)2 = A2B2 − (A ·B)2. (1.30)
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1.4 Application of Levi-Civita Symbols to Vector Analysis

5. Verify the identity and interpret the sign of each term based on permutation and parity:

(A×B)× (C ×D) = (A ·C ×D)B − (B ·C ×D)A

= (A ·B ×D)C − (A ·B ×C)D. (1.31)

Problem 1.16 Consider a permutation of (1, 2, 3) and its parity.

1. Show that the triple scalar product of three three-vectors can be expressed as

A ·B ×C = ǫijka
ibjCk. (1.32)

2. By making use of the parity properties of permutations, show that

A ·B ×C = B ·C ×A = C ·A×B. (1.33)

Problem 1.17 The curl of a vector field in a 3-dimensional Euclidean space is defined by

(∇×A)i = ǫijk
∂

∂xj
ak. (1.34)

The vector fields A and B and the scalar field φ are dependent on the position. By making use of

the Levi-Civita symbol, verify the following formulas.

1.

∇× (A×B) = (∇ ·B +B ·∇)A− (∇ ·A+A ·∇)B, (1.35)

2.

A× (∇×B) = ∇B(A ·B)− (A ·∇)B, (1.36)

where the gradient operator ∇B with the subscript B acts only on B.

3.

∇× (∇×A) = ∇(∇ ·A)−∇2A. (1.37)

4.

∇× (∇φ) = 0. (1.38)

5.

∇× (φA) = (∇φ)×A+ φ(∇×A). (1.39)
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2.1 Definition

2. Determinant

2.1 Definition

Definition 2.1 The determinant of an n× n square matrix A is defined by

Det[A] ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...

. . .
...

an1 an2 an3 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≡
∑

σ

ǫσ1σ2σ3···σna1σ
1

a2σ
2 · · · an−1σn−1

anσ
n

=
∑

σ

ǫ(σ)

n∏

i=1

aiσ
i

, (2.1)

where the sum is over n! permuations σ of (1, 2, · · · , n) and

(σ1, σ2, · · · , σn) = σ(1, 2, · · · , n). (2.2)

The Levi-Civita symbol is defined by the parity of a permutation σ:

ǫσ1σ2σ3···σn ≡ ǫ[σ(1, 2, · · · , n)] = ǫ(σ). (2.3)

Problem 2.2 Let σ and τ be permutations of (1, 2, · · · , n). Show that

1. ǫ(1) = 1, where 1 is the identity permutation.

2. ǫ(σ−1) = ǫ(σ).

3. ǫ(στ) = ǫ(σ)ǫ(τ) = ǫ(τσ).

Problem 2.3 Show that

Det[A] =
∑

σ

ǫ(σ)
n∏

i=1

aiσ
i

=
1

n!

∑

σ,τ

ǫ(τσ)
n∏

i=1

aτiσ
i

=
1

n!

∑

σ,τ

ǫ(στ)
n∏

i=1

aτiσ
i

=
1

n!

∑

σ,τ

ǫ(τσ)
n∏

i=1

aσ
iτi

=
∑

σ

ǫ(σ)
n∏

i=1

aσ
ii. (2.4)
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2.1 Definition

Problem 2.4 Let us consider the determinant of a 2× 2 matrix.

A =

(
a b

c d

)
. (2.5)

1. Show that
∣∣∣∣∣∣
a b

c d

∣∣∣∣∣∣
= ad− bc. (2.6)

Problem 2.5 Let us compute the determinant of a 3× 3 square matrix.

1. Show that
∣∣∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣
= +a11

∣∣∣∣∣∣
a22 a23

a32 a33

∣∣∣∣∣∣
− a12

∣∣∣∣∣∣
a21 a23

a31 a33

∣∣∣∣∣∣
+ a13

∣∣∣∣∣∣
a21 a22

a31 a32

∣∣∣∣∣∣

= −a21
∣∣∣∣∣∣
a12 a13

a32 a33

∣∣∣∣∣∣
+ a22

∣∣∣∣∣∣
a11 a13

a31 a33

∣∣∣∣∣∣
− a23

∣∣∣∣∣∣
a11 a12

a31 a32

∣∣∣∣∣∣

= +a31

∣∣∣∣∣∣
a12 a13

a22 a23

∣∣∣∣∣∣
− a32

∣∣∣∣∣∣
a11 a13

a21 a23

∣∣∣∣∣∣
+ a33

∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣
. (2.7)

2. Show that
∣∣∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣
= +a11

∣∣∣∣∣∣
a22 a23

a32 a33

∣∣∣∣∣∣
− a21

∣∣∣∣∣∣
a12 a13

a32 a33

∣∣∣∣∣∣
+ a31

∣∣∣∣∣∣
a12 a13

a22 a23

∣∣∣∣∣∣

= +a12

∣∣∣∣∣∣
a21 a23

a31 a33

∣∣∣∣∣∣
− a22

∣∣∣∣∣∣
a11 a13

a31 a33

∣∣∣∣∣∣
+ a32

∣∣∣∣∣∣
a11 a13

a21 a23

∣∣∣∣∣∣

= +a13

∣∣∣∣∣∣
a21 a22

a31 a32

∣∣∣∣∣∣
− a23

∣∣∣∣∣∣
a11 a13

a31 a33

∣∣∣∣∣∣
+ a33

∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣
. (2.8)

Problem 2.6 Show that for any n,

Det[1] = 1, (2.9)

where 1 is the n× n identity matrix.
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2.1 Definition

Problem 2.7 Provide the reason why the determinant of each of the following matrices vanishes.

1.

Det




1 1 1 1 1 1 1

1 1 1 1 1 0 1

1 1 1 1 0 1 1

1 1 1 0 1 1 1

1 1 0 1 1 1 1

1 0 1 1 1 1 1

0 0 0 0 0 0 0




= 0. (2.10)

2.

Det




1 1 1 1 1 1 −1
2 1 1 1 1 0 −2
3 1 1 1 0 1 −3
4 1 1 0 1 1 −4
5 1 0 1 1 1 −5
6 0 1 1 1 1 −6
7 0 0 0 0 0 −7




= 0. (2.11)

3.

Det




1 1 1 1 1 2 7

2 0 1 1 1 1 6

3 0 0 1 0 0 5

4 0 0 0 1 0 4

5 0 0 0 1 0 3

6 0 0 0 1 0 2

7 0 0 0 0 0 1




= 0. (2.12)
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2.2 Expressions involving Levi-Civita Symbols

2.2 Expressions involving Levi-Civita Symbols

Problem 2.8 The tensor ǫijǫab must be antisymmetric under exchange of i ↔ j and under ex-

change of a↔ b.

1. Show that the only non-vanishing elements of the tensor ǫijǫab are

ǫ12ǫ12 = ǫ21ǫ21 = 1, (2.13a)

ǫ12ǫ21 = ǫ21ǫ12 = −1. (2.13b)

Therefore, the only non-vanishing cases are

{i, j} = {a, b} = {1, 2}, (2.14)

ǫijǫab =
{+1, (ij) = (a, b) = (1, 2) or (2, 1)

−1, (ij) = (b, a) = (1, 2) or (2, 1)
(2.15)

2. Show that this condition is equivalent to

ǫijǫab = δiaδjb − δibδja = Det


δ

ia δib

δja δjb


 . (2.16)

3. By multiplying δiaδjb to both sides and summing over repeated indices, show that the relation

(2.16) is consistent in normalization:

2! = (2!)2 − 2!. (2.17)

Problem 2.9 The tensor ǫijkǫabc is non-vanishing only if both (i, j, k) = σ(1, 2, 3) and (a, b, c) =

τ(1, 2, 3) are permutations of (1, 2, 3).

1. Show that the only non-vanishing elements of the tensor ǫijkǫabc are

ǫijkǫabc = ǫ(σ)ǫ(τ) = ǫ(στ). (2.18)

2. Show that this condition is equivalent to

ǫijkǫabc = δiaδjbδkc+δibδjcδka+δicδjaδkb−δicδjbδka−δiaδjcδkb−δibδjaδkc = Det




δia δib δic

δja δjb δjc

δka δkb δkc


 .

(2.19)
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2.3 Basic Properties of Determinant

3. By multiplying δiaδjbδkc to both sides, show that the relation is consistent in normalization:

3! = 33 + 2× 3− 3× 32. (2.20)

The following REDUCE program reproduces this result.

vecdim 3;

vector i,j,k,p,q,r;

m:=mat((i.p,i.q,i.r),(j.p,j.q,j.r),(k.p,k.q,k.r));

f:=det(m);

index i,j,k,p,q,r;

ff:=f*i.p*j.q*k.r;

Problem 2.10 Based on mathematical induction, show that

ǫi1i2i3···inǫj1j2j3···jn = Det




δi1j1 δi1j2 · · · δi1jn

δi2j1 δi2j2 · · · δi2jn
...

...
. . .

...

δinj1 δinj2 · · · δinjn



. (2.21)

2.3 Basic Properties of Determinant

Problem 2.11 Let us consider a matrix A,

A = (a1 a2 · · · an), ai =




a1i

a2i

...

ani



, (2.22)

where ai is the ith column vector. Let B be the matrix that satisfies the following conditions:

B = (b1 b2 · · · bn),

bp = aq,

bq = ap,

bi = ai, for i 6= p, q. (2.23)

Here, p 6= q. Show that

Det[B] = −Det[A]. (2.24)

12



2.3 Basic Properties of Determinant

Problem 2.12 Let us consider a matrix A,

A =




Ã1

Ã2

...

Ãn



, Ãi =

(
ai1 ai2 · · · ain

)
, (2.25)

where Ãi is the ith row vector of A. Let C be the matrix that satisfies the following conditions:

C =




C̃1

C̃2

...

C̃n



,

C̃p = Ãq,

C̃q = Ãp,

C̃i = Ãi, for i 6= p, q. (2.26)

Here, p 6= q. Show that

Det[C] = −Det[A]. (2.27)

Problem 2.13 Show that

Det(A) =
1

n!

∑

σ

∑

τ

ǫσ1σ2···σnǫτ1τ2···τna
σ1τ1aσ

2τ2 · · · aσnτn

=
1

n!

∑

σ

∑

τ

ǫ(σ)ǫ(τ)
n∏

i=1

aσ
iτi , (2.28)

where the sums are over two permutations σ and τ for (1, 2, 3, · · · , n).

Problem 2.14 Show that for a given j ∈ {1, 2, · · · , n}

Det[A] =

n∑

i=1

aijCij =

n∑

i=1

ajiCji, (2.29)

Cij = (−1)i+jM (ij), (2.30)

where Cij and M (ij) are called the (ij) cofactor and the (ij) minor of A, respectively. The (ij)
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2.3 Basic Properties of Determinant

minor M (ij) is the determinant of a submatrix of A in which ith row and jth column are deleted:

Cij = (−1)i+jM (ij) = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1 j−1 a1 j+1 · · · a1n

a21 a22 · · · a2 j−1 a2 j+1 · · · a2n

...
...

. . .
...

... · · · ...

ai−1 1 ai−1 2 · · · ai−1 j−1 ai−1 j+1 · · · ai−1n

ai+11 ai+12 · · · ai+1 j−1 ai+1 j+1 · · · ai+1n

...
...

...
...

...
. . .

...

an1 an2 · · · an j−1 an j+1 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.31)

Problem 2.15 Verify the following statements for an n× n square matrix A.

1. If the columns (rows) of A are linearly dependent, then Rank(A) < n and Det(A) = 0.

2. If the columns (rows) of A are linearly independent, then Rank(A) = n and Det(A) 6= 0.

3. If Det(A) = 0, then Rank(A) < n and A is not invertible: A−1 does not exist.

4. If A is not invertible, then Rank(A) < n and Det(A) = 0.

5. If Det(A) 6= 0, then Rank(A) = n and A is invertible: A−1 exists.

6. If A is invertible, then Rank(A) = n and Det(A) 6= 0.

7. Det(cA) = cnDet(A), where c is a number.

8. Det(AT ) = Det(A).

9. Let B = (bij) and C = (Cij) be matrices such that

bij = aiσ
j

, Cij = aσ
ij (2.32)

where σ is a permutation of (1, 2, · · · , n). Show that

Det(B) = Det(C) = ǫ(σ)Det(A). (2.33)

10. Let D = (dij) be a matrix such that

dij = aσ
iτj , (2.34)

where σ and τ are permutations of (1, 2, · · · , n). Show that

Det(D) = ǫ(σ)ǫ(τ)Det(A). (2.35)
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2.4 Factorization of Det[AB] = Det[A]Det[B]

2.4 Factorization of Det[AB] = Det[A]Det[B]

Problem 2.16 Let us prove

Det[AB] = Det[A]Det[B] (2.36)

for 2× 2 matrices.

1. Show that

Det[AB] =

∣∣∣∣∣∣
C11 C12

C21 C22

∣∣∣∣∣∣
= C11C22 − C12C21

= (Ã1b1)(Ã2b2)− (Ã1b2)(Ã2b1)

=
1

2
ǫijǫkℓ(Ã

ibk)(Ãjbℓ)

=
1

2
ǫijǫkℓ(A

ipbpk)(Ajqbqℓ)

=
1

2
(ǫijA

ipAjq)(ǫkℓb
pkbqℓ)

=
1

2
× (A1pA2q −A2pA1q)× (bp1bq2 − bp2bq1), (2.37)

where Cij = Ãibj, Ãi is the ith row of A, and bj is the jth column of B.

2. Show that A1pA2q −A2pA1q is antisymmetric under exchange of p↔ q. Therefore,

A1pA2q −A2pA1q =
1

2
ǫpqǫrs(A

1rA2s −A2rA1s) = ǫpqDet(A). (2.38)

3. Show also that bp1bq2 − bp2bq1 is antisymmetric under exchange of p↔ q. Therefore,

bp1bq2 − bp2bq1 = 1

2
ǫpqǫrs(b

1rb2s − b2rb1s) = ǫpqDet(B). (2.39)

4. Show that

Det[AB] =
1

2
× ǫpqDet(A)× ǫpqDet(B)

= Det(A)Det(B). (2.40)

Problem 2.17 Let us prove

Det[AB] = Det[A]Det[B] (2.41)

for 3× 3 matrices.

15



2.4 Factorization of Det[AB] = Det[A]Det[B]

1. Show that

Det[AB] =

∣∣∣∣∣∣∣∣∣

C11 C12 C13

C21 C22 C23

C31 C32 C33

∣∣∣∣∣∣∣∣∣

=
1

3!
ǫijkǫabc(Ã

iba)(Ãjbb)(Ãkbc)

=
1

3!
ǫijkǫabc(A

ipbpa)(Ajqbqb)(Akrbrc)

=
1

3!
(ǫijkA

ipAjqAkr)(ǫabcb
pabqbbrc), (2.42)

where Cij = Ãibj, Ãi is the ith row of A, and bj is the jth column of B.

2. Show that

ǫijkA
ipAjqAkr = ǫpqrǫijkA

i1Aj2Ak3

= ǫpqr ×
1

3!
ǫijkǫxyzA

ixAjyAkz

= ǫpqrDet(A). (2.43)

3. Show also that

ǫabcb
pabqbbrc = ǫpqrǫabcb

1ab2bb3c

= ǫpqr ×
1

3!
ǫxyzǫabcA

xaAybAzc

= ǫpqrDet(B). (2.44)

4. Show that

Det[AB] =
1

3!
× ǫpqrDet(A)× ǫpqrDet(B)

= Det(A)Det(B). (2.45)

Problem 2.18 Let us prove that

Det(AB) = Det(A)Det(B), (2.46)

for n × n based on mathematical induction. We have shown that the relation is true for n = 2.

Let us assume that the relation is true for n = k and test if the relation is true for n = k + 1.
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2.4 Factorization of Det[AB] = Det[A]Det[B]

1. By definition, Det[AB] is expressed as

Det[AB] =
1

(k + 1)!
ǫi1i2···ik+1

ǫj1j2···jk+1
(Ãi1bj1)(Ãi2bj2) · · · (Ãik+1bjk+1)

=
1

(k + 1)!
ǫi1i2···ik+1

ǫj1j2···jk+1
(Ai1x1

bx
1j1)(Ai2x2

bx
2j2) · · · (Aik+1x

k+1

bx
k+1jk+1)

=
1

(k + 1)!
(ǫi1i2···ik+1

Ai1x1

Ai2x2 · · ·Aik+1x
k+1

)(ǫj1j2···jk+1
bx

1j1bx
2j2 · · · bxk+1jk+1),

(2.47)

where (AB)ij = Ãibj , Ãi is the ith row of A, and bj is the jth column of B.

2. By mathematical induction, show that

ǫi1i2···ik+1
Ai1x1

Ai2x2 · · ·Aik+1x
k+1

= ǫi1i2···ik+1
ǫx1x2···xk+1Ai11Ai22 · · ·Aik+1 k+1

= ǫx1x2···xk+1 × 1

(k + 1)!
ǫi1i2···ik+1

ǫj1j2···jk+1
Ai1j1Ai2j2 · · ·Aik+1jk+1

= ǫx1x2···xk+1Det(A). (2.48)

3. Show also that

ǫj1j2···jk+1
bx

1j1bx
2j1 · · · bxk+1jk+1 = ǫx1x2···xk+1ǫj1j2···jk+1

b1j1b2j2 · · · bk+1 jk+1

= ǫx1x2···xk+1 × 1

(k + 1)!
ǫi1i2···ik+1

ǫj1j2···jk+1
bi1j1bi2j2 · · · bik+1jk+1

= ǫx1x2···xk+1Det(B). (2.49)

4. Show that

Det[AB] =
1

(k + 1)!
× ǫx1x2···xk+1Det(A)× ǫx1x2···xk+1Det(B)

= Det(A)Det(B). (2.50)

Problem 2.19 We can carry out the previous proof in a compact way.

1. For n× n matrices A and B, show that

Det(AB) = ǫ(σ)

n∏

i=1

(AB)σ
ii

=
1

n!
ǫ(σ)ǫ(τ)

n∏

i=1

(AB)σ
iτi

=
1

n!
ǫ(σ)ǫ(τ)

n∏

i=1

aσ
ikibkiτi , (2.51)

where the sums are over two permutations σ and τ for (1, 2, 3, · · · , n). Each of n dummy

variables ki are summed from 1 to n.
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2.4 Factorization of Det[AB] = Det[A]Det[B]

2. Show that, before summation over ki for i = 1, · · · , n,

ǫ(σ)
n∏

i=1

aσ
iki = ǫ(σ)

1

n!
ǫ(α)

n∏

i=1

aσ
iαi

= ǫ(α)Det[A], (2.52)

ǫ(τ)
n∏

i=1

bkiτi = ǫ(τ)
1

n!
ǫ(α)

n∏

i=1

bα
iτi

= ǫ(α)Det[B]. (2.53)

3. Show that

Det(AB) =
1

n!
ǫ(α)Det[A]ǫ(α)Det[B]

= Det[A]Det[B]. (2.54)

Problem 2.20 Prove, for an invertible matrix A, that

Det[A−1] =
1

Det[A]
. (2.55)

Problem 2.21 Verify the following identities:

1. Det[AB] = Det[BA].

2. Det[A−1BA] = Det[ABA−1] = Det[B].

Problem 2.22 Consider a 2× 2 invertible matrix A

A =


a

11 a12

a21 a22


 . (2.56)

The trace of the matrix is defined by

Tr[A] =
∑

i

aii = a11 + a22. (2.57)

We consider an eigenvalue problem

AX(λ) = λX(λ), (2.58)

where the number λ is an eigenvalue of A and a column vector X(λ) is the corresponding eigen-

vector.

1. Verify the following identity:

λ2 − λTr[A] +Det[A] = 0. (2.59)
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2.5 Volume element and Jacobian

2. Show that the eigenvalues are

λ± =
1

2

[
Tr[A]±

√
(Tr[A])2 − 4Det[A]

]
. (2.60)

3. Show that

λ+ + λ− = Tr[A]. (2.61)

4. Show that

λ+λ− = Det[A]. (2.62)

5. Show that the corresponding eigenvectors are

λ = λ+ : X(λ+) = c


 a12

λ+ − a11


 , (2.63a)

λ = λ− : X(λ−) = c′


 a12

λ− − a11


 , (2.63b)

where c and c′ are arbitrary constants.

2.5 Volume element and Jacobian

Problem 2.23 Consider a Cartesian coordinate system that describes spatial points in the n-

dimensional Euclidean space.

1. We introduce a set of orthonormal vectors

ê1 =




1

0
...

0



, ê2 =




0

1
...

0



, · · · , ên =




0

0
...

1



. (2.64)

Let us construct a square matrix E such that

E =
(
ê1 ê2 · · · ên

)
. (2.65)

Show that E = 1.

2. Show that Det[E] = 1.
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2.5 Volume element and Jacobian

3. Let us consider another case that

A =
(
C1ê1 C

2ê2 C
3ê3 · · · Cnên

)
. (2.66)

Show that Det[A] = C1C2 · · ·Cn.

4. Explain how to make use of the determinant operator to compute the volume of the region

defined by

0 < x1 < C1, (2.67a)

0 < x2 < C2, (2.67b)

... (2.67c)

0 < xn−1 < Cn−1, (2.67d)

0 < xn < Cn, (2.67e)

where (x1, x2, · · · , xn) is the Cartesian coordinates of a point in the region.

5. Consider a set of points in

X = α1A1 + α2A2 + · · ·+ αnAn, (2.68)

where each of real parameters αi is constrained as

0 ≤ αi ≤ 1. (2.69)

Show that the volume V of this region is

V = Det[A], A =
(
A1 A2 · · · An

)
, (2.70)

where Ai is the ith column of the matrix argument of the determinant function. List all

possible cases that result in V = 0.

6. Suppose that

Ai = A1iê1 +A2iê2 + · · ·Aniên. (2.71)

Show that the matrix representation of A is

A =




A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann




= (aij). (2.72)
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2.5 Volume element and Jacobian

Problem 2.24 Consider a two-dimensional Cartesian coordinate system described by the coordi-

nates (x1, x2). The differential volume element dV in the region,

C1 ≤ x1 ≤ C1 + dx1, C2 ≤ x2 ≤ C2 + dx2, (2.73)

is

dV = dx1dx2, (2.74)

where (C1, C2) are the Cartesian coordinates of a fixed point at which the volume element is

defined. dxi is an infinitesimal displacement of xi.

We can find the transformation rules from this coordinates into a polar coordinates as

x1 = r cos θ, (2.75a)

x2 = r sin θ. (2.75b)

1. Show that the basis vectors for the polar coordinates are expressed as

êr = ê1 cos θ + ê2 sin θ, (2.76a)

êθ = −ê1 sin θ + ê2 cos θ. (2.76b)

Note that êr and êθ are dependent on θ and independent of r, while ê1 and ê2 are both

independent of position.

2. Show that

ê1 · ê1 ê1 · ê2
ê2 · ê1 ê2 · ê2


 =


êr · êr êr · êθ
êθ · êr êθ · êθ


 =


1 0

0 1


 . (2.77)

Therefore, each coordinate system has a set of orthonormal basis vectors at each point.

3. Show that the position vector x can be expressed as

x = x1ê1 + x2ê2 = rêr. (2.78)

4. Show that the infinitesimal volume element for the region C1 ≤ x1 ≤ C1 + dx1 and C2 ≤
x2 ≤ C2 + dx2 is dx1dx2.

5. Show that the infinitesimal volume element for the region r0 ≤ r ≤ r0 + dr and θ0 ≤ θ ≤
θ0 + dθ is r0drdθ.
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3.1 Cramer’s Rule

6. Find the physical meaning of the following vectors:

drêr =
∂x

∂r
dr = ê1

∂x1

∂r
dr + ê2

∂x2

∂r
dr, (2.79a)

rdθêθ =
∂x

∂θ
dθ = ê1

∂x1

∂θ
dθ + ê2

∂x2

∂θ
dθ. (2.79b)

7. Show that the volume element in the 2-dimensional polar coordinate system is

|drêr × rdθêθ| = rdrdθ = Det




∂x1

∂r
∂x2

∂r

∂x1

∂θ
∂x2

∂θ


 drdθ. (2.80)

This determinant is called the Jacobian that is the conversion factor of a volume element of a

coordinate system into another. The new coordinate system does not have to be orthonormal

as long as it spans the same space.

Problem 2.25 Compute the Jacobian for the spherical polar coordinate system to find that

|drêr · rdθêθ × r sin θdφêφ| = r2dr sin θdθdφ = Det




∂x1

∂r
∂x2

∂r
∂x3

∂r

∂x1

∂θ
∂x2

∂θ
∂x3

∂θ

∂x1

∂φ
∂x2

∂φ
∂x3

∂φ


 drdθdφ. (2.81)

3. Inverse Matrix

3.1 Cramer’s Rule

Theorem 3.1 Let us consider a linear equation

AX = B, (3.1)

where A is an invertible (Det[A] 6= 0) n× n matrix and the unknown X and known B are column

n× 1 column vectors. Cramer rule is that

xi =
Det[A[i](B)]

Det[A]
−→ X =

1

Det[A]




Det[A[1](B)]

Det[A[2](B)]
...

Det[A[n](B)]



, (3.2)
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3.1 Cramer’s Rule

where xi is the ith element of X and A[i](B) is a matrix whose elements are the same as A except

that the ith column is replaced with b:

A =




a11 a12 · · · a1 i−1 a1 i a1 i+1 · · · a1n

a21 a22 · · · a1 i−1 a2 i a2 i+1 · · · a2n
...

...
...

...
...

...
...

...

an1 an2 · · · an i−1 an i an i+1 · · · ann



, (3.3)

A[i](B) =




a11 a12 · · · a1 i−1 b1 a1 i+1 · · · a1n

a21 a22 · · · a1 i−1 b2 a2 i+1 · · · a2n
...

...
...

...
...

...
...

...

an1 an2 · · · an i−1 bn an i+1 · · · ann



, (3.4)

B =




b1

b2

...

bn



, X =




x1

x2

...

xn



. (3.5)

Problem 3.2 Let A−1 be the inverse of A such that A−1A = AA−1 = 1.

1. Show that

A−1B = X, A−1ai = Ei, (3.6)

where ai is the ith column of A:

A =
(
a1 a2 · · · an

)
, (3.7)

and Ei is the ith column of 1.

2. Consider a matrix

x1 =
(
X E2 E3 · · · En

)
=




x1 0 0 · · · 0
x2 1 0 · · · 0
x3 0 1 · · · 0
...

...
...
. . .

...

xn 0 0 · · · 1




. (3.8)
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3.1 Cramer’s Rule

In a similar manner, we can define xi as

xi =
(
E1 · · · Ei−1 X Ei+1 · · · En

)
=




1 0 · · · x1 · · · 0
0 1 · · · x2 · · · 0
0 0 · · · x3 · · · 0
...
...

...
...

. . .
...

0 0 · · · xn · · · 1




. (3.9)

Show for all i that

xi = Det[xi]. (3.10)

3. Show for all i that

A−1A[i](B) = xi. (3.11)

4. Show for all i that

xi = Det[xi] = Det[A−1A[i](B)] =
Det[A[i](B)]

Det[A]
. (3.12)

This completes the proof of Cramer’s rule.

Problem 3.3 Let us solve the linear equation

AX = B, (3.13)

where A, B, and X are given by

A =




1 0 3 0

1 2 0 1

1 0 3 1

1 0 0 1



, B =




1

0

0

0



, X =




x1

x2

x3

x4



. (3.14)

1. Show that

a1 =




1 0 3 0

0 2 0 1

0 0 3 1

0 0 0 1



, a2 =




1 1 3 0

1 0 0 1

1 0 3 1

1 0 0 1



, a3 =




1 0 1 0

1 2 0 1

1 0 0 1

1 0 0 1



, a4 =




1 0 3 1

1 2 0 0

1 0 3 0

1 0 0 0



. (3.15)
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3.2 Calculation of Inverse Matrix

2. Show that

Det[A] = 6, Det[a1] = 6, Det[a2] = 0, Det[a3] = 0, Det[a4] = −6. (3.16)

3. Show that

X =




1

0

0

−1



. (3.17)

The following REDUCE code confirms the above calculation:

aa:=mat((1,0,3,0),(1,2,0,1),(1,0,3,1),(1,0,0,1));

b:=mat((1),(0),(0),(0));

a1:=mat((1,0,3,0),(0,2,0,1),(0,0,3,1),(0,0,0,1));

a2:=mat((1,1,3,0),(1,0,0,1),(1,0,3,1),(1,0,0,1));

a3:=mat((1,0,1,0),(1,2,0,1),(1,0,0,1),(1,0,0,1));

a4:=mat((1,0,3,1),(1,2,0,0),(1,0,3,0),(1,0,0,0));

dd:=det(aa);

x1:=det(a1)/dd;

x2:=det(a2)/dd;

x3:=det(a3)/dd;

x4:=det(a4)/dd;

xx:=mat((x1),(x2),(x3),(x4));

xf:=aa^(-1)*b;

xx-xf;

3.2 Calculation of Inverse Matrix

Problem 3.4 Let us solve the matrix equation by making use of Cramer’s rule:

AX = 1, (3.18)
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3.2 Calculation of Inverse Matrix

where A is an n× n invertible matrix, X is an unknown n× n matrix, and 1 is the n× n identity

matrix. We define

A =
(
a1 a2 · · · ai−1 ai ai+1 · · · an

)
, (3.19a)

X =
(
x1 x2 · · · xi−1 xi xi+1 · · · xn

)
, (3.19b)

1 =
(
E1 E2 · · · Ei−1 Ei Ei+1 · · · En

)
, (3.19c)

A[i](Ei) ≡
(
a1 a2 · · · ai−1 Ei ai+1 · · · an

)
, (3.19d)

where Mi is the ith columns of an n× n matrix M .

1. By making use of Cramer’s rule, show that

x1 =
1

Det[A]




Det[A[1](E1)]

Det[A[2](E1)]
...

Det[A[n](E1)]



. (3.20)

2. For any i = 1, 2, · · · , n, show that

xi =
1

Det[A]




Det[A[1](Ei)]

Det[A[2](Ei)]
...

Det[A[n](Ei)]



. (3.21)

3. Show that

X =
(
x1 x2 · · · xi−1 xi xi+1 · · · xn

)

=
1

Det[A]




Det[A[1](E1)] Det[A[1](E2)] · · · Det[A[1](En)]

Det[A[2](E1)] Det[A[2](E2)] · · · Det[A[2](En)]
...

...
. . .

...

Det[A[n](E1)] Det[A[n](E2)] · · · Det[A[n](En)]



. (3.22)

4. Show that the (ij) element of X is

xij =
Det[A[i](Ej)]

Det[A]
. (3.23)

5. Show that the solution X also satisfies the linear equation

XA = 1. (3.24)
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3.2 Calculation of Inverse Matrix

Therefore, we have shown that

A−1 =
1

Det[A]




Det[A[1](E1)] Det[A[1](E2)] · · · Det[A[1](En)]

Det[A[2](E1)] Det[A[2](E2)] · · · Det[A[2](En)]
...

...
. . .

...

Det[A[n](E1)] Det[A[n](E2)] · · · Det[A[n](En)]



, (3.25)

(A−1)ij =
Det[A[i](Ej)]

Det[A]
. (3.26)

Theorem 3.5

A−1 =
CT

Det[A]
=

1

Det[A]




C11 C21 · · · Cn1

C12 C22 · · · Cn2

...
...

. . .
...

C1n C2n · · · Cnn



, (3.27)

where Cij is the (ij) cofactor of the matrix A:

Cij = (−1)i+jM (ij) = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1 j−1 a1 j+1 · · · a1n

a21 a22 · · · a1 j−1 a2 j+1 · · · a2n

...
...

. . .
...

... · · · ...

ai−1 1 ai−1 2 · · · ai−1 j−1 ai−1 j+1 · · · ai−1n

ai+11 ai+12 · · · ai+1 j−1 ai+1 j+1 · · · ai+1n

...
...

...
...

...
. . .

...

an1 an2 · · · an j−1 an j+1 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.28)

M (ij) is the (ij) minor of A.

Problem 3.6 Let us compute the inverse matrix of A, where

A =




2 0 3

0 1 0

1 0 2


 . (3.29)
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3.2 Calculation of Inverse Matrix

1. Show that

A[1](E1) =




1 0 3

0 1 0

0 0 2


 , A[1](E2) =




0 0 3

1 1 0

0 0 2


 , A[1](E3) =




0 0 3

0 1 0

1 0 2


 ,

A[2](E1) =




2 1 3

0 0 0

1 0 2


 , A[2](E2) =




2 0 3

0 1 0

1 0 2


 , A[2](E3) =




2 0 3

0 0 0

1 1 2


 ,

A[3](E1) =




2 0 1

0 1 0

1 0 0


 , A[3](E2) =




2 0 0

0 1 1

1 0 0


 , A[3](E3) =




2 0 0

0 1 0

1 0 1


 . (3.30)

2. Show that

Det[A] = 1,

Det[A[1](E1)] = 2, Det[A[1](E2)] = 0, Det[A[1](E3)] = −3,

Det[A[2](E1)] = 0, Det[A[2](E2)] = 1, Det[A[2](E3)] = 0,

Det[A[3](E1)] = −1, Det[A[3](E2)] = 0, Det[A[3](E3)] = 2. (3.31)

3. Show that

A−1 =
1

Det[A]




Det[A[1](E1)] Det[A[1](E2)] Det[A[1](E3)]

Det[A[2](E1)] Det[A[2](E2)] Det[A[2](E3)]

Det[A[3](E1)] Det[A[3](E2)] Det[A[3](E3)]


 =




2 0 −3
0 1 0

−1 0 2


 . (3.32)

4. Show that A−1A = AA−1 = 1:



2 0 3

0 1 0

1 0 2







2 0 −3
0 1 0

−1 0 2


 =




1 0 0

0 1 0

0 0 1


 , (3.33a)




2 0 −3
0 1 0

−1 0 2







2 0 3

0 1 0

1 0 2


 =




1 0 0

0 1 0

0 0 1


 . (3.33b)

We could have computed A−1 by making use of MATHEMATICA:

A = {{2, 0, 3}, {0, 1, 0}, {1, 0, 2}};
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3.2 Calculation of Inverse Matrix

AInverse = Inverse[A]

A.AInverse

AInverse.A
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3.2 Calculation of Inverse Matrix

II. Euclidean Space

Test

4. Polar coordinate system in n-dimensional Euclidean space

4.1 3-dimensional polar coordinates

Exercise 4.1 One of the ways to evaluate the gaussian integral,

I =

∫ ∞

−∞
e−x2

dx =
√
π, (4.1)

is to compute the double integral

I2 =

∫ ∞

−∞
e−x2

dx

∫ ∞

−∞
e−y2dy. (4.2)

1. We introduce 2-dimensional polar coordinate system

r =
√
x2 + y2, (4.3a)

θ = arctan
y

x
, 0 ≤ θ ≤ 2π, (4.3b)

where θ is the polar angle and φ is the azimuthal angle. Show that

x = r cos θ, (4.4a)

y = r sin θ. (4.4b)

2. Show that, for an arbitrary function f(x, y),

∫ ∞

−∞
dx

∫ ∞

−∞
dy f(x, y) =

∫ ∞

0
dr

∫ 2π

0
dθ J

(
x, y

r, θ

)
f(r cos θ, r sin θ), (4.5)

where the Jacobian J
(
x,y
r,θ

)
is defined by

J

(
x, y

r, θ

)
=

∣∣∣∣∣∣

∂x
∂r

∂y
∂r

∂x
∂θ

∂y
∂θ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
cos θ sin θ

−r sin θ r cos θ

∣∣∣∣∣∣
= r. (4.6)

We assume that the definite integral
∫∞
−∞ dx

∫∞
−∞ dy f(x, y) converges.
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4.1 3-dimensional polar coordinates

3. Show that

I2 =

∫ ∞

0
re−r2dr

∫ 2π

0
dθ = π. (4.7)

4. Show that I must be real and positive. This leads to

I =
√
π. (4.8)

5. Show that, for any positive real numbers a and any real number b,
∫ ∞

−∞
e−a(x−b)2dx =

√
π

a
. (4.9)

Problem 4.2 Let us consider the case in three dimensions:

I3 =

∫ ∞

−∞
e−(x2+y2+z2)dx dy dz. (4.10)

By making use of the previous result I =
√
π, we know I3 = π3/2. Let us evaluate the integral

directly in the spherical polar coordinate system.

1. We introduce the spherical polar coordinate system,

r =
√
x2 + y2 + z2, (4.11a)

θ = arccos
z

r
, 0 ≤ θ ≤ π, (4.11b)

φ = arctan
y

x
, 0 ≤ φ ≤ 2π. (4.11c)

Show that

x = r sin θ cosφ, (4.12a)

y = r sin θ sinφ, (4.12b)

z = r cos θ. (4.12c)

2. Show that, for an arbitrary function f(x, y),
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz f(x, y, z) =

∫ ∞

0
dr

∫ π

0
dθ

∫ 2π

0
dφJ

(
x, y, z

r, θ, φ

)

×f(r sin θ cosφ, r sin θ sinφ, r cos θ), (4.13)

where the Jacobian J
(
x,y,z
r,θ,φ

)
is defined by

J

(
x, y, z

r, θ, φ

)
=

∣∣∣∣∣∣∣∣∣

∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂θ

∂y
∂θ

∂z
∂θ

∂x
∂φ

∂y
∂φ

∂z
∂φ

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

sin θ cosφ sin θ sinφ cos θ

r cos θ cosφ r cos θ sinφ −r sin θ
−r sin θ sinφ r sin θ cosφ 0

∣∣∣∣∣∣∣∣∣
= r2 sin θ. (4.14)

We assume that the definite integral
∫∞
−∞ dx

∫∞
−∞ dy

∫∞
−∞ dz f(x, y, z) converges.
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4.1 3-dimensional polar coordinates

3. Show that

I3 = Ω3

∫ ∞

0
r2e−r2dr, (4.15)

where the 3-dimensional solid-angle is

Ω3 =

∫
dΩ3 =

∫ 2π

0
dφ

∫ π

0
dθ sin θ =

∫ 2π

0
dφ

∫ 1

−1
d cos θ = 4π. (4.16)

4. Show that I must be real and positive. This leads to

∫ ∞

0
r2e−r2dr =

√
π

4
. (4.17)

Therefore,

I3 = π3/2. (4.18)

We can check this result by making use of the following MATHEMATICA code:

Integrate[x^2 E^(-x^2),{x,0,Infinity}]

Exercise 4.3 Let us consider Γ function. For any natural number n,

Γ(n) = (n− 1)!, n = 1, 2, 3, · · · . (4.19)

For any integer n > 0, Γ(n) has the recurrence relation

Γ(n+ 1) = nΓ(n). (4.20)

In order to evaluate the radial integral (4.25), it is convenient to make use of the following integral

definition of the Gamma function:

Γ(x) =

∫ ∞

0
tx−1e−t dt, x > 0. (4.21)

1. Show that the definition (4.21) satisfies Γ(n) = (n− 1)!

2. Show that the definition (4.21) satisfies nΓ(n) = Γ(n+ 1).

3. Show that the integral converges for any real number x such that 0 < x < 1.

4. Show that the relation nΓ(n) = Γ(n+1) can be generalized into xΓ(x) = Γ(x+1) to define

Γ(x) for any real number x except for x = 0 and negative integers.
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4.1 3-dimensional polar coordinates

5. Show that the relation xΓ(x) = Γ(x+ 1) can be generalized into zΓ(z) = Γ(z + 1) to define

Γ(z) for any complex number z except for z = 0 and negative integers by making use of

analytic continuation.

Problem 4.4 By making use of the definition of Γ function, we can generalize the result for the

integral I to the n-dimensional case easily:

In =

n∏

i=1

∫ ∞

−∞
dxi e

−x2
i = π

n
2 . (4.22)

In this case, we define the radius

r =

√√√√
n∑

i=1

x2i (4.23)

and define the appropriate polar and azimuthal angles to express xi.

1. Show that

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 · · ·

∫ ∞

−∞
dxnf



√√√√

n∑

i=1

x2i


 = Ωn

∫ ∞

0
rn−1drf(r), (4.24)

where Ωn is the solid angle in the n-dimensional Euclidean space. We postpone to define

the polar and azithumal angles in n dimensions. Instead, we want to find the solid angle in

n dimensions.

2. Show that

∫ ∞

0
rn−1e−r2dr =

Γ(n/2)

2
. (4.25)

3. Show that

Ωn =
2πn/2

Γ(n/2)
. (4.26)

n 1 2 3 4 5 6 7 8 9 10 · · ·

Ωn 2 2π 4π 2π2 8
3π

2 π3 16
15π

3 π4

3
32
105π

4 π5

12 · · ·
(4.27)

We can check this table by making use of the following MATHEMATICA code:

o[n_] := 2 Pi^(n/2)/Gamma[n/2]

Do[Print[n, "=", Simplify[o[n]]], {n, 0, 10}]
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4.1 3-dimensional polar coordinates

4. Show that

Γ(12 ) =
√
π. (4.28)

Problem 4.5 We have shown that the solid angle of the n-dimensional Euclidean space is Ωn =

2πn/2/Γ(n/2).

1. Show that the area An of the surface of a sphere with radius R defined in the n-dimensional

Euclidean space is

An = ΩnR
n−1. (4.29)

2. Show that the volume Vn of a sphere with radius R defined in the n-dimensional Euclidean

space is

Vn =
Ωn

n
Rn. (4.30)

Problem 4.6 It is trivial to evaluate the following integral,

1 =

∫ ∞

0
e−tdt. (4.31)

1. By rescaling the integral by t→ λt, show that

1

λ
=

∫ ∞

0
e−λtdt. (4.32)

We take the (n− 1)th derivative of the above expression:

(
− ∂

∂λ

)n−1 1

λ
=

(n− 1)!

λn
=

∫ ∞

0
tn−1e−λtdt. (4.33)

Therefore, the Gamma function for any positive integer n can be expressed as

Γ(n) = (n− 1)! = λn
(
− ∂

∂λ

)n−1 ∫ 1

0
e−λtdt. (4.34)

2. Show that

λn
(
− ∂

∂λ

)n−1 ∫ 1

0
e−λtdt =

∫ 1

0
tn−1e−tdt. (4.35)

We can check this formula by making use of the following MATHEMATICA code:

F=D[(-1)^(n-1)/x,{x,n-1}]
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4.2 4-dimensional polar coordinates

4.2 4-dimensional polar coordinates

Problem 4.7 Let us construct the spherical polar coordinate system defined in 4-dimensional

Euclidean space. We can introduce a Cartesian coordinates xi ∈ R to describe the position of a

point. The distance r between a point x = (x1, x2, x3, x4) and the origin 0 = (0, 0, 0, 0) is defined

by

r =
√
x2 =

√
x · x =

√
(xi)2 =

√
x21 + x22 + x23 + x24. (4.36)

1. We define the polar angle θ1 with respect to x4 axis. Show that

x4 = r cos θ1, (4.37a)
√
x21 + x22 + x23 = r sin θ1, 0 ≤ θ1 ≤ π. (4.37b)

Provide the reason why 0 ≤ θ1 ≤ π.

2. Now we consider the three-dimensional vector (x1, x2, x3, 0) which is perpendicular to the

x4 axis. We define the polar angle θ2 with respect to x3 axis in the three dimensional space

spanned by (x1, x2, x3, 0). Show that

x3 =
√
x21 + x22 + x23 cos θ2, (4.38a)

√
x21 + x22 =

√
x21 + x22 + x23 sin θ2, 0 ≤ θ2 ≤ π. (4.38b)

Provide the reason why 0 ≤ θ2 ≤ π.

3. As the last step, we define the azimuthal angle φ to define x1 and x2. Show that

x1 =
√
x21 + x22 cosφ, (4.39a)

x2 =
√
x21 + x22 sinφ, 0 ≤ φ ≤ 2π. (4.39b)

4. As a result, in the spherical polar coordinate system in the 4-dimensional Euclidean space,

we need two polar angles and one azimuthal angle. Show that

x1 = r sin θ1 sin θ2 cosφ, (4.40a)

x2 = r sin θ1 sin θ2 sinφ, (4.40b)

x3 = r sin θ1 cos θ2, (4.40c)

x4 = r cos θ1. (4.40d)
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4.2 4-dimensional polar coordinates

Problem 4.8 We can make use of the parametrization (4.40) to find the volume element in terms

of polar coordinates.

1. Show that the volume element of the 4-dimensional Euclidean space is expressed as

∫
dx1

∫
dx2

∫
dx3

∫
dx4 =

∫
dr r3

∫
dθ1

∫
dθ2

∫
dφJ

(
x1, x2, x3, x4
r, θ1, θ2, φ

)

=

∫
dr r3

∫
dθ1 sin

2 θ1

∫
dθ2 sin θ2

∫
dφ. (4.41)

2. Show that the solid angle is obtained as

Ω4 =

∫ π

0
dθ1 sin

2 θ1

∫ π

0
dθ2 sin θ2

∫ 2π

0
dφ

=

∫ 1

−1

√
1− cos2 θ1d cos θ1

∫ 1

−1
d cos θ2

∫ 2π

0
dφ

=
π

2
× 2× 2π = 2π2. (4.42)

This is equivalent to Ωn = 2πn/2/Γ(n/2).

The following REDUCE program computes the Jacobian for the polar coordinate system in the

4-dimensional Euclidean space:

%r:=sqrt(x1^2+x2^2+x3^2+x4^2);

x1:=r*sin(t1)*sin(t2)*cos(ph);

x2:=r*sin(t1)*sin(t2)*sin(ph);

x3:=r*sin(t1)*cos(t2);

x4:=r*cos(t1);

mm:=mat( (df(x1,r) ,df(x2,r ),df(x3,r ),df(x4,r )),

(df(x1,t1),df(x2,t1),df(x3,t1),df(x4,t1)),

(df(x1,t2),df(x2,t2),df(x3,t2),df(x4,t2)),

(df(x1,ph),df(x2,ph),df(x3,ph),df(x4,ph)) );

let sin(t1)^2=1-cos(t1)^2;

let sin(t2)^2=1-cos(t2)^2;

let sin(ph)^2=1-cos(ph)^2;

dd:=det(mm);
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4.3 n-dimensional polar coordinates

4.3 n-dimensional polar coordinates

Problem 4.9 By making use of mathematical induction, verify the following.

1. The spherical polar coordinates in the n-dimensional Euclidean space consist of radius r,

(n − 2) polar angles, and a single azimuthal angle. The Cartesian coordinates are then

expressed as

x1 = r sin θ1 sin θ2 sin θ3 · · · sin θn−3 sin θn−2 cosφ, (4.43a)

x2 = r sin θ1 sin θ2 sin θ3 · · · sin θn−3 sin θn−2 sinφ, (4.43b)

x3 = r sin θ1 sin θ2 sin θ3 · · · sin θn−3 cos θn−2, (4.43c)

x4 = r sin θ1 sin θ2 sin θ3 · · · cos θn−3, (4.43d)

... (4.43e)

xn−2 = r sin θ1 sin θ2 cos θ3, (4.43f)

xn−1 = r sin θ1 cos θ2, (4.43g)

xn = r cos θ1. (4.43h)

2. Show that the solid angle is

Ωn =

∫ π

0
dθ1 sin

n−2 θ1

∫ π

0
dθ2 sin

n−3 θ2

∫ π

0
dθ3 sin

n−4 θ3

· · · ×
∫ π

0
dθn−3 sin

2 θn−3

∫ π

0
dθn−2 sin θn−2

∫ 2π

0
dφ. (4.44)

3. For any complex number a and b such that a, b 6= 0, −1, −2, · · · , and for any complex

number n except for −1, −2, −3 · · · , show that

∫ 1

0
xa−1(1− x)b−1dx = B(a, b) =

Γ(a)Γ(b)

Γ(a+ b)
, (4.45)

∫ 1

−1
(1− x2)ndx = B(n+ 1, 12) =

Γ(n+ 1)Γ(12 )

Γ(n+ 3
2)

. (4.46)

4. Show that

∫ π

0
dθ sinn θ =

∫ 1

−1
(1− x2)n−1

2 dx =

√
πΓ
(
n+1
2

)

Γ
(
1 + n

2

) . (4.47)

5. Show that

n−2∏

k=1

∫ π

0
dθ sink θ =

π
n
2
−1

Γ(n/2)
. (4.48)
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5.1 Angle Average

6. Show that

Ωn =
2πn/2

Γ(n/2)
. (4.49)

This agrees with the result that we have obtained by making use of gaussian integrals.

5. Anglular Integrals

5.1 Angle Average

Problem 5.1 We have shown that

Ωn =

∫ π

0
dθ1 sin

n−2 θ1

∫ π

0
dθ2 sin

n−3 θ2

∫ π

0
dθ3 sin

n−4 θ3 · · ·

×
∫ π

0
dθn−3 sin

2 θn−3

∫ π

0
dθn−2 sin θn−2

∫ 2π

0
dφ

=
2πn/2

Γ(n/2)
. (5.1)

1. Show that

Ωn−1

Ωn
=

2π
n−1

2

Γ(n−1
2 )
× Γ(n2 )

2π
n
2

=
Γ(n2 )√
πΓ(n−1

2 )
. (5.2)

omega[n_] := 2 Pi^(n/2)/Gamma[n/2];

Simplify[omega[n - 1]/omega[n]]

2. By integrating over the angles except for θ1, show that

Ωn = Ωn ×
Ωn−1

Ωn

∫ π

0
dθ1 sin

n−2 θ1 =
ΩnΓ(

n
2 )√

πΓ(n−1
2 )

∫ 1

−1
(1− x21)

n−3

2 dx1, (5.3)

where x1 = cos θ1. Note that

∫ 1

−1
(1− x21)

n−3

2 dx1 =

√
πΓ(n−1

2 )

Γ(n2 )
. (5.4)

We can check this result by making use of the following MATHEMATICA code:

Gamma[n/2]/(Sqrt[Pi] Gamma[(n - 1)/2])*

Integrate[(1 - x^2)^((n - 3)/2), {x, -1, 1}]
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5.1 Angle Average

3. By integrating over the angles except for θ1 and θ2, show that

Ωn =

∫ π

0
dθ1 sin

n−2 θ1

∫ π

0
dθ2 sin

n−3 θ2Ωn−2

= Ωn
Γ(n2 )

πΓ(n−2
2 )

∫ 1

−1
(1− x21)

n−3

2 dx1

∫ 1

−1
(1− x22)

n−4

2 dx2, (5.5)

where xi = cos θi. Note that
∫ 1

−1
(1− x21)

n−3

2 dx1 =

√
πΓ(n−1

2 )

Γ(n2 )
, (5.6a)

∫ 1

−1
(1− x22)

n−4

2 dx2 =

√
πΓ(n−2

2 )

Γ(n−1
2 )

, (5.6b)

∫ 1

−1
(1− x21)

n−3

2 dx1

∫ 1

−1
(1− x22)

n−4

2 dx2 =
πΓ(n−2

2 )

Γ(n2 )
. (5.6c)

Gamma[n/2]/(Pi Gamma[(n - 2)/2])*

Integrate[(1 - x^2)^((n - 3)/2), {x, -1, 1}]*

Integrate[(1 - x^2)^((n - 4)/2), {x, -1, 1}]

Problem 5.2 Consider an integral involving n-dimensional Euclidean vectors:

I1 =

∫
dΩn̂

Ω
a · n̂, (5.7)

where a is a constant vector, dΩn̂ is the solid-angle element of the unit vector n̂, and Ω =

2πn/2/Γ(n/2) is the solid angle in n dimensions. It is convenient to choose the polar coordinate

system whose xn axis is along a. Then the coordinates of n̂ are given by n̂ = (n̂1, n̂2, · · · , n̂n),
where

n̂1 = sin θ1 sin θ2 sin θ3 · · · sin θn−3 sin θn−2 cosφ, (5.8a)

n̂2 = sin θ1 sin θ2 sin θ3 · · · sin θn−3 sin θn−2 sinφ, (5.8b)

n̂3 = sin θ1 sin θ2 sin θ3 · · · sin θn−3 cos θn−2, (5.8c)

n̂4 = sin θ1 sin θ2 sin θ3 · · · cos θn−3, (5.8d)

... (5.8e)

n̂n−2 = sin θ1 sin θ2 cos θ3, (5.8f)

n̂n−1 = sin θ1 cos θ2, (5.8g)

n̂n = cos θ1. (5.8h)

1. Show that in that frame,

a · n̂ = cos θ1. (5.9)
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5.1 Angle Average

2. Show that the integral reduces into

I1 =
Γ(n2 )√
πΓ(n−1

2 )

∫ 1

−1
(1− x21)

n−3

2 (ax1)dx1 = 0. (5.10)

It is straightforward to find that

I2k+1 =

∫
dΩn̂

Ω
(a · n̂)2n+1

= a2k+1 Γ(n2 )√
πΓ(n−1

2 )

∫ 1

−1
(1− x21)

n−3

2 x2k+1
1 dx1 = 0, n = 0, 1, 2, · · · . (5.11)

3. In a similar way, show that

I2k =

∫
dΩn̂

Ω
(a · n̂)2k

= a2k
Γ(n2 )√
πΓ(n−1

2 )

∫ 1

−1
(1− x21)

n−3

2 x2k1 dx1

= a2[[k]]
Γ(n2 )Γ(

1
2 + k)√

πΓ(n2 + k)
, (5.12)

where we have used

∫ 1

−1
(1− x2)ax2bdx =

1 + (−1)2b
2

Γ(1 + a)Γ(12 + b)

Γ(a+ b+ 3
2)

, (5.13)

∫ 1

−1
(1− x21)

n−3

2 x2k1 dx1 =
Γ(n−1

2 )Γ(12 + k)

Γ(n2 + k)
, (5.14)

Therefore,

I0 =
Γ(n2 )Γ(

1
2 )√

πΓ(n2 )
= 1, (5.15a)

I2 = a2
Γ(n2 )Γ(

1
2 + 1)√

πΓ(n2 + 1)
= a2

Γ(n2 )
1
2Γ(

1
2 )√

π n
2Γ(

n
2 )

=
a2

n
, (5.15b)

I4 = a4
Γ(n2 )Γ(

1
2 + 2)√

πΓ(n2 + 2)
= a4

Γ(n2 )
3
2
1
2Γ(

1
2 )√

π n+2
2

n
2Γ(

n
2 )

=
3a4

n(n+ 2)
, (5.15c)

I6 = a6
Γ(n2 )Γ(

1
2 + 2)√

πΓ(n2 + 2)
= a6

Γ(n2 )
5
2
3
2
1
2Γ(

1
2 )√

π n+4
2

n+2
2

n
2Γ(

n
2 )

=
5!!a6

n(n+ 2)(n + 4)
, (5.15d)

... (5.15e)

I2k = a2k
Γ(n2 )Γ(

1
2 + k)√

πΓ(n2 + k)
= a2k

Γ(n2 )
2k−1
2 · · · 32 1

2Γ(
1
2)√

π n+2k−2
2 · · · n+2

2
n
2Γ(

n
2 )

=
(2k − 1)(2k − 3) · · · 3 · 1 · a2k
n(n+ 2)(n + 4) · · · (n+ 2k − 2)

,

=
(2k − 1)!!(n − 2)!!a2k

(n+ 2k − 2)!!
, (5.15f)
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5.1 Angle Average

for n = 0, 1, 2, · · · . Here, n!! is defined by

n!! = n(n− 2)(n − 4) · · · , (5.16a)

9!! = 9 · 7 · 5 · · · · 1, (5.16b)

10!! = 10 · 8 · 6 · · · · 2. (5.16c)

We can check these results by making use of the following MATHEMATICA code:

Table[{2 k,

a^(2 k) Gamma[n/2] Gamma[1/2 + k]/Sqrt[Pi]/Gamma[n/2 + k] //

FullSimplify}, {k, 0, 3}] // TableForm

Problem 5.3 Next we evaluate

J11 =

∫
dΩn̂

Ω
a · n̂ b · n̂, (5.17)

where a and b are constant vectors.

1. Show that we can choose the frame in which

a = (0, 0, · · · , 0, a), (5.18a)

b = (0, 0, · · · , b sin θ, b cos θ), (5.18b)

where θ is the angle between a and b, and n̂ is given by (5.8). Then we have

a · n̂ b · n̂ = ab cos θ1(cos θ1 cos θ + sin θ1 cos θ2 sin θ)

= ab x1(x1 cos θ +
√

1− x21 x2 sin θ), (5.19)

where we have set xi = cos θi.

2. Show that the integral reduces into

I = ab
Γ(n2 )

πΓ(n−2
2 )

∫ 1

−1
dx1(1− x21)

n−3

2

∫ 1

−1
dx2(1− x22)

n−4

2 x1(x1 cos θ +
√

1− x21x2 sin θ)

= a · b Γ(n2 )

πΓ(n−2
2 )

∫ 1

−1
dx1x

2
1(1− x21)

n−3

2

∫ 1

−1
dx2(1− x22)

n−4

2

= a · b Γ(n2 )

2Γ(n2 + 1)
← Γ(n2 + 1) = n

2Γ(
n
2 )

=
a · b
n

. (5.20)
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5.2 Rotationally Invariant Tensor Integrals

where a · b = ab cos θ and the integrands that are odd functions of xi are vanishing. The

angular integrals are expressed as beta functions:

∫ 1

−1
dx1x

2
1(1− x21)

n−3

2 =

√
πΓ(n−1

2 )

2Γ(n2 + 1)
, (5.21a)

∫ 1

−1
dx2(1− x22)

n−4

2 =

√
πΓ(n2 − 1)

Γ(n−1
2 )

. (5.21b)

We can check the integral table by making use of the following MATHEMATICA code:

Integrate[x^2 (1 - x^2)^((n - 3)/2), {x, -1, 1}]

Integrate[(1 - x^2)^((n - 4)/2), {x, -1, 1}]

5.2 Rotationally Invariant Tensor Integrals

Problem 5.4 Consider a vector V i and a rank-2 tensor W ij. Under rotation, they transform like

V ′i = Rij V j, (5.22a)

W ′ij = RiaRibW ab, (5.22b)

where R is the matrix representing the rotation about θ̂ by an angle θ = |θ|.

1. Show that there is no vector V i that is invariant under rotation:

V ′i ≡ Rij V j = V i for any R. (5.23)

2. Show that any rank-2 tensor W ij can be decomposed into the form:

W ij = Sij +A[ij], (5.24a)

Sij = T ij +D(ij), (5.24b)

T ij =
1

n
δij W kk, (5.24c)

D(ij) =
1

2
(W ij +W ji)− 1

n
δijW kk, (5.24d)

A[ij] =
1

2
(W ij −W ji) =

1

2
ǫijkǫabkW

ab, (5.24e)

where the summation over a repeated index is assumed in W kk = Tr(W ij). We shall find

that D(ij) is symmetric traceless tensor and A[ij] is antisymmetric tensor.

3. Show that Sij is symmetric and A[ij] is antisymmetric under exchange of i↔ j.
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5.2 Rotationally Invariant Tensor Integrals

4. Show that both A[ij] and D(ij) are traceless:

Tr(D(ij)) = D(kk) = 0, (5.25a)

Tr(A[ij]) = A[kk] = 0. (5.25b)

5. Show that T ij is symmetric and traceful:

Tr(T ij) =
1

n
δℓℓW kk =W kk = Tr(W ij). (5.26)

6. Show that the rotationally symmetric (invariant) component of W ij is T ij:

T ′ij ≡ RiaRib T ab = T ij for any R. (5.27)

Problem 5.5 The angular integrals of previous problems involve tensor integrals,

T i =

∫
dΩn̂

Ω
n̂i, (5.28a)

T ij =

∫
dΩn̂

Ω
n̂in̂j, (5.28b)

T ijk =

∫
dΩn̂

Ω
n̂in̂jn̂k, (5.28c)

T ijkℓ =

∫
dΩn̂

Ω
n̂in̂jn̂kn̂ℓ, (5.28d)

...

Now we make use of the rotational properties of vectors to simplify above tensor integrals without

explicit angular integrations. T i must satisfy the vector transformation under rotation:

T ′i = Rij T j, (5.29)

where R is the matrix representing the rotation about θ̂ by an angle θ = |θ|. After the angular

integration, T i must be a linear combination of available vectors. However, because the only

available vector n̂ is already integrated out, there is no available vector left. Therefore,

T ′i = 0. (5.30)

1. Following the argument provided above, show that the integral T ij must satisfy the following

transformations,

T ′ij = RiaRjb T ab, (5.31a)

T ′ijk = RiaRjbRkc T abc, (5.31b)

...
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5.2 Rotationally Invariant Tensor Integrals

2. Show that all of the tensors T i, T ij, T ijk, · · · are completely symmetric under exchange of

any two vector indices. Therefore, the tensor integrals T i, T ij , T ijk, · · · are invariant under

rotation.

3. Show that all of the rotationally invariant tensors that have odd numbers of vector indices

must vanish.

4. Show that δij is the only linearly independent tensor that is invariant under rotation:

A′ij = RiaRjbAab = Aij , Aij = c2δ
ij , (5.32)

where c2 is an arbitrary number.

5. Therefore, we can set

T ij = c2δ
ij . (5.33)

By multiplying δij to both sides, we can determine the constant c2. Show that

T ij =
1

n
δijT kk. (5.34)

6. Show that the only linearly independent tensors that are invariant under rotation,

A′ijkℓ = RiaRjbRkcRℓdAabcd = Aijkℓ, (5.35)

are δijδkℓ, δikδjℓ, and δiℓδjk.

7. Therefore, we can set

T ijkℓ = c4(δ
ijδkℓ + δikδjℓ + δiℓδjk), (5.36)

where we have used the rotational symmetry to set the common coefficient c4 for the three

contributions. By multiplying δijδkℓ, or any other term on the right side, we can determine

c4. Show that

T ijkℓ =
1

n(n+ 2)
(δijδkℓ + δikδjℓ + δiℓδjk)T ppqq. (5.37)

Problem 5.6 Consider a rank-6 tensor T ijkℓmn that is invariant under rotation. Show that this

tensor is decomposed into a linear combination of Kronecker deltas:

T ijkℓmn = (δij∆kℓmn + δik∆jℓmn + δiℓ∆jkmn + δim∆jkℓn + δin∆jkℓm)T ppqqrr, (5.38a)

∆abcd =
1

n(n+ 2)(n + 4)
(δabδcd + δacδbd + δadδbc). (5.38b)

The following REDUCE program verifies the above statement:
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5.3 Scalar Integrals

vecdim n;

operator dd;

vector p,q,r,s,u,v;

for all a,b,c,d let

dd(a,b,c,d)=1/(n*(n+2))*(a.b*c.d+a.c*b.d+a.d*b.c);

tt:=1/(n+4)*(p.q*dd(r,s,u,v)+p.r*dd(q,s,u,v)

+p.s*dd(r,q,u,v)+p.u*dd(r,s,q,v)+p.v*dd(r,s,u,q));

d0:=p.q*r.s*u.v;

d1:=p.s*r.q*u.v;

d2:=p.r*q.s*u.v;

index p,q,r,s,u,v;

xx1:=tt*d0;

xx2:=tt*d1;

xx3:=tt*d2;

5.3 Scalar Integrals

Problem 5.7 Consider an integral I1(a) in the 3-dimensional Euclidean space,

I1(a) =

∫
dΩn̂

Ω

1

1 + a · n̂ , (5.39)

where a = (a1, a2, a3) is a constant vector defined in the 3-dimensional Euclidean space and n̂ is a

unit vector. The magnitude of a is less than 1: |a| < 1. The direction of n̂ varies and the integral
∫
dΩn̂ is over the solid angle of n̂. Here, Ω = 4π is the solid angle. To evaluate this integral it

is convenient to choose the x3 axis along the constant vector a and employ the spherical polar

coordinate system, in which

a = (0, 0, |a|), (5.40a)

n̂ = (sin θ cosφ, sin θ sinφ, cos θ). (5.40b)

1. Show that the integral I1(a) must be a scalar.

2. Show that the integrand of I1(a) is independent of the azimuthal angle φ and is dependent

upon |a| and cos θ. Therefore, after integrating over the solid angle, I1(a) becomes a function

of the only available scalar a2.
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5.3 Scalar Integrals

3. By integrating out the angles θ and φ, show that

I1(a) =
1

2

∫ 1

−1
dx

1

1 + |a|x =
1

2|a|

∫ 1+|a|

1−|a|

dt

t
=

tanh−1 |a|
|a| , (5.41)

where x = cos θ.

4. Show that the Taylor series expansion of I1(a) about |a| = 0 is

I1(a) =

∞∑

i=0

|a|2n
2n+ 1

= 1 +
|a|2
3

+
|a|4
5

+
|a|6
7

+
|a|8
9

+ · · · . (5.42)

Problem 5.8 In the 3-dimensional Euclidean space, we define

In(a) =

∫
dΩn̂

Ω

1

(1 + a · n̂)n for n = 2, 3, 4, · · · . (5.43)

Show that

In(a) =
1

2

∫ 1

−1
dx

1

(1 + |a|x)n .

=
1

2|a|

∫ 1+|a|

1−|a|

dt

tn

=
1

2(n − 1)|a|

[
1

(1− |a|)n−1
− 1

(1 + |a|)n−1

]

=
(1 + |a|)n−1 − (1− |a|)n−1

2(n− 1)|a|(1 − a2)n−1
. (5.44)

First several values are

I2(a) =
1

1− a2
, (5.45a)

I3(a) =
1

(1− a2)2
, (5.45b)

I4(a) =
3 + a2

3(1 − a2)3
, (5.45c)

I5(a) =
1 + a2

(1− a2)4
. (5.45d)

Problem 5.9 By substituting a→ a/λ into I1(a), we find that

I1(a/λ)

λ
=

∫
dΩn̂

Ω

1

λ+ a · n̂ =
1

2|a| log
λ+ |a|
λ− |a| =

tanh−1 λ|a|
λ|a| , (5.46)

This can be the generating function for In(a). By making use of the identity,

(−1)n−1

Γ(n)

∂n−1

∂λn−1

1

λ
=

1

λn
for n ≥ 1, (5.47)

show that

In(a) =
(−1)n−1

2|a|Γ(n)
∂n−1

∂λn−1
log

λ+ |a|
λ− |a|

∣∣∣∣
λ=1

. (5.48)

The following MATHEMATICA code confirms the above derivation:
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5.3 Scalar Integrals

f[n_] := (-1)^(n - 1)/Factorial[n - 1]*D[1/x, {x, n - 1}];

g[n_] := (-1)^(n - 1)/Factorial[n - 1]*

D[(Log[x + a] - Log[x - a])/(2 a), {x, n - 1}];

Do[Print[n, "=", FullSimplify[f[n]]], {n, 1, 10}]

Do[Print[n, "=", FullSimplify[g[n] /. x -> 1]], {n, 1, 10}]

Problem 5.10 Let us evaluate the integral

I1(a) =

∫
dΩn̂

Ω

1

1 + a · n̂ (5.49)

in n dimensions.

1. Show that, if we choose the xn-axis along the constant vector a, then we can simplify the

angular integral as

I1(a) =
Γ(n2 )√
πΓ(n−1

2 )

∫ 1

−1

(1− x2)n−3

2

1 + |a|x dx, (5.50)

where x = â · n̂. The integral can be evaluated by expanding the denominator about x = 0:

I1(a) =
Γ(n2 )√
πΓ(n−1

2 )

∞∑

k=0

(−1)k|a|k
∫ 1

−1
(1− x2)n−3

2 xkdx. (5.51)

Expand[Series[1/(1 + x), {x, 0, 20}] - Sum[(-1)^{k} x^k, {k, 0, 20}]]

2. Show that the x integral becomes a beta function:

∫ 1

−1
(1− x2)n−3

2 xkdx =
1 + (−1)k

2

Γ(n−1
2 )Γ(k+1

2 )

Γ(n+k
2 )

. (5.52)

This integral is non-vanishing only for even k.

Integrate[(1-x^2)^((n-3)/2)x^k ,{x,-1,1}]

((1 + (-1)^k) Gamma[(1 + k)/2] Gamma[1/2 (-1 + n)])/(2 Gamma[(k + n)/2])

3. Show that

I1(a) =
Γ(n2 )√
π

∞∑

k=0

Γ(k + 1
2)

Γ(k + n
2 )

a2k. (5.53)
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5.3 Scalar Integrals

4. The series is expressed in terms of the hypergeometric function:

∞∑

k=0

Γ(k + 1
2)

Γ(k + n
2 )

a2k =

√
π

Γ(n2 )
2F1[

1
2 , 1,

n
2 ,a

2]. (5.54)

Show that

I1(a) = 2F1[
1
2 , 1,

n
2 ,a

2], (5.55)

where the hypergeometric function 2F1(a, b, c; z) is defined by

2F1(a, b, c; z) =

∞∑

n=0

(a)n(b)n
(c)n

zn

n!
, (a)n =

Γ(a+ n)

Γ(a)
. (5.56)

Sum[Gamma[k+1/2]/Gamma[k+n/2] x^(2k),{k,0,Infinity}]

(Sqrt[\[Pi]] Hypergeometric2F1[1/2, 1, n/2, x^2])/Gamma[n/2]

5. Show for n = 3 that

I1(a) =
tanh−1 |a|
|a| =

1

2|a| log
1 + |a|
1− |a| . (5.57)

This reproduces the previous result for n = 3.

Problem 5.11 Consider an integral

J11(a, b) =

∫
dΩn̂

Ω

1

(1 + a · n̂)(1 + b · n̂) , (5.58)

where the vectors a = (0, 0, · · · , 0, a) and b = (0, 0, · · · , b sin θ, b cos θ) are constant vectors defined

in the n-dimensional Euclidean space and n̂ is a unit vector. The magnitudes of a and b are less

than 1: |a|, |b| < 1. The direction of n̂ varies and the integral
∫
dΩn̂ is over the solid angle of n̂.

Here, Ω is the solid angle in n dimensions. To evaluate this integral it is convenient to choose the

xn axis along a, to choose the xn−1 axis so that b be on the plane spanned by xn and xn−1 axes,

and to employ the spherical polar coordinate system:

a = (0, · · · , 0, |a|), (5.59a)

b = (0, · · · , |b| sin θ, |b| cos θ), (5.59b)

where θ is the angle between a and b.

1. Show that

n̂ = (e1, e2, · · · , en), (5.60)
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5.3 Scalar Integrals

where

e1 = sin θ1 sin θ2 sin θ3 · · · sin θn−3 sin θn−2 cosφ,

e2 = sin θ1 sin θ2 sin θ3 · · · sin θn−3 sin θn−2 sinφ,

e3 = sin θ1 sin θ2 sin θ3 · · · sin θn−3 cos θn−2,

e4 = sin θ1 sin θ2 sin θ3 · · · cos θn−3,

...

en−2 = sin θ1 sin θ2 cos θ3,

en−1 = sin θ1 cos θ2,

en = cos θ1.

2. Show that the integrand is independent of the polar angles θ3, θ4, · · · , θn−2 and the azimuthal

angle φ.

3. Show that

a · n̂ = a cos θ1, (5.61a)

b · n̂ = b(cos θ cos θ1 + sin θ sin θ1 cos θ2), (5.61b)

(1 + a · n̂)(1 + b · n̂) = (1 + a cos θ1)
[
1 + b(cos θ1 cos θ + sin θ1 cos θ2 sin θ)

]

= (1 + a x)
[
1 + b(cx+ sy

√
1− x2)

]
, (5.61c)

where c = cos θ, s = sin θ, x = cos θ1, and y = cos θ2.

4. By integrating out these angles, show that

J11(a, b) =
Γ(n2 )

πΓ(n−2
2 )

∫ 1

−1
dx

∫ 1

−1
dy

(1− x2)n−3

2 (1− y2)n−4

2

(1 + a x)[1 + b(cx+ sy
√
1− x2)]

, (5.62)

where c = cos θ, s = sin θ, x = cos θ1, and y = cos θ2. The evaluation of this integral is quite

involved.

5. We introduce the Feynman parametrization

1

AB
=

∫ 1

0

dt

[(1− t)A+ tB]2
, (5.63)

F=1+( (1-t)A+t B )^2

Integrate[1/F,{t,0,1}]
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5.3 Scalar Integrals

which can be verified in a straightforward way. By making use of the Feynman parametriza-

tion, show that

J11(a, b) =

∫ 1

0
dt

∫
dΩn̂

Ω

1
[
1 + c(t) · n̂

]2

=
Γ(n2 )√
πΓ(n−1

2 )

∫ 1

0
dt

∫ 1

−1

(1− x2)n−3

2

[
1 + |c(t)|x

]2 dx

=
Γ(n2 )√
πΓ(n−1

2 )

∫ 1

0
dt

∞∑

k=0

(k + 1)(−1)k |c(t)|k
∫ 1

−1
(1− x2)n−3

2 xkdx

=
Γ(n2 )√
π

∞∑

k=0

Γ(32 + k)

Γ(n2 + k)

∫ 1

0
dt|c(t)|2k

=
Γ(n2 )

2
√
π|a− b|

∞∑

k=0

Γ(12 + k)

Γ(n2 + k)

∣∣∣|a|2k+1 − |b|2k+1
∣∣∣

=
1

2|a − b|
∣∣∣|a|2F1(

1
2 , 1,

n
2 ,a

2)− |b|2F1(
1
2 , 1,

n
2 , b

2)
∣∣∣, (5.64)

where c(t) = (1− t)a+ tb = a+ (b− a)t and we have used

∫ 1

−1
(1− x2)n−3

2 xkdx =
1 + (−1)k

2

Γ(1+k
2 )Γ(n−1

2 )

2Γ(n+k
2 )

, (5.65a)

∫ 1

−1
(1− x2)n−3

2 x2kdx =
Γ(12 + k)Γ(n−1

2 )

2Γ(n2 + k)
, (5.65b)

∫ 1

0
dt|c(t)|2k =

1

(2k + 1)|a− b|
∣∣∣|a|2k+1 − |b|2k+1

∣∣∣ , (5.65c)

∞∑

k=0

Γ(12 + k)

Γ(n2 + k)
|a|2k+1 = |a|2F1(

1
2 , 1,

n
2 ,a

2). (5.65d)

6. Note that

|a|2F1(
1
2 , 1,

n
2 ,a

2)
∣∣∣
n=3

= 2 tanh−1 |a|. (5.66)

Show for n = 3 that

J11(a, b) =
1

|b− a|

∫ Max[|a|,|b|]

Min[|a|,|b|]

dt

1− t2

=
1

2|b − a|

∣∣∣∣log
(1 + |b|)(1 − |a|)
(1− |b|)(1 + |a|)

∣∣∣∣

=

∣∣tanh−1 |b| − tanh−1 |a|
∣∣

|b− a| . (5.67)

By setting b = 0, we find that the integral reproduces

I1(|a|) =
tanh−1 |a|
|a| . (5.68)
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5.4 Reduction of Tensor Integrals

Problem 5.12 Let us make use of the generating function approach to evaluate the integral

Jmn(a, b) =

∫
dΩn̂

Ω

1

(1 + a · n̂)m(1 + b · n̂)n . (5.69)

For simplicity, let n = 3.

1. By making an appropriate rescaling of J11(a, b), show that

J11(a/α, b/β)

αβ
=

∫
dΩn̂

Ω

1

(α+ a · n̂)(β + b · n̂) =
1

2 |αb− βa|

∣∣∣∣log
(β + |b|)(α − |a|)
(β − |b|)(α + |a|)

∣∣∣∣
(5.70)

2. Show that

Jmn(a, b) =
(−1)m+n

2Γ(m)Γ(n)

∂m−1

∂αn−1

∂n−1

∂βn−1

1

|αb− βa|

∣∣∣∣log
(β + |b|)(α − |a|)
(β − |b|)(α + |a|)

∣∣∣∣
∣∣∣∣
α=β=1

. (5.71)

5.4 Reduction of Tensor Integrals

Problem 5.13 We consider a vector integral

T i =

∫
dΩn̂

Ω

n̂i

1 + a · n̂ , (5.72)

where a = (a1, a2, · · · , an) is a constant vector defined in the n-dimensional Euclidean space and

the integral is over the solid angle of the unit vector n̂.

1. Show that T i must transform like a vector under rotation and it must be expressed as

T i = cai. (5.73)

2. By multiplying the constant vector ai to both sides, determine the coefficient c to find that

T i =
ai

a2

∫
dΩn̂

Ω

a · n̂
1 + a · n̂ . (5.74)

3. Show that the vector integral is completely determined in terms of a single scalar integral:

T i =
ai

a2

[
1−

∫
dΩn̂

Ω

1

1 + a · n̂

]
. (5.75)

Problem 5.14 We consider a vector integral

T i =

∫
dΩn̂

Ω

n̂i

(1 + a · n̂)(1 + b · n̂) , (5.76)
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5.4 Reduction of Tensor Integrals

where a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) are constant vectors defined in the n-dimensional

Euclidean space and the integral is over the solid angle of the unit vector n̂. In order to simplify

our analysis, we assume that a and b are perpendicular to each other:

a · b = 0. (5.77)

1. Show that T i must transform like a vector under rotation and it must be expressed as

T i = c1a
i + c2b

i. (5.78)

2. By multiplying the constant vectors ai and bi to both sides, we obtain two simultaneous

linear equations for c1 and c2. Determine the coefficients c1 and c2 to find that

T i =
ai

a2

∫
dΩn̂

Ω

a · n̂
(1 + a · n̂)(1 + b · n̂) +

bi

b2

∫
dΩn̂

Ω

b · n̂
(1 + a · n̂)(1 + b · n̂) . (5.79)

3. Show that the vector integral reduces into the form

T i =
ai

a2

∫
dΩn̂

Ω

1

1 + b · n̂ +
bi

b2

∫
dΩn̂

Ω

1

1 + a · n̂

−
(
ai

a2
+
bi

b2

)∫
dΩn̂

Ω

1

(1 + a · n̂)(1 + b · n̂) . (5.80)

The following REDUCE program is useful to check the above derivation:

vector p,q,u;

t1:=p.u;

t2:=q.u;

LHS:=n.u;

RHS:=c1*t1+c2*t2;

index u;

ss:=solve({LHS*t1=RHS*t1,LHS*t2=RHS*t2},{c1,c2});

remind u;

ans:=sub(ss,RHS);

let p.q=0;

ans;

ansf:= n.p*p.u/p.p + n.q*q.u/q.q;

ans-ansf;

52



5.4 Reduction of Tensor Integrals

Problem 5.15 We consider a tensor integral

T ij =

∫
dΩn̂

Ω

n̂in̂j

1 + a · n̂ , (5.81)

where a = (a1, a2, · · · , an) is a constant vector defined in the n-dimensional Euclidean space and

the integral is over the solid angle of the unit vector n̂.

1. Show that T ij is symmetric under exchange of the two vector indices and the tensor must

be expressed as a linear combination

T ij = c1δ
ij + c2a

iaj, (5.82)

where δij is invariant under rotation. Notice that aiaj is not invariant under rotation, while

aiaj is symmetric.

2. By multiplying the constant vector δij and aiaj , we find two linear equations for ci. Show

that the solution is

T ij =
δij

(n− 1)a2

∫
dΩn̂

Ω

a2 − (a · n̂)2
1 + a · n̂ − aiaj

(n − 1)a4

∫
dΩn̂

Ω

a2 − n(a · n̂)2
1 + a · n̂ . (5.83)

3. Show that

∫
dΩn̂

Ω

(a · n̂)2
1 + a · n̂ =

∫
dΩn̂

Ω

1− 1 + (a · n̂)2
1 + a · n̂

=

∫
dΩn̂

Ω

1

1 + a · n̂ +

∫
dΩn̂

Ω
(a · n̂− 1)

= −1 +
∫
dΩn̂

Ω

1

1 + a · n̂ . (5.84)

4. By making use of the reduction formula (5.84), show that

T ij =
δij

(n− 1)a2

[
1 +

∫
dΩn̂

Ω

a2 − 1

1 + a · n̂

]
− aiaj

(n− 1)a4

[
n+

∫
dΩn̂

Ω

a2 − n
1 + a · n̂

]
. (5.85)

The following REDUCE program confirms the above derivation:

vecdim d;

vector q,u,v;

t1:=u.v;

t2:=q.u*q.v;

LHS:=n.u*n.v;

RHS:=c1*t1+c2*t2;
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5.4 Reduction of Tensor Integrals

index u,v;

ss:=solve({LHS*t1=RHS*t1,LHS*t2=RHS*t2},{c1,c2});

remind u,v;

let n.n=1;

ans:=sub(ss,RHS);

ansf:=

(q.q- n.q^2)*u.v/(d-1)/q.q

-(q.q-n.q^2*d)*q.u*q.v/(d-1)/q.q^2;

ans-ansf;

Problem 5.16 Let us consider the rank-3 tensor integral T ijk defined in the n-dimensional Eu-

clidean space:

T ijk =

∫
dΩn̂

Ω

n̂in̂jn̂k

1 + a · n̂ , (5.86)

where a is a constant vector and the integral is over the solid angle of the unit vector n̂ and Ω is

the solid angle in n dimensions.

1. Show that T ijk is symmetric under exchange of any two indices and T ijk must be expressed

as the following linear combination:

T ijk = c1(δ
ijak + δjkai + δkiaj) + c2a

iajak, (5.87)

where c1 and c2 are scalars.

2. Find the values for ci.

3. Find the most compact expression for T ijk that contains the minimum number of the scalar

integrals.

Problem 5.17 Let us evaluate the integrals I, Ii, and Iij that are defined by

I =

∫
dΩn̂

4π(1 + δn̂ · q̂) , (5.88a)

Ii =

∫
dΩn̂n̂

i

4π(1 + δn̂ · q̂) , (5.88b)

Iij =

∫
dΩn̂n̂

in̂j

4π(1 + δn̂ · q̂) , (5.88c)

where q̂ is a unit constant vector, δ is a positive real number (0 < δ < 1), and the integral is over

the direction of the unit vector n̂. All of the Euclidean vectors are defined in 3 dimensions. In this

problem, we demonstrate how to evaluate tensor integrals component by component.
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5.4 Reduction of Tensor Integrals

1. It is convenient to choose a frame of reference in which q̂ is along the z axis so that

q̂ = (0, 0, 1), (5.89a)

n̂ = (sin θ cosφ, sin θ sinφ, cos θ). (5.89b)

Show in that frame that

n̂ · q̂ = cos θ = x, (5.90a)

dΩn̂ = d(cos θ)dφ = dxdφ, (5.90b)

where −1 ≤ x = cos θ ≤ 1.

2. Show that I, Ii, and Iij reduce into

I =
1

4π

∫ 1

−1
d cos θ

∫ 2π

0

dφ

1 + δ cos θ
, (5.91a)

Ii =
1

4π

∫ 1

−1
d cos θ

∫ 2π

0

dφ

1 + δ cos θ
(sin θ cosφ, sin θ sinφ, cos θ)i, (5.91b)

Iij=
1

4π

∫ 1

−1
d cos θ

∫ 2π

0

dφ

1 + δ cos θ




sin2 θ cos2 φ sin2 θ sinφ cosφ sin θ cos θ cosφ

sin2 θ sinφ cosφ sin2 θ sin2 φ sin θ cos θ sinφ

sin θ cos θ cosφ sin θ cos θ sinφ cos2 θ




ij

. (5.91c)

3. Confirm the following integral table:

1

2π

∫ 2π

0
dφ = 1, (5.92a)

1

2π

∫ 2π

0
dφ cosφ =

1

2π

∫ 2π

0
dφ sinφ =

1

2π

∫ 2π

0
dφ sin φ cosφ = 0, (5.92b)

1

2π

∫ 2π

0
dφ cos2 φ =

1

2π

∫ 2π

0
dφ sin2 φ =

1

2
. (5.92c)

4. Show that

I =
1

2

∫ 1

−1
dx

1

1 + δx
, (5.93a)

Ii =
q̂i

2

∫ 1

−1
dx

x

1 + δx
, (5.93b)

Iij =
1

2

∫ 1

−1
d cos θ

1

1 + δ cos θ




1
2 sin

2 θ 0 0

0 1
2 sin

2 θ 0

0 0 cos2 θ




ij

=
δij⊥
4

∫ 1

−1
dx

1− x2
1 + δx

+
q̂iq̂j

2

∫ 1

−1
dx

x2

1 + δx
, (5.93c)
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where

δij⊥ =




1 0 0

0 1 0

0 0 0




ij

and q̂iq̂j =




0 0 0

0 0 0

0 0 1




ij

. (5.94)

5. Verify the following integral table:

1

2

∫ 1

−1
dx

1

1 + δx
=

tanh−1 δ

δ
, (5.95a)

1

2

∫ 1

−1
dx

x

1 + δx
=
δ − tanh−1 δ

δ2
, (5.95b)

1

4

∫ 1

−1
dx

1− x2
1 + δx

=
δ − (1− δ2) tanh−1 δ

2δ3
, (5.95c)

1

2

∫ 1

−1
dx

x2

1 + δx
=
−δ + tanh−1 δ

δ3
. (5.95d)

F1=Simplify[Integrate[1/(2(1+d x)),{x,-1,1}]]

F2=Simplify[Integrate[x/(2(1+d x)),{x,-1,1}]]

F3=Simplify[Integrate[(1-x^2)/(4(1+d x)),{x,-1,1}]]

F4=Simplify[Integrate[x^2/(2(1+d x)),{x,-1,1}]]

Simplify[ ArcTanh[d] /d -F1]

Simplify[(d-ArcTanh[d])/d^2 -F2]

Simplify[(d-(1-d^2)ArcTanh[d])/(2d^3) -F3]

Simplify[(-d+ArcTanh[d])/d^3 -F4]

6. As the last step, verify the following integral table for I, Ii, and Iij.

I =
tanh−1 δ

δ
, (5.96a)

Ii = q̂i
1

δ2
(δ − tanh−1 δ), (5.96b)

Iij =
1

δ3

{
1

2
δij⊥

[
δ − (1− δ2) tanh−1 δ

]
+ q̂iq̂j

[
− δ + tanh−1 δ

]}
. (5.96c)

6. Radial Integrals

Problem 6.1 We introduce an intgral

I(m2) =

∫
dnp

(2π)n
1

p2 +m2
, (6.1)
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where p = (p1, p2, · · · , pn) is a vector in the n-dimensional Euclidean space and the range of the

integration is given by

∫
dnp

(2π)n
=

n∏

k=1

∫ ∞

−∞

dpk

2π
. (6.2)

1. By rescaling the integral

1 =

∫ ∞

0
e−tdt, (6.3)

show that

1

p2 +m2
=

∫ ∞

0
e−(p2+m2)tdt. (6.4)

2. Show that

I(m2) =

∫ ∞

0
dte−m2t

∫
dnp

(2π)n
e−tp2

, (6.5)

and that p integral is a product of n gaussian integrals:

∫
dnp

(2π)n
e−tp2

=
1

(2π)n

n∏

k=1

∫ ∞

−∞
e−tx2

kdxk. (6.6)

3. By making use of the previous result, show that

I(m2) =
1

(4π)n/2

∫ ∞

0
dt t−

n
2 e−m2t. (6.7)

4. By rescaling the integral over t with m2t→ u, show that

∫ ∞

0
dt t−

n
2 e−m2t = mn−2Γ

(
1− n

2

)
. (6.8)

Therefore, I(m2) reduces into the form:

I(m2) =
(m2)

n
2
−1

(4π)n/2
Γ
(
1− n

2

)
. (6.9)

5. Note that the Γ(x) diverges for x = 0, −1, −2, · · · . Show that the integral I(m2) is convergent

only for n = 1 and diverges for all integers n ≥ 2. For example, if we put n = 2, then the

integral is divergent logarithmically ∝ log Λ as the cutoff (upper bound) pmax = Λ → ∞.

This is called the logarithmic ultraviolet (UV) divergence. If we put n = 3, then the integral

is divergent linearly as the cutoff Λ. For n = 3, I(m2) diverges quadratically : I(m2) ∝ Λ2.

These divergences are called the power UV divergences.
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Problem 6.2 We evaluate the integral I(m2) in an alternative way. We notice that the integrand

of the integral (6.1) is independent of the direction of p. Therefore, we can integrate over the whole

solid angle easily.

1. By integrating over the angles first, show that

I(m2) =

∫
dnp

(2π)n
1

p2 +m2
=

2

Γ(n/2)(4π)n/2

∫ ∞

0
dp

pn−1

p2 +m2
, (6.10)

where

p ≡
√

p2. (6.11)

2. By rescaling the integral with p = mt, show that

I(m2) =
2mn−2

Γ(n/2)(4π)n/2

∫ ∞

0
dt

tn−1

t2 + 1
. (6.12)

3. By changing the variable t2 = u, show that

I(m2) =
mn−2

Γ(n/2)(4π)n/2

∫ ∞

0
du
u

n
2
−1

1 + u
. (6.13)

4. By changing the variable

1

1 + u
= 1− t, (6.14)

show that

∫ ∞

0
du

ua−1

1 + u
=

∫ 1

0
dt ta−1(1− t)−a = B(a, 1− a) = Γ(a)Γ(1− a). (6.15)

Therefore,

I(m2) =
(m2)

n
2
−1

(4π)n/2
Γ
(
1− n

2

)
, (6.16)

This reproduces the previous result in Eq. (6.9).

Problem 6.3 I(m2) can be used as a generating function of the following radial integrals:

Iα(m
2) =

∫
dnp

(2π)n
1

(p2 +m2)α
. (6.17)

1. Show that

Iα(m
2) =

1

Γ(α)

(
− ∂

∂m2

)α−1

Iα(m
2). (6.18)
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Do[Print[n,"=",D[(-1)^(n-1)/x/Gamma[n],{x,n-1}]],{n,1,20}]

2. Show that

I1(m
2) =

mn−2

(4π)n/2
Γ
(
1− n

2

)
, (6.19a)

I2(m
2) =

mn−4

(4π)n/2
Γ
(
2− n

2

)

Γ(2)
, (6.19b)

I3(m
2) =

mn−6

(4π)n/2
Γ
(
3− n

2

)

Γ(3)
, (6.19c)

...

3. Show that

Iα(m
2) =

∫
dnp

(2π)n
1

(p2 +m2)α
=

mn−2α

(4π)n/2
Γ
(
α− n

2

)

Γ(α)
. (6.20)

Do[Print[n, "=",

FullSimplify[(m^2)^(n/2 - a) Gamma[a - n/2]/Gamma[a] -

Gamma[1 - n/2]*

D[(-1)^(a - 1)/Gamma[a] x^(n/2 - 1), {x, a - 1}] /.

x -> m^2]], {a, 1, 20}]

Problem 6.4 Let us consider an example of a parametrization scheme called the Feynman

parametrizations:

1

AB
=

∫ 1

0
dx

1

[A+ (B −A)x]2 . (6.21)

Note that the two factors in the denominator, A and B, are merged into a square of a singe

variable at the expense of the introduction of an integration over a new parameter x. This method

is particularly useful in evaluating loop integrals in perturbation theory.

1. Verify the partial fraction identity,

1

AB
=

1

B −A

(
1

A
− 1

B

)
. (6.22)

2. Show that

∫ B

A

dt

t2
=

1

A
− 1

B
. (6.23)
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3. From the previous problems, we obtain

1

AB
=

1

B −A

∫ B

A

dt

t2
. (6.24)

By making use of this result, verify the Feynman parametrization formula in Eq. (6.21).

4. It is trivial to show that the parametrization in Eq. (6.21) is symmetric under exchange of

the coefficients x ↔ (1− x):

1

AB
=

∫ 1

0
dx

1

[(1 − x)A+ xB]2
=

∫ 1

0
dx

1

[xA+ (1− x)B]2
. (6.25)

We notice that the sum of the coefficients for A and B is always unity. By introducing the

integral of a Dirac delta function, show that the Feynman parametrization in Eq. (6.25) can

be written in a symmetric form:

1

AB
=

∫ 1

0
dx

∫ 1

0
dy

δ(1 − x− y)
(xA+ yB)2

. (6.26)

Problem 6.5 Let us generalize the result in Eq. (6.26) into the case of three factors in the de-

nominator:

1

ABC
= 2

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz

δ(1 − x− y − z)
(xA+ yB + zC)3

. (6.27)

1. By making use of the partial fraction for 1/(BC), show that

1

ABC
=

1

C −B

(
1

AB
− 1

CA

)
. (6.28)

2. By making use of Eq. (6.25), show that

1

AB
− 1

CA
=

∫ 1

0

dx

[xA+ (1− x)B]2
−
∫ 1

0

dx

[xA+ (1− x)C]2

=

∫ 1

0
dx

{
1

F 2
− 1

[F + (1− x)(C −B)]2

}
, (6.29)

where F ≡ xA+ (1 − x)B.

3. Verify the following definite integral:

∫ β

α

dt

tn+1
=

1

n

(
1

αn
− 1

βn

)
for n > 0. (6.30)

Therefore,

1

F 2
− 1

[F + (1− x)(C −B)]2
= 2

∫ (1−x)(C−B)

0

dt

(F + t)3
. (6.31)
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4. Changing the variable t = (C −B)y, show that

1

ABC
= 2

∫ 1

0
dx

∫ 1−x

0

dy

[F + (C −B)y]3
. (6.32)

5. Substituting F = xA+ (1− x)B, we find that

1

ABC
= 2

∫ 1

0
dx

∫ 1−x

0
dy

1

[xA+ (1− x− y)B + yC]3
. (6.33)

Verify the following symmetric version of the Feynman parametrization for 1/(ABC):

1

ABC
= 2

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz

δ(1 − x− y − z)
(xA+ yB + zC)3

. (6.34)

Problem 6.6 There are quite a few modified versions of the above Feynman parametrization.

Show that all of the following parametrizations are equivalent among one another.

1

ABC
= 2

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz

δ(1 − x− y − z)
(xA+ yB + zC)3

, (6.35a)

1

ABC
= 2

∫ 1

0
dx

∫ 1−x

0
dy

1

[xA+ yB + (1− x− y)C]3
, (6.35b)

1

ABC
= 2

∫ 1

0
dx

∫ 1

0
dt

1− x
{xA+ (1− x)[tB + (1− t)C]}3 , (6.35c)

1

ABC
= 2

∫ 1

0
dx

∫ 1

0
dt

x

{(1 − x)A+ x[(1− t)B + tC]}3 . (6.35d)

Problem 6.7 By applying mathematical induction, show that

1

A1A2 · · ·An
= (n− 1)!

∫ 1

0
dx1

∫ 1

0
dx2 · · ·

∫ 1

0
dxn

δ(1 − x1 − x2 − · · · − xn)
(x1A1 + x2A2 + · · ·+ xnAn)n

. (6.36)

Problem 6.8 Consider the following integral

I =

∫
dnp

(2π)n
1

(p2 +m2)[(p − q)2 +m2]
, (6.37)

where q is a constant vector in the n-dimensional Euclidean space.

1. By making use of the Feynman parametrization, we can combine the two denominator factors

as

I =

∫ 1

0
dt

∫
dnp

(2π)n
1

{
t(p2 +m2) + (1− t)[(p − q)2 +m2]

}2 . (6.38)

Show that

I =

∫ 1

0
dt

∫
dnp

(2π)n
1

{[
p− (1− t)q

]2
+ t(1− t)q2 +m2

}2 . (6.39)
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2. Show that the integral is invariant under translation of the integral variable

p→ k = p− (1− t)q, (6.40)

where k is a new integral variable. Then we have

I =

∫ 1

0
dt

∫
dnk

(2π)n
1

[
k2 + t(1− t)q2 +m2

]2 . (6.41)

3. The integrand is now independent of the direction of k and we can integrate over the angles

easily. The radial integral can be computed by making use of the integral table (6.20). Show

that

I =
mn−4Γ

(
2− n

2

)

(4π)n/2

∫ 1

0
dt
[
t(1− t)q2 +m2

]n
2
−2
. (6.42)

Integrate[(t (1 - t) - 1/4)^(n/2 - 2), {t, 0, 1}]

ConditionalExpression[(I^n 2^(4 - n))/(-3 + n), Re[n] > 3]

4. Show that the integral becomes UV divergent at n = 4.
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III. Group Theory

7. Group

Definition 7.1 A group G is a set of elements gi that satisfies the following conditions:

1. For all g1, g2 ∈ G the product g1g2 is also an element of G.

2. There exists an element e ∈ G called the identity such that for any g ∈ G,

ge = eg = g. (7.1)

3. The multiplication of three elements satisfies the associative law :

g1(g2g3) = (g1g2)g3, (7.2)

for any gi ∈ G.

4. For any g ∈ G, there exists an element g−1 called the inverse of g such that

gg−1 = g−1g = e. (7.3)

Exercise 7.2 Verify the following statements.

1. The identity e of a group G is uniquely defined.

2. The inverse g−1 of an element g ∈ G is uniquely defined.

Exercise 7.3 Show that the following sets of numbers satisfy the group requirements.

1. R− {0} ≡ {x|x is a real number and x 6= 0}.

2. C− {0} ≡ {z|z is a complex number and z 6= 0}.

3. The general linear group GL(N,R) is a set of N ×N real matrices A with Det[A] 6= 0.

4. The special linear group SL(N,C) is a set of N ×N complex matrices A with Det[A] = 1.
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5. The orthogonal group O(N,R) is a set of N ×N real matrices A defined by

O(N,R) = {A ∈ GL(N,R)|ATA = AAT = 1}, (7.4)

where 1 is the N ×N identity matrix.

6. The special orthogonal group SO(N,R) is a set of N ×N real matrices A defined by

SO(N,R) = {A ∈ GL(N,R)|ATA = AAT = 1 and Det[A] = +1}. (7.5)

This group is also called the rotation group.

7. The unitary group U(N) is a set of N ×N complex matrices defined by

U(N) = {A ∈ GL(N,C)|A†A = AA† = 1}. (7.6)

8. The special unitary group SU(N) is a set of N ×N complex matrices defined by

SU(N) = {A ∈ GL(n,C)|A†A = AA† = 1 and Det[A] = +1}. (7.7)

8. SO(N)

Exercise 8.1 In general we need N2 real parameters to represent an arbitrary real N×N matrix.

Suppose ei is the ith row vector of a matrix R ∈ O(N).

1. Show that the condition RTR = 1 is equivalent to ei · ej = δij for i, j = 1, 2, · · · , N .

2. The number of constraints is

N +
N(N − 1)

2
=
N(N + 1)

2
, (8.1)

where N constraints are for i = j and 1
2N(N − 1) constraints are for i 6= j. Show that we

need 1
2N(N − 1) real parameters to represent an arbitrary matrix in O(N).

3. Show that Det[RT ] = Det[R] and Det[R] = ±1.

4. SO(N) is a subset of O(N) that satisfies Det[R] = 1, for any R ∈ SO(N). Show that SO(N)

is a continuous subgroup of O(N).
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8.1 SO(2)

8.1 SO(2)

Exercise 8.2 Therefore, we need only a single real parameter to represent matrices in SO(2).

1. By making use of this result, show that the following matrix

R(θ) =


cos θ − sin θ

sin θ cos θ


 , (8.2)

represents any element of SO(2) where θ is a real number.

2. Show that any element A ∈ O(2) with Det[A] = −1 can be parametrized by

A(θ) = R(θ)P1, (8.3)

where P1 represents the reflection, x→ −x, whose matrix representation is given by

P1 =


−1 0

0 1


 . (8.4)

Show also that the {A(θ)|A(θ) = R(θ)P1, θ ∈ R} is not a group. Therefore, every element

of O(2) can be parameterized by

O(2) = {M |M = R(θ) or R(θ)P1, θ ∈ R}. (8.5)

3. Let us consider the parity transformation P = −1. Show that P is an element of O(2) by

finding the parameter θ to satisfy R(θ) or R(θ)P1.

4. Show that {1,P} is a subgroup of O(N).

5. Show that {1,P1,P2,P} is a subgroup of O(N), where Pi represents the reflection of xi →
−xi and P is the parity.

P1 =


−1 0

0 1


 , P2 =


1 0

0 −1


 , P = −1. (8.6)

Problem 8.3 We observe that every element of the matrix representation R(θ) for SO(N) is

analytic: R(θ)ij is differentiable to any order for any value of the parameter θ.

1. Show that R(0) = 1.

65



8.1 SO(2)

2. Show that for any integer n > 0,

R(θ) = [R(θ/n)]n. (8.7)

3. Show that

R(θ/n) = 1+
θ

n
G+O

[
(θ/n)2

]
, (8.8)

where G is a traceless anti-hermitian matrix which is defined by

G =


0 −1
1 0


 . (8.9)

It is trivial to show that G2n = (−1)n1 and G2n+1 = (−1)nG.

4. Show that

R(θ) = lim
n→∞

(
1+

θ

n
G

)n

= eθG, (8.10)

where the exponential of an N ×N matrix A is defined by

eA =

∞∑

k=0

Ak

k!
. (8.11)

5. Provide the reason why the terms in Eq. (8.8) of order (θ/n)2 or higher are consistently

negligible without introducing any errors to Eq. (8.10).

6. By an explicit calculation of the matrix exponential, show that

eθG =


cos θ − sin θ

sin θ cos θ


 . (8.12)

7. Because R(0) = 1 is well defined and R(θ) is analytic for any θ, we can make a Taylor series

expansion about θ = 0. Show that

d2n

dθn
R(θ)

∣∣
θ=0

= (−1)n, (8.13a)

d2n+1

dθn
R(θ)

∣∣
θ=0

= (−1)nG. (8.13b)

8. It is now straightforward to show that the Taylor series expansion of eθG about θ = 0

reproduces the right side of Eq. (8.12). We define the generator L = iG:

L =


0 −i
i 0


 . (8.14)

Show that L is a traceless hermitian matrix and

R(θ) = e−iθL. (8.15)
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8.2 SO(3)

8.2 SO(3)

Problem 8.4 We consider SO(3). We need three real parameters θ1, θ2, and θ3 to represent a

matrix R(θ) in SO(3), where θ ≡ (θ1, θ2, θ3). Evidently the identity matrix 1 is an element of

SO(3). We set R(0) = 1, where 0 ≡ (0, 0, 0). We assume that R(θ) is analytic with respect to

every component of θ. We define

Lk = i
∂

∂θk
R(θ)

∣∣
θ=0

. (8.16)

R(θ) = 1− iLkθk +O(θ2), (8.17)

where we use the Einstein convention for summation of repeated indices.

1. We choose the parameters θi to be the angle of rotation about the axis xi. Show in this case

that

R(θ1, 0, 0) = e−iL1θ1 , (8.18a)

R(0, θ2, 0) = e−iL2θ2 , (8.18b)

R(0, 0, θ3) = e−iL3θ3 , (8.18c)

where

L1 =




0 0 0

0 0 −i
0 i 0


 , L2 =




0 0 i

0 0 0

−i 0 0


 , L3 =




0 −i 0
i 0 0

0 0 0


 . (8.19)

These three rotation matrices can be parametrized by

R(θ) = e−iθ·L. (8.20)

We would like to show that the set SO(3) = {R(θ)|θi ∈ R} is a group.

2. Show that 1 ∈ SO(3).

3. Show that the inverse of R(θ) is

R(θ)−1 = [R(θ)]T = R(−θ). (8.21)

4. As the last step, we need to show that there exists a three-vector φ such that

R(θ1)R(θ2) = R(φ). (8.22)
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8.2 SO(3)

Show that if θ1 is parallel or anti-parallel to θ2, then

R(θ1)R(θ2) = R(θ1 + θ2). (8.23)

However, this is not true if θ1 and θ2 is neither parallel nor anti-parallel.

Problem 8.5 Now we know that

R(0, 0, θ) = e−iθL3

=




cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 (8.24)

represents the matrix that rotates a vector about ẑ axis by an angle θ. We introduce a rotation

matrix O that transforms ẑ to n̂ = (n̂1, n̂2, n̂3):

O




0

0

1


 =




n̂1

n̂2

n̂3


 . (8.25)

Let R(θ) be the rotation matrix that rotates a vector about an axis parallel to a unit vector n̂ by

an angle θ.

1. Show that

R(θ) = OR(0, 0, θ)OT , (8.26)

where θ = θn̂.

2. We set n̂ = (0,−1, 0) that can be obtained by rotating ẑ about x̂ by π/2. Show that

O = R(12π, 0, 0) =




1 0 0

0 0 −1
0 1 0


 . (8.27)

3. Show that

R(θ) = OR(0, 0, θ)OT = R(−θŷ). (8.28)

r1:=mat((1,0,0),(0,c,-s),(0,s,c));

r2:=mat((c,0,s),(0,1,0),(-s,0,c));

r3:=mat((c,-s,0),(s,c,0),(0,0,1));
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8.2 SO(3)

oh:=mat((1,0,0),(0,0,-1),(0,1,0));

sub({c=0,s=1},r1)-oh;

oht:=tp(oh);

x:=mat((1),(0),(0));

y:=mat((0),(1),(0));

z:=mat((0),(0),(1));

oh*x-x;

oh*y-z;

oh*z+y;

oh*r3*oht-tp(r2);

Problem 8.6 Let us continue to show the closure property of SO(3).

1. As a simple case, we consider R(θ1x̂1) and R(θ2x̂2). Suppose [L1, L2] is a linear combination

of the generators Li:

[L1, L2] = c1L
1 + c2L

2 + c3L
3, (8.29)

where ci is a number. Show that, if the condition (8.29) is satisfied, then there exists a vector

φ = φn̂ such that

R(θ1x̂1)R(θ2x̂2) = R(φ). (8.30)

2. By making use of the matrix representation (8.19) for Li, show that

[L1, L2] = iL3. (8.31)

3. By making use of the matrix representation (8.19) for Li, show that

[Li, Lj ] = iǫijkLk, (8.32)

where summation over k = 1, 2, 3 is assumed and ǫijk is a totally anisymmetric tensor. The

antisymmetric tensor ǫijk is the structure constant of SO(3).

L1:=mat((0,0,0),(0,0,-i),(0,i,0));

L2:=mat((0,0,i),(0,0,0),(-i,0,0));

L3:=mat((0,-i,0),(i,0,0),(0,0,0));

L1*L2-L2*L1-(i*L3);

L2*L3-L3*L2-(i*L1);

L3*L1-L1*L3-(i*L2);
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8.3 Baker-Campbell-Hausdorff formula

4. Generalizing the results shown above, show that SO(3) is closed under multiplication. This

verifies that SO(3) is a group. Therefore, any multiple rotations can be expressed in terms

of a finite rotation about a fixed angle:

R(θ1)R(θ2) · · ·R(θn) = R(φ). (8.33)

8.3 Baker-Campbell-Hausdorff formula

Exercise 8.7 Consider two matrices A and B ∈ GL(N,R). We would like to find a matrix C

such that eAeB = eC .

1. Show that

eAeB =
∞∑

a=0

∞∑

b=0

AaBb

a!b!
(8.34)

2. The logarithmic function is known to be analytic for any complex number z such that

z /∈ C− [1,∞) and log 1 = 0. Show that for any z /∈ C− [1,∞), log z can be expanded in a

Taylor series expansion about z = 1 as

log z = log[1 + (z − 1)] =

∞∑

k=1

(−1)k−1

k
(z − 1)k. (8.35)

Normal[Series[Log[1+x],{x,0,10}]]

x - x^2/2 + x^3/3 - x^4/4 + x^5/5 - x^6/6 + x^7/7 - x^8/8 + x^9/9

In a similar manner, we can define the logarithm of a matrix C ∈ GL(N,R) as

logC =

∞∑

k=1

(−1)k−1

k
(C − 1)k. (8.36)

3. Show that

log(eAeB) =
∞∑

k=1

(−1)k−1

k
(eAeB − 1)k =

∞∑

k=1

(−1)k−1

k

∑̃Aa1Bb1 · · ·AakBbk

a1!b1! · · · ak!bk!
, (8.37)

where
∑̃

denotes the summation over all of the indices ai and bi except for a single case

a1 = · · · = ak = b1 = · · · = bk = 0.

4. We would like to reorganize the summation as

log(eAeB) =

∞∑

n=1

Pn(A,B), (8.38)
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8.3 Baker-Campbell-Hausdorff formula

where Pn(A,B) is the matrix version of a homogeneous polynomial of degree n. For

example, x2 + 2xy + y2 is a homogeneous polynomial of degree 2. Let us compute Pn(A,B)

order by order. We define Fk such that

log(eAeB) =
∞∑

k=1

Fk, Fk =
(−1)k−1

k
(eAeB − 1)k. (8.39)

Show that

F1 = (eAeB − 1) = (1+A+ 1
2!A

2 + 1
3!A

3 + · · · )(1+B + 1
2!B

2 + 1
3!B

3 + · · · )− 1

= A+B + 1
2!(A

2 +B2) +AB + 1
3!(A

3 +B3) + 1
2!(A

2B +AB2)

+ 1
4!(A

4 +B4) + 1
3!(A

3B +AB3) + 1
2!2!A

2B2 + · · · . (8.40a)

F2 = −1

2
(eAeB − 1)2, (8.40b)

F3 =
1

3
(eAeB − 1)3. (8.40c)

5. We also define a projection operator Πn that projects out a homogeneous polynomial of A

and B of degree n. Show that

Π1(F1) = A+B, (8.41a)

Π1(Fk) = 0, k ≥ 2. (8.41b)

Therefore, we have shown that

P1(A,B) = A+B. (8.42)

6. Show that

Π2(F1) =
1
2(A

2 +B2) +AB, (8.43a)

Π2(F2) = −1
2(A+B)2, (8.43b)

Π2(Fk) = 0, k ≥ 3. (8.43c)

It is straightforward to show that

P2(A,B) =
2∑

k=1

Π2(Fk) =
1
2 [A,B]. (8.44)

7. Show that

Π3(F1) = 1
6 (A

3 +B3) + 1
2(A

2B +AB2), (8.45a)

Π3(F2) = −(A2 +B2)(A+B)− (A+B)(A2 +B2), (8.45b)

Π3(F3) = 1
3 (A+B)3, (8.45c)

Π3(Fk) = 0, k ≥ 4. (8.45d)
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8.3 Baker-Campbell-Hausdorff formula

It is straightforward to show that

P3(A,B) =
3∑

k=1

Π3(Fk) =
1

12

(
[A, [A,B]] + [[A,B], B]

)
. (8.46)

The general expression for Pn(A,B) was first computed by Dynkin [ Dynkin, E. B., Evalua-

tion of the coefficients of the Campbell-Hausdorff formula, Dokl. Akad. Nauk SSSR 57, 323

(1947).]

log(eAeB) =

∞∑

n=1

(−1)n−1

n

∑

ai+bi>0
1≤i≤n

[
Aa1Bb1Aa2Bb2 . . . AanBbn

]

a1! b1! a2! b2! · · · an! bn!
n∑

i=1

(ai + bi)

, (8.47)

where the nested commutator is defined by

[
Aa1Bb1Aa2Bb2 . . . XanY bn

]
= [A, [A, . . . [A︸ ︷︷ ︸

a1

, [B, [B, . . . [B︸ ︷︷ ︸
b1

, . . . [A, [A, . . . [A︸ ︷︷ ︸
an

, [B, [B, . . . B︸ ︷︷ ︸
bn

]] . . .]].

(8.48)

In summary,

eAeB = exp

[
A+B + 1

2 [A,B] + 1
12

(
[A, [A,B]] + [[A,B], B]

)
+ · · ·

]
. (8.49)

Problem 8.8 If we restrict ourselves to SO(N) and SU(N), then an element g of a group is always

parametrized by

G = {g|g = e−iαkGk

, αk ∈ R}, (8.50)

where the generator Gk, which is traceless and hermitian, satisfies the commutation relations:

[Gi, Gj ] = if ijkGk. (8.51)

Here, f ijk is the structure constant of the group which is real and totally antisymmetric. By

making use of the Baker-Campbell-Hausdorff formula in Eq. (8.49), prove that the product of two

elements g1 and g2

g1 = e−iαkGk

, g2 = e−iβkGk

, (8.52)

is also an element of the group by finding a set of real numbers γk such that

g1g2 = e−iγkGk

. (8.53)
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8.3 Baker-Campbell-Hausdorff formula

Problem 8.9 Show that, if [A, [A,B]] = [[A,B], B] = 0, then

eAeB = eA+Be
1

2
[A,B] = e

1

2
[A,B]eA+B , (8.54a)

eBeA = eA+Be−
1

2
[A,B] = e−

1

2
[A,B]eA+B , (8.54b)

eA+B = e−
1

2
[A,B]eAeB = eAeBe−

1

2
[A,B]

= e
1

2
[A,B]eBeA = eBeAe

1

2
[A,B], (8.54c)

eAeB = eBeAe[A,B], (8.54d)

eAeBe−A = eBe[A,B]. (8.54e)

Problem 8.10 Consider two matrices A and B ∈ GL(N,R). We define a matrix M(λ) by

M(λ) = eλABe−λA =
∑

k

λk

k!
Ck, (8.55)

where λ is a complex number and Ck ∈ GL(N,R) is independent of λ.

M(λ) = eλAC0e
−λA, ← C0 = B (8.56a)

∂M(λ)

∂λ
= eλAC1e

−λA = eλA[A,B]e−λA, ← C1 = [A,B] (8.56b)

∂2M(λ)

∂λ2
= eλAC2e

−λA = eλA[A, [A,B]]e−λA, ← C2 = [A, [A,B]] (8.56c)

...

(8.56d)

∂kM(λ)

∂λk
= eλACke

−λA, (8.56e)

∂k+1M(λ)

∂λk+1
= eλACk+1e

−λA = eλA[A,Ck]e
−λA, ← Ck+1 = [A,Ck] (8.56f)

...

Therefore, the Taylor series expansion of M(λ) about λ = 0 is then

M(λ) = eλABe−λA =

∞∑

k=0

λk

k!

∂kM(λ)

∂λk

∣∣∣
λ=0

=

∞∑

k=0

λk

k!
Ck, (8.57)

where

C0 = B, (8.58a)

Ck+1 = [A,Ck], (8.58b)

for any k ≥ 0.
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8.3 Baker-Campbell-Hausdorff formula

1. Show that

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + · · · . (8.59)

2. By making use of Eq. (8.59), show that

eAeBe−A = exp

(
A+ [A,B] +

1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + · · ·

)
. (8.60)

3. Show that

eAe−A = 1. (8.61)

This confirms that

(eA)−1 = e−A. (8.62)

Problem 8.11 Suppose R(θ) is the rotation matrix that rotates a 3-dimensional Euclidean vector

about an axis θ̂ by an angle θ = |θ|:

R(θ) = e−iθ·L. (8.63)

1. Show that

[R(θ)]−1 = R(−θ) = e+iθ·L. (8.64)

2. By making use of the fact that

[R(θ)]−1 = [R(θ)]T , (8.65)

show that

L† = (LT )∗ = L. (8.66)

Problem 8.12 The angular momentum generator is given by

[J i, J j ] = iǫijkJk. (8.67)

Let us consider the transformation of the operator O = J3 under rotation about the y axis by an

angle θ. The operator in the new coordinate system must be expressed as

O′ = D (θŷ)O [D (θŷ)]−1 , (8.68)

where

D (θŷ) = e−iθJ2

. (8.69)

74



1. Show that

e−iθJ2

J3e+iθJ2

= J3 + (−iθ)
[
J2, J3

]
+

(−iθ)2
2!

[J2, [J2, J3]] +
(−iθ)3

3!
[J2, [J2, [J2, J3]]]

+
(−iθ)4

4!
[J2, [J2, [J2, [J2, J3]]]] +

(−iθ)5
5!

[J2, [J2, [J2, [J2, [J2, J3]]]]] + · · ·

= J3 + θJ1 − θ2

2!
J3 − θ3

3!
J1 +

θ4

4!
J3 − θ5

5!
J1 + · · · . (8.70)

2. Show that

e−iθJ2

J3e+iθJ2

= J3 cos θ + J1 sin θ. (8.71)

Explain the reason why the right-hand side does not have the contribution proportional J2.

3. If we set θ → π/2, then we find that

e−iθJ2

J3e+iθJ2

= J1. (8.72)

Interpret the physical meaning of this identity based on rotation.

Problem 8.13 Show that

e−
i
2
θσ2

σ3e+
i
2
θσ2

= σ3 cos θ + σ1 sin θ. (8.73)

9. SU(N)

Definition 9.1 The special unitary group SU(N) is the set of N ×N complex matrices U that

satisfies the following conditions:

U †U = 1, (9.1a)

Det[U ] = 1. (9.1b)

Exercise 9.2 Show that the set of matrices that satisfies the conditions (9.1) is a group.

Exercise 9.3 In general we need N2 real parameters to represent an arbitrary N × N matrix

whose elements are all real.

1. Show that we need 2N2 real parameters to represent an arbitrary N ×N matrix.

2. Show that we need N2 − 1 real parameters to represent an arbitrary matrix in an SU(N)

group.
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9.1 Generators

Problem 9.4 Consider a group SU(2).

1. Show that any matrix U of the SU(2) group can be expressed as

U = a · σ = aiσi, (9.2)

where a = (a1, a2, a3) is a three-dimensional vector whose components ai’s are real and σi’s

are the Pauli matrices:

σ1 =


0 1

1 0


 , σ2 =


0 −i
i 0


 , σ3 =


1 0

0 −1


 . (9.3)

2. Show that any 2× 2 hermitian matrix H can be expressed as

H = a01+ a · σ, (9.4)

where 1 is the 2× 2 identity matrix and ai is real for i = 0, 1, 2, and 3.

3. Show that σi is traceless and hermitian.

9.1 Generators

We expand an element A(α) ∈ SU(N) ⊂ GL(N,C) near A(α = 0) = 1, where α =

(α1, α2, · · · , αN2−1) is a set of N2 − 1 real variables αi. A(α) is assumed to be analytic with

respect to every variable αi. Then for any finite αa, the Taylor series expansion of A(α) about

α = 0 is

A(α) = exp
[
α ·∇z

]
A(z)

∣∣∣
z=0

= 1+ αa ∂A(α)

∂αa

∣∣∣∣
α=0

+
αaαb

2!

∂2A(α)

∂αa∂αb

∣∣∣∣
α=0

+ · · ·

= exp
[
− iα ·

(
i∇z

)]
A(z)

∣∣∣
z=0

, (9.5)

where

∇z ≡
(

∂

∂z1
,
∂

∂z2
, · · · , ∂

∂zN2−1

)
. (9.6)

We define the generator T a for a = 1, 2, · · · , N2 − 1 for the SU(N):

T =
(
T 1, T 2, · · · TN2−1

)
= i∇zA(z)

∣∣∣
z=0

. (9.7)

Problem 9.5 1. Show that for any finite αi ∈ R,

A(α) = lim
n→∞

(
1− i

n
α · T

)n

= e−iα·T , (9.8)

where α · T = αaT a and the summation over a = 1, 2, · · · , N2 − 1 is assumed.
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2. By making use of Baker-Campbell-Hausdorff formula, show that

[A(α)]−1 = e+iα·T = A(−α). (9.9)

3. By making use of the property of A(α) ∈ SU(N), [A(α)]−1 = [A(α)]†, show that T a is

hermitian:

T † = T , α · T † = α · T . (9.10)

Therefore, there exists a unitary matrix

U =




ψ†
1

ψ†
2

...


 , (9.11)

where ψi is an eigenvector of α · T :

α · Tψi = λiψi. (9.12)

4. It is straightforward to show that Uα · TU † is diagonal. Show that

UA(α)U † =




e−iλ1 0 0 · · ·
0 e−iλ2 0 · · ·
0 0 e−iλ3 · · ·
...

...
...

. . .



. (9.13)

5. Show that

Det[A(α)] = e−iTr[α·T ] = +1. (9.14)

The condition of the determinant requires that the α · T is traceless for any α. Therefore,

the generator of SU(N) is traceless:

Tr[T a] = 0. (9.15)

Problem 9.6 Suppose H ∈ SL(N,C) is hermitian:

H† = H. (9.16a)

Assume that there exists eigenvalues λi and corresponding eigenvector ψi, anN -dimensional column

vector whose elements are complex numbers, that satisfy

Hψi = λiψi. (9.16b)

77



9.2 Structure constant fabc of SU(N)

1. Show that eigenvectors of distinct eigenvalues are orthogonal to each other:

ψ†
iψj = 0 if λi 6= λj. (9.16c)

2. Show that eigenvalues are real.

3. Provide a way to construct an orthonormal set of eigenvectors. Describe a way how to

construct an orthonormal set of eigenvectors if any two eigenvalues are identical.

4. We have constructed an orthonormal set of eigenvectors that satisfies

ψ†
iψj = δij and ψ†

iHψj = λiδij . ← no sum over i (9.16d)

Let us construct a matrix A such that

A =




ψ†
1

ψ†
2

...


 and A† =

(
ψ1 ψ2 · · ·

)
. (9.16e)

Show that A is unitary:

A†A = 1. (9.16f)

5. Show that AHA† is diagonalized:

AHA† =




λ1 0 0 · · ·
0 λ2 0 · · ·
0 0 λ3 · · ·
...

...
...

. . .



. (9.16g)

We have shown that any hermitian matrix has real eigenvalues and can be diagonalized.

9.2 Structure constant fabc of SU(N)

The structure constant fabc of SU(N) is defined by the commutator of two generators:

[T a, T b] = ifabcT c. (9.17)

Problem 9.7 We would like to show that fabc is antisymmetric under exchange of any two adja-

cent indices.
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9.2 Structure constant fabc of SU(N)

1. By makig use of the relation (T a)† = T a, show that fabc is real.

2. By making use of the definition (9.17), show that

fabc = −f bac. (9.18)

3. Show that

fabc = − i

TF
Tr
(
[T a, T b]T c

)
if Tr(T aT b) = TF δ

ab. (9.19)

4. By making use of Tr(AB)=Tr(BA), show that

Tr(ABC) = Tr(BCA) = Tr(CAB). (9.20)

5. Show that

fabc = f bca = f cab = −facb = −f bac = −f cba. (9.21)

Therefore, we have shown that fabc is totally antisymmetric under exchange of any two

adjacent indices.

6. By multiplying T e to the following Jacobi identity,

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0, (9.22)

and taking the trace, show that

fabdf cde + f bcdfade + f cadf bde = 0. (9.23)

Problem 9.8 Consider an arbitray hermitian matrix H ∈ GL(N,C): H† = H.

1. Show that the number of free real parameters that determines H is N2.

2. We have shown that there are N2 − 1 traceless hermitian matrices T a ∈ GL(N,C) that are

the generators of SU(N). In addition, 1 is a real diagonal matrix whose trace is Tr(1) = N .

Show that H is completely determined by

H = α0
1+α · T , (9.24)

where α = (α1, α2, · · · , αN2−1) and αi ∈ R for i = 0, 1, 2, · · · , N2 − 1.
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9.2 Structure constant fabc of SU(N)

3. By making use of the commutation relations [T a, T b] = ifabcT c, show that the condition

α = 0 must be satisfied if [H,T a] = 0 for any a. Thus any hermitian matrix that commutes

with all of the generators T a of SU(N) must be proportional to 1.

Problem 9.9 Let T a be a generator of the fundamental representation for SU(N) whose commu-

tation relations satisfies Lie algebra:

[T a, T b] = ifabcT c. (9.25)

The Casimir operator CF for the fundamental representation of SU(N) is defined by

CF = T aT a, (9.26)

where a is summed over.

1. Show that CF is hermitian.

2. Show that CF commutes with any of the generators T b.

[CF , T
b] = T a[T a, T b] + [T a, T b]T a = 0. (9.27)

In summary, CF is proportional to the identity matrix:

CF = CF1, (9.28)

where CF is a real number that depends on the normalization of T a.

Problem 9.10 The generator T a of the fundamental representation for SU(N) is traceless, her-

mitian, and satisfies the commutation relation

[T a, T b] = ifabcT c. (9.29)

1. Show that, for any a 6= b,

Tr[T aT b] = 0 for a 6= b. (9.30)

2. By making use of the relation CF = CF1, show that

Tr(T aT a) = CFN, (9.31)

where a is summed over. We can always change the normalization of each T a. The conven-

tional choice of the normalization for T a is

Tr(T aT b) = TF δ
ab, where TF =

1

2
. (9.32)
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9.2 Structure constant fabc of SU(N)

3. Show that

CF =
TF (N

2 − 1)

N
=
N2 − 1

2N
. (9.33)

4. Show that any hermitian matrix H ∈ GL(N,C) can be expressed as

H =
1

N
Tr(H) +

T a

TF
Tr(HT a). (9.34)

Problem 9.11 The Pauli matrices σi’s are the generators of the fundamental representation for

SU(2). They are traceless and hermitian, and satisfy the commutation relation:

[σi, σj ] = if ijkσk. (9.35)

1. Show that

σiσj = δij1+ iǫijkσk. (9.36)

2. Find the structure constant f ijk.

3. By making use of the relation CF = CF1, show that

Tr(σiσi) = 2CF and Tr(σiσj) = TF δ
ij . (9.37)

4. Show that

TF = 2 and CF = 3. (9.38)

5. Show that any hermitian matrix H ∈ GL(2,C) can be expressed as

H =
1

2
Tr(H) +

σi

2
Tr(Hσi). (9.39)

Problem 9.12 Let us consider SU(3).

[T a, T b] = ifabcT c. (9.40)

1. By making use of the relation CF = CF1, show that

Tr(T aT a) = 3CF and Tr(T aT b) = TF δ
ab. (9.41)

2. Show that

TF =
1

2
and CF =

4

3
. (9.42)
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3. Show that any hermitian matrix H ∈ GL(3,C) can be expressed as

H =
1

3
Tr(H) + 2T aTr(HT a). (9.43)

Problem 9.13 The product of any two hermitian matrices A and B can be expressed as

AB =
1

2
{A,B}+ 1

2
[A,B]. (9.44)

It is trivial to show that the anticommutator {A,B} = AB+BA is hermitian and the commutator

[A,B] = AB −BA is antihermitian:

{A,B}† = {A,B}, [A,B]† = −[A,B]. (9.45)

1. Show that

T aT b =
1

2
{T a, T b}+ i

2
fabcT c, (9.46)

where T a is the generator for the fundamental representation of SU(N).

2. Because {T a, T b} is hermitian, we can parametrize {T a, T b} as

{T a, T b} = 2TF
N

δab1+ dabcT c. (9.47)

Show that

T aT b =
TF
N
δab1+

1

2
(dabc + ifabc)T c. (9.48)

3. By making use of Eq. (9.48), show that

CF = T aT a = CF1, CF =
TF (N

2 − 1)

N
. (9.49)

This result reproduces Eq. (9.33).

Problem 9.14 Let us find properties of dabc.

1. By making use of Eqs. (9.32) and (9.47), show that

dabc =
1

TF
Tr
(
{T a, T b}T c

)
. (9.50)

2. Show that dabc is totally symmetric:

dabc = dbca = dcab = dacb = dbac = dcba. (9.51)

Problem 9.15 Show that dijk = 0 for all i, j, k = 1, 2, 3 in SU(2).
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9.3 Completeness relation

We have shown that any hermitian matrix H ∈ GL(N,C) can be expressed as

H =
1

N
Tr(H) +

T a

TF
Tr(HT a). (9.52)

The ij element of the matrix H is

Hij =
1

N
δijHkk +

1

TF
T a
ijHℓkT

a
kℓ. (9.53)

Problem 9.16 Hij can be expressed as

Hij = δilδjkHlk. (9.54)

By making use of this trick, solve the following problems.

1. By comparing the coefficients of Hlk on both sides of Eq. (9.53), show that

δiℓδjk =
1

N
δijδkℓ +

1

TF
T a
ijT

a
kℓ. (9.55)

Therefore,

T a
ijT

a
kℓ = TF

(
− 1

N
δijδkℓ + δiℓδjk

)
. (9.56)

This identity is called the completeness relation.

2. By multiplying δjk to both sides, show that

CF =
TF (N

2 − 1)

N
1. (9.57)

3. By making use of the completeness relation, show that

(T aT bT a)iℓ = T a
ijT

b
jkT

a
kℓ = T b

jkTF

(
− 1

N
δijδkℓ + δiℓδjk

)
= −TF

N
T b
iℓ. (9.58)

Therefore,

T aT bT a = −TF
N
T b. (9.59)

4. By making use of Eqs. (9.57) and (9.59), show that

T aT aT bT b = T aT bT bT a = C2
F1 =

T 2
F (N

2 − 1)2

N2
1, (9.60a)

T aT bT aT c = −TF
N
T bT c, (9.60b)

T aT bT aT b = −TFCF

N
1 = −T

2
F (N

2 − 1)

N2
1. (9.60c)
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5. Show that

Tr(T a) = 0, (9.61a)

Tr(T aT b) = TF δ
ab, (9.61b)

Tr(T aT a) = CFN = TF (N
2 − 1), (9.61c)

Tr(T aT bT a) = 0. (9.61d)

6. Show that

Tr(T aT aT bT b) = Tr(T aT bT bT a) = C2
FN =

T 2
F (N

2 − 1)2

N
, (9.62a)

Tr(T aT bT aT b) = −TFCF = −T
2
F (N

2 − 1)

N
, (9.62b)

Tr(T cT cT aT b) = Tr(T cT aT bT c) = CFTr(T
aT b) = CFTF δ

ab =
T 2
F (N

2 − 1)

N
δab, (9.62c)

Tr(T cT aT cT b) = Tr(T aT cT bT c) = −TF
N

Tr(T aT b) = −T
2
F

N
δab. (9.62d)

Problem 9.17 Let us consider a hermitian matrix H ∈ GL(2,C). We have shown that

H =
1

2
Tr(H) +

σa

2
Tr(Hσa), (9.63)

and the ij element of the matrix H is

Hij =
1

2
δijHkk +

1

2
σaijHℓkσ

a
kℓ. (9.64)

1. By comparing the coefficients of Hlk on both sides of Eq. (9.64), show that

δiℓδjk =
1

2
δijδkℓ +

1

2
σaijσ

a
kℓ. (9.65)

Therefore, the completeness relation is

σaijσ
a
kℓ = −δijδkℓ + 2δiℓδjk. (9.66)

2. By multiplying δjk to both sides, show that

CF = 3× 1. (9.67)

3. By making use of the completeness relation, show that

(σaσbσa)iℓ = σaijσ
b
jkσ

a
kℓ = σbjk (−δijδkℓ + 2δiℓδjk) = −σbiℓ. (9.68)

Therefore,

σaσbσa = −σb. (9.69)
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4. By making use of Eqs. (9.67) and (9.69), show that

σaσaσbσb = σaσbσbσa = 9× 1, (9.70a)

σaσbσaσc = −σbσc, (9.70b)

σaσbσaσb = −3× 1. (9.70c)

5. Show that

Tr(σa) = 0, (9.71a)

Tr(σaσb) = 2δab, (9.71b)

Tr(σaσa) = 6, (9.71c)

Tr(σaσbσa) = 0. (9.71d)

6. Show that

Tr(σaσaσbσb) = Tr(σaσbσbσa) = 18, (9.72a)

Tr(σaσbσaσb) = −6, (9.72b)

Tr(σcσcσaσb) = Tr(σcσaσbσc) = 3Tr(σaσb) = 6 δab, (9.72c)

Tr(σcσaσcσb) = Tr(σaσcσbσc) = −Tr(σaσb) = −2 δab. (9.72d)

Problem 9.18 According to Eq. (9.36),

σiσj = δij1+ iǫijkσk. (9.73)

Carry out the following calculation by applying this relation without relying on the completeness

relation.

1. Show that

σaσbσa = −σb. (9.74)

2. Show that

σaσaσbσb = σaσbσbσa = 9× 1, (9.75a)

σaσbσaσc = −σbσc, (9.75b)

σaσbσaσb = −3× 1. (9.75c)
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3. Show that

Tr(σa) = 0, (9.76a)

Tr(σaσb) = 2δab, (9.76b)

Tr(σaσa) = 6, (9.76c)

Tr(σaσbσa) = 0. (9.76d)

4. Show that

Tr(σaσaσbσb) = Tr(σaσbσbσa) = 18, (9.77a)

Tr(σaσbσaσb) = −6, (9.77b)

Tr(σcσcσaσb) = Tr(σcσaσbσc) = 3Tr(σaσb) = 6 δab, (9.77c)

Tr(σcσaσcσb) = Tr(σaσcσbσc) = −Tr(σaσb) = −2 δab. (9.77d)

9.4 Adjoint representation

Problem 9.19 We recall that

fabc = − i

TF
Tr(T c[T a, T b]). (9.78)

We define the generator tc of the adjoint representation of SU(N):

t

c
ab ≡ −ifabc = −

1

TF
Tr(T a[T b, T c]) = − 1

TF
Tr(T b[T c, T a]) = − 1

TF
Tr(T c[T a, T b]), (9.79)

where a, b, c = 1, 2, · · · ,N2−1. Note that the number of generators tc is N2−1 and each generator

is an (N2 − 1)× (N2 − 1) matrix. According to Eq. (9.23), we have

fabef cde + f bcefade + f caef bde = 0. (9.80)

1. We define sets of permutations of (a, b, c) as σ(a, b, c):

σ(a, b, c) ≡ σ+(a, b, c) ∪ σ−(a, b, c), (9.81a)

σ+(a, b, c) = {(a, b, c), (b, c, a), (c, a, b)}, (9.81b)

σ−(a, b, c) = {(a, c, b), (b, a, c), (c, b, a)}. (9.81c)

Let (x, y, z) be a permutation of (a, b, c). We define a sign function ǫ for a permutation:

ǫ(x, y, z) = +1, if (x, y, z) ∈ σ+(a, b, c), (9.82a)

ǫ(x, y, z) = −1, if (x, y, z) ∈ σ−(a, b, c), (9.82b)

ǫ(x, y, z) = 0, if (x, y, z) /∈ σ(a, b, c). (9.82c)
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Show that

fabc = − 2i

3!TF

∑

(a′,b′,c′)∈σ(a,b,c)

ǫ(a′, b′, c′)Tr(T a′T b′T c′), (9.83)

where ǫ(a, b, c) is totally antisymmetric.

2. Show for any a = 1, 2, · · · , N2 − 1 that ta is traceless and hermitian:

Tr(ta) = 0 and (ta)† = t

a. (9.84)

3. Show that

fabef cde = ifabetecd, (9.85a)

(tatb)cd = t

a
cet

b
ed = −f ceaf edb = −f caef bde, (9.85b)

(tbta)cd = t

b
cet

a
ed = −f cebf eda = +f bcefade, (9.85c)

[ta, tb]cd = ifabetecd. (9.85d)

In summary, the structure constant of the adjoint representation is the same as that of the

fundamental representation of SU(N):

[ta, tb] = ifabete. (9.86)

4. The Casimir operator for the adjoint representation of SU(N) can be defined by

CA ≡ tata. (9.87)

Show that

[CA, t
a] = t

a[ta, tb] + [ta, tb]ta = 0, (9.88)

for all a = 1, 2, · · · , N2 − 1.

5. According to Eq. (9.19),

fabc = − 1

TF
Tr([T a, T b]T c). (9.89)

Show that

(CA)ab = (tx)ay(t
x)yb = fxyafxyb

= − 1

T 2
F

Tr([T x, T y]T a)Tr([T x, T y]T b).

=
2

T 2
F

[
Tr(T xT yT a)Tr(T yT xT b)− Tr(T xT yT a)Tr(T xT yT b)

]
. (9.90)
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6. By making use of the completeness relation,

T x
ijT

x
kℓ = TF

(
− 1

N
δijδkℓ + δiℓδjk

)
, (9.91)

show that

Tr(T xA)Tr(T xB) = (T x
ijAji)(T

x
kℓBℓk) = TF

[
− 1

N
Tr(A)Tr(B) + Tr(AB)

]
. (9.92)

7. By making use of the identity (9.92), show that

Tr(T a)Tr(T a) = 0, (9.93a)

Tr(T xT a)Tr(T xT b) = T 2
F δ

ab. (9.93b)

8. Show that

Tr(T xT yT a)Tr(T xT yT b) = TF

[
− 1

N
Tr(T yT a)Tr(T yT b) + Tr(T yT aT yT b)

]

= TF

[
−T

2
F

N
δab − T 2

F

N
δab
]
= −2T 3

F

N
δab, (9.94)

Tr(T xT yT a)Tr(T yT xT b) = Tr(T xT yT a)Tr(T xT bT y)

= TF

[
− 1

N
Tr(T yT a)Tr(T bT y) + Tr(T yT aT bT y)

]

= TF

[
−T

2
F

N
δab +

T 2
F (N

2 − 1)

N
δab
]
=
T 3
F (N

2 − 2)

N
δab. (9.95)

It is straightforward to show that

(CA)ab = 2TFNδ
ab. (9.96)

Therefore,

CA = CA1 = 2TFN1. (9.97)

9. Show that

fabpfabq = CAδ
pq, (9.98a)

fabcfabc = CA(N
2 − 1) = 2TFN(N2 − 1). (9.98b)

Problem 9.20 According to Eq. (9.50),

dabc =
1

TF
Tr({T a, T b}T c). (9.99)
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1. Show that

dabpfabq = 0. (9.100)

2. Show that

dxyadxyb =
2

T 2
F

[
Tr(T xT yT a)Tr(T xT yT b) + Tr(T xT yT a)Tr(T yT xT b)

]
. (9.101)

3. Show that

dabcdabd =
2TF (N

2 − 4)

N
δcd, (9.102a)

dabcdabc =
2TF (N

2 − 4)(N2 − 1)

N
. (9.102b)

Problem 9.21 According to Eq. (9.47),

{T a, T b} = 2TF
N

δab1+ dabcT c. (9.103)

By multiplying δab to the above identity, show that

daab = 0, (9.104)

where a is summed over a = 1, 2, · · · , N2 − 1. Show also that

daab = daba = dbaa = 0. (9.105)

[[NEEDTOBEEDITED, Adjoint representation of SU(2) is the rotational generator of SO(3)]]

9.5 Gell-Mann matrices

Exercise 9.22 We have shown that the number of generators for the SU(N) is N2−1. Therefore,

SU(3) has 8 generators. We also have shown that the generators for SU(N) are traceless hermitian.

Conventional choice of the generators is

T a =
1

2
λa, a = 1, 2, · · · , 8, (9.106)

where λa’s are called the Gell-Mann matrices. It is convenient to construct 3 × 3 traceless

hermitain matrices by making use of the 2×2 Pauli matrices that are also traceless hermitian. Note

that σ1 and σ2 have vanishing diagonal elements. The only Pauli matrix that has non-vanishing

diagonal elements is σ3.
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9.5 Gell-Mann matrices

1. Show that only two elements are independent among the diagonal elements of Gell-Mann

matrices.

2. The first three entries of λa are chosen so that the ij element is identical to σa for i, j = 1, 2:

λ1 =




0 1 0

1 0 0

0 0 0


 , λ2 =




0 −i 0
i 0 0

0 0 0


 , λ3 =




1 0 0

0 −1 0

0 0 0


 . (9.107)

3. The next two entries λa are chosen so that the ij element is identical to σ1 and σ2 for i,

j = 1, 3:

λ4 =




0 0 1

0 0 0

1 0 0


 , λ5 =




0 0 −i
0 0 0

i 0 0


 . (9.108)

4. Two more entries are chosen so that the ij element is identical to σ1 and σ2 for i, j = 2, 3:

λ6 =




0 0 0

0 0 1

0 1 0


 , λ7 =




0 0 0

0 0 −i
0 i 0


 . (9.109)

5. Now we determine the last entry. Because off-diagonal elements are already fixed com-

pletely, we have to find an entry that has non-vanishing diagonal elements. Because

λ3 = diag[1,−1, 0], we can choose a diagonal matrix whose diagonal elements construct

a 3-dimensional vector that is orthogonal to (1,−1, 0). A simple choice is

λ8 =
1√
3




1 0 0

0 1 0

0 0 −2


 . (9.110)

6. Show that

Tr(λa) = 0, (9.111a)

λ†a = λa, (9.111b)

Tr(λaλb) = 2δab. (9.111c)

Problem 9.23 According to Eq. (9.19) and Eq. (9.106),

fabc = − i
4
Tr
(
[λa, λb]λc

)
. (9.112)
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1. Show that nonvanishing structure constants fabc are given by

f123 = 1, (9.113a)

f147 = f165 = f246 = f257 = f345 = f376 =
1

2
, (9.113b)

f458 = f678 =

√
3

2
. (9.113c)

We can use the antisymmetric properties to find other permuations:

fabc = f bca = f cab = −f bac = −facb = −f cba. (9.114)

For example,

f123 = f231 = f312 = +1, (9.115a)

f213 = f132 = f321 = −1. (9.115b)

2. Show that

fabcfabc = 24, (9.116)

where repeated indicies are summed over. The following REDUCE program can be used as

an independent check of above derivations.

procedure ta(n);

begin scalar m;

if n=1 then m:=mat((0,1,0),(1,0,0),(0,0,0));

if n=2 then m:=mat((0,-i,0),(i,0,0),(0,0,0));

if n=3 then m:=mat((1,0,0),(0,-1,0),(0,0,0));

if n=4 then m:=mat((0,0,1),(0,0,0),(1,0,0));

if n=5 then m:=mat((0,0,-i),(0,0,0),(i,0,0));

if n=6 then m:=mat((0,0,0),(0,0,1),(0,1,0));

if n=7 then m:=mat((0,0,0),(0,0,-i),(0,i,0));

if n=8 then m:=mat((1,0,0),(0,1,0),(0,0,-2))/sqrt(3);

return m/2;

end;

procedure f(a,b,c);
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begin scalar aa,bb,cc,xx,ans;

aa:=ta(a);

bb:=ta(b);

cc:=ta(c);

xx:=aa*bb-bb*aa;

xx:=2*xx*cc;

ans:=trace(xx)/i;

return ans;

end;

cas:=mat((0,0,0),(0,0,0),(0,0,0));

id:=mat((1,0,0),(0,1,0),(0,0,1));

for a:=1:8 do <<x:=ta(a);cas:=cas+x*x>>;cas-4/3*id;

for a:=1:8 do <<x:=ta(a);write a,trace(x*x);>>;

f(1,2,3)-1;

f(1,4,7)-1/2;

f(1,6,5)-1/2;

f(2,4,6)-1/2;

f(2,5,7)-1/2;

f(3,4,5)-1/2;

f(3,7,6)-1/2;

f(4,5,8)-sqrt(3)/2;

f(6,7,8)-sqrt(3)/2;

24-for a:=1:8 sum for b:=1:8 sum for c:=1:8 sum f(a,b,c)^2;
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IV. Minkowski Space

10. Minkowski space

10.1 Metric tensor

Exercise 10.1 In the n-dimensional Euclidean space, the distance d(x,y) between two points

x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) is defined by

d(x,y) =
√

(x− y)2 =
√

(x− y) · (x− y), (10.1)

where the scalar product of the Euclidean vectors x and y is

x · y = xiyi. (10.2)

This can be expressed in terms of the metric tensor δij in the n-dimensional Euclidean space:

x · y = xiδijyj. (10.3)

Show that the matrix representation of the metric tensor of the n-dimensional Euclidean space is

δij = (1)ij =




1 0 0 · · ·
0 1 0 · · ·
0 0 1
...
...

. . .




. (10.4)

Problem 10.2 1. Show that the metric tensor δij of the n-dimensional Eucliean space is in-

variant under rotation:

δij = Ria(θ)Rjb(θ)δab, (10.5)

where

R(θ) = R(θn̂) = exp
[
− iθn̂ · J

]
(10.6)
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10.1 Metric tensor

is the rotation matrix about an axis n̂ by an angle θ. For example,

R(θẑ)




1

0

0


 =




cos θ

sin θ

0


 , (10.7)

in three dimensions. Therefore, the metric tensor is the same in any frame of references that

are related by rotation.

2. Show for n = 3 that the matrix representation of the generator Jij = (J1
ij , J

2
ij , J

3
ij) is

Jk
ij = −iǫijk. (10.8)

Problem 10.3 Show that the scalar product is invariant under rotation:

x′ · y′ = x · y, (10.9)

where the primed vector is obtained by rotation:

x′i = Rij(θ)xj . (10.10)

Exercise 10.4 The (n+ 1)-dimensional Minkowski space consists of a single time component

x0 = ct, (10.11)

where c is the speed of light and t is the time, and n spatial components defined in the n-dimensional

Euclidean space. An element x of that space is called a four-vector:

x = (x0, x1, · · · , xn) = (x0,x). (10.12)

We use a Greek letter to represent an index for the four-vector. For example, the µth component is

xµ. In the (n+1)-dimensional Minkowski space, the distance d(x, y) between two points x = (x0,x)

and y = (y0,y) is defined by

d(x, y) =
√

(x− y)2 =
√

(x− y) · (x− y) =
√

(x0 − y0)2 − (x− y)2, (10.13)

where the scalar product of two four-vectors x and y is

x · y = x0y0 − x · y = x0y0 − xiyi. (10.14)
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We introduce two ways to express components of a four-vector. One way is the contravariant

form xµ and the other way is the covariant form xµ:

xµ = (x0,+x), (10.15a)

xµ = (x0,−x). (10.15b)

Note that

x0 = x0 = ct, (10.16a)

x1 = −x1 = −x, (10.16b)

x2 = −x2 = −y, (10.16c)

x3 = −x3 = −z, (10.16d)

in 3 + 1 dimensions.

1. Show that the scalar product of two four-vectors x and y can be expressed as

x · y = xµy
µ = xµyµ. (10.17)

2. Show that

x · y 6= xµyµ, xµyµ. (10.18)

Therefore, in any pair of repeated four-vector indices, one must be covariant and the other

must be contravariant.

3. Show that the scalar product x · y can be expressed as

x · y = xµyνgµν = xµyνg
µν , (10.19)

where

gµν = gµν =

{
+1, µ = ν = 0,
−1, µ = ν = 1, 2, 3, · · · , n,
0, µ 6= ν.

(10.20)

4. The tensor gµν is called the metric tensor of the Minkowski space. Show that its matrix

representation is

gµν =




1 0 0 · · ·
0 −1 0 · · ·
0 0 −1
...

...
. . .




µν

, gµν =




1 0 0 · · ·
0 −1 0 · · ·
0 0 −1
...

...
. . .




µν

. (10.21)
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5. Show that the matrix representations of gµν and gµ
ν are given by

gµν = gµαgαν =




1 0 0 · · ·
0 1 0 · · ·
0 0 1
...

...
. . .




µ

ν

, (10.22a)

gµ
ν = gµαg

αν =




1 0 0 · · ·
0 1 0 · · ·
0 0 1
...

...
. . .




µ

ν

. (10.22b)

Note that we must not use the form gνµ which is ambiguous.

11. Lorentz transformation

11.1 Definition

Problem 11.1 Lorentz transformation represents the rules of the coordinate transformations

of physical quantities X in an inertial reference frame S to the corresponding quantities X ′ in an-

other inertial reference frame S′. If there is a physical quantity s defined in S that is invariant under

Lorentz transformation, s = s′, then we call s a Lorentz scalar. Under Lorentz transformation,

a four-vector xν defined in S transforms into x′µ as

x′µ = Λµ
νx

ν , (11.1)

where the summation over the repeated index ν is assumed for µ = 0, 1, 2, and 3. We restrict

ourselves for n + 1 Minkowski space. Because we have required that the scalar product of two

four-vectors is invariant in any inertial reference frame, the scalar product must be a Lorentz

scalar:

x′ · y′ = x · y. (11.2)

An implicit way defining Lorentz transformation is to require the transformation matrix Λ in

Eq. (14.1) to respect the invariance of the scalar product.

1. Show that the metric tensor gµν is invariant under Lorentz transformation:

gµν = Λµ
αΛ

ν
βg

αβ . (11.3)
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11.1 Definition

2. Parity transformation P flips the sign of each spatial component and keeps the time

component of a four-vector:

x′µ = P

µ
νx

ν , P

µ
ν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




µ

ν

. (11.4)

Show that P2 = 1 guarantees the invariance of the scalar product, where

1

µ
ν =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




µ

ν

. (11.5)

Therefore, the parity transformation (11.4) is a Lorentz transformation. {1,P} forms a

discrete group.

3. Time reversal transformation T flips the sign of the time component and keeps the

spatial components of a four-vector:

x′µ = T

µ
νx

ν , T

µ
ν =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




µ

ν

. (11.6)

Show that T2 = 1 guarantees the invariance of the scalar product. Therefore, the time

reversal transformation (11.6) is a Lorentz transformation. {1,T} forms a discrete group.

4. Pure rotational transformation R keeps the time component the same and transforms

the spatial components according to rotation. Show that

R

0
0(θn̂) = 1, (11.7a)

R

0
i(θn̂) = R

i
0(θn̂) = 0, i = 1, 2, 3, (11.7b)

R

i
j(θn̂) = exp

[
− iθn̂ · J

] i

j
, i, j = 1, 2, 3. (11.7c)
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where

(J1)µν =




0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0



, (J2)µν =




0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0



, (J3)µν =




0 0 0 0

0 0 −i 0
0 i 0 0

0 0 0 0



. (11.8)

Show that R2 = 1 guarantees the invariance of the scalar product. Therefore, the pure

rotation is a Lorentz transformation. Show also that pure rotation forms a continuous

group.

5. Show that there exist three more generators to represent complete set of Lorentz transfor-

mation of a four-vector. These generators represents Lorentz boosts.

Problem 11.2 Under a Lorentz transformation

x′µ = Λµ
νx

ν , (11.9)

where the summation over the repeated index ν is assumed for µ = 0, 1, 2, and 3.

1. Show that

∂

∂x′µ
= Λµ

ν
∂

∂xν
. (11.10)

2. Show that

∂

∂x′µ
= Λµ

ν ∂

∂xν
. (11.11)

Therefore, we write

∂µ ≡ ∂

∂xµ
, ∂µ ≡

∂

∂xµ
. (11.12)

3. Show that

∂µ =

(
1

c

∂

∂t
,−∇

)
, ∂µ[[=]]

(
1

c

∂

∂t
,+∇

)
. (11.13)

11.2 Rotation Generators J

Problem 11.3 We would like to find the rotation matrix Ri
j(θn̂) for a rotation about an axis

parallel to a unit vector n̂ = (n̂1, n̂2, n̂3) by an angle θ. Under the transformation, the 3-dimensional

position vector transforms like

x′i = R

i
j(θn̂)x

j. (11.14)
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1. Show that

x′ = x[[cos θ]] + n̂× x sin θ + n̂(n̂ · x)(1− cos θ). (11.15)

2. By making use of the above relation, read off the matrix element Ri
j(θn̂) to find that

R

i
j(θn̂) = δij cos θ + n̂in̂j(1− cos θ) + ǫikjn̂k sin θ. (11.16)

3. Check this relation for special cases:

R

i
j(θx̂) = x̂ix̂j + (ŷiŷj + ẑiẑj) cos θ + (−ŷiẑj + ẑiŷj) sin θ =




1 0 0

0 cos θ − sin θ

0 sin θ cos θ




i

j

,(11.17a)

R

i
j(θŷ) = ŷiŷj + (x̂ix̂j + ẑiẑj) cos θ + (−ẑix̂j + x̂iẑj) sin θ =




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




i

j

,(11.17b)

R

i
j(θẑ) = ẑiẑj + (x̂ix̂j + ŷiŷj) cos θ + (−x̂iŷj + ŷix̂j) sin θ =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1




i

j

.(11.17c)

Problem 11.4 We recall the matrix representations for the generators for the rotation.

(J1)µν =




0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0




µ

ν

, (J2)µν =




0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0




µ

ν

, (J3)µν =




0 0 0 0

0 0 −i 0
0 i 0 0

0 0 0 0




µ

ν

. (11.18)
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1. Show that

(J1)2nµ
ν = (J1)µα1

(J1)α1

α2
(J1)α2

α3
· · · (J1)α2n

ν =




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1




µ

ν

, (11.19)

(J2)2nµ
ν = (J2)µα1

(J2)α1

α2
(J2)α2

α3
· · · (J2)α2n

ν =




0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1




µ

ν

, (11.20)

(J3)2nµ
ν = (J3)µα1

(J3)α1

α2
(J3)α2

α3
· · · (J3)α2n

ν =




0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0




µ

ν

. (11.21)

2. Show that

(J1)2n+1 µ
ν = (J1)µα1

(J1)α1

α2
(J1)α2

α3
· · · (J1)α2n+1

ν = (J1)µν , (11.22)

(J2)2n+1 µ
ν = (J2)µα1

(J2)α1

α2
(J2)α2

α3
· · · (J2)α2n+1

ν = (J2)µν , (11.23)

(J3)2n+1 µ
ν = (J3)µα1

(J3)α1

α2
(J3)α2

α3
· · · (J3)α2n+1

ν = (J3)µν . (11.24)

3. Show that

R

i
j(θx̂) =

∞∑

n=0

(−iθ)n
n!

(J1)n i
j =




1 0 0

0 cos θ − sin θ

0 sin θ cos θ




i

j

, (11.25)

R

i
j(θŷ) =

∞∑

n=0

(−iθ)n
n!

(J2)n i
j =




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




i

j

, (11.26)

R

i
j(θẑ) =

∞∑

n=0

(−iθ)n
n!

(J3)n i
j =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1




i

j

. (11.27)
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11.3 Boost Generators K

Problem 11.5 The Lorentz boost,

x′µ = B

µ
ν(βx̂1)x

ν , (11.28)

along the x̂ axis transforms the four-momentum of a rest particle from p to p′

pµ =




mc

0

0

0




−→ p′µ =




E/c

p

0

0



, E =

√
(mc2)2 + (pc)2. (11.29)

According to the special theory of relativity, the mass m′ of a moving particle with velocity v = βc

increases by

m′ = γm, γ =
1√

1− β2
, (11.30)

where m is the rest mass. Therefore, the energy E and momentum p of that moving particle

become

E = m′c2 = γmc2, p = m′v = mγv. (11.31)

1. Show that

β =
pc

E
, γ =

E

mc2
. (11.32)

2. Show that

B

µ
ν(βx̂1) =




γ βγ 0 0

βγ γ 0 0

0 0 1 0

0 0 0 1




µ

ν

(11.33)

3. Generalizing the results to the boosts along x̂2 and x̂3, show that

B

µ
ν(βx̂2) =




γ 0 βγ 0

0 1 0 0

βγ 0 γ 0

0 0 0 1




µ

ν

, B

µ
ν(βx̂3) =




γ 0 0 βγ

0 1 0 0

0 0 1 0

βγ 0 0 γ




µ

ν

(11.34)
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4. Show that Bµ
ν(βx̂1), B

µ
ν(βx̂2), and B

µ
ν(βx̂3) satisfy the condition x′ · y′ = x · y of the

Lorentz transformation.

5. Show that det[Bµ
ν(βx̂i)] = +1 for i = 1, 2, 3.

Problem 11.6 We notice that the spatial components that are perpendicular to the axis of boost

remain unchanged in the Lorentz boost. Let us consider a boost by β = ββ̂ along a unit vector in

a frame, where a particle is at rest. We define

x‖ =
β(β · x)
β2

, (11.35a)

x⊥ = x− x‖ = x− β(β · x)
β2

. (11.35b)

1. Show that

x′0 = γ
(
x0 + β · x

)
. (11.36)

This condition determines the first row of the boost matrix as

B

0
ν(β) =

(
γ γβ1 γβ2 γβ3

)
ν
. (11.37)

2. Show that

x′ = γβ̂
(
βx0 + β̂ · x

)
+ x− β̂(β̂ · x)

= γβx0 + x+
γ − 1

β2
β(β · x). (11.38)

Therefore,

x′i = γβix0 + xi +
γ − 1

β2
βiβjxj. (11.39)

3. Show that the first column of the boost matrix is determined as

B

µ
0(β) =




γ

γβ1

γβ2

γβ3




µ

. (11.40)

4. Show that the ij element of the boost matrix is determined as

B

i
j(β) = δij +

γ − 1

β2
βiβj =

(
13×3 +

γ − 1

β2
β ⊗ βT

)i

j

, (11.41)
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where

13×3 =




1 0 0

0 1 0

0 0 1


 , β =




β1

β2

β3


 , βT =

(
β1 β2 β3

)
, (β ⊗ βT )ij = βiβj. (11.42)

5. In summary, the boost matrix is completely determined as

B

µ
ν(β) =




γ γβ1 γβ2 γβ3

γβ1 1 + (γ − 1)(β̂1)2 (γ − 1)β̂1β̂2 (γ − 1)β̂1β̂3

γβ2 (γ − 1)β̂2β̂1 1 + (γ − 1)(β̂2)2 [[(γ − 1)]]β̂2β̂3

γβ3 (γ − 1)β̂3β̂1 (γ − 1)β̂3β̂2 1 + (γ − 1)(β̂3)2




µ

ν

, (11.43)

where

β̂i =
βi

β
. (11.44)

6. Show that det[Bµ
ν(β)] = +1 for i = 1, 2, 3.

Problem 11.7 Let us consider [Bµ
ν(βx̂1)].

1. By making use of the relation,

γ2(1− β2) = 1, (11.45)

show that [Bµ
ν(βx̂1)] can be expressed of the form

(B1)µν(φ) ≡ Bµ
ν(βx̂1) =




coshφ sinhφ 0 0

sinhφ cosh φ 0 0

0 0 1 0

0 0 0 1




µ

ν

, (11.46a)

(B2)µν(φ) ≡ Bµ
ν(βx̂2) =




coshφ 0 sinhφ 0

0 1 0 0

sinhφ 0 coshφ 0

0 0 0 1




µ

ν

, (11.46b)

(B3)µν(φ) ≡ Bµ
ν(βx̂3) =




coshφ 0 0 sinhφ

0 1 0 0

0 0 1 0

sinhφ 0 0 coshφ




µ

ν

, (11.46c)
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where

γ = cosh φ, γβ = sinhφ. (11.47)

2. For an infinitesimal parameter φ, show that each boost matrix becomes

(Bi)µν(φ) = 1− iφKi +O(φ2), (11.48)

where

(K1)µν =




0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0




µ

ν

, (K2)µν =




0 0 i 0

0 0 0 0

i 0 0 0

0 0 0 0




µ

ν

, (K3)µν =




0 0 0 i

0 0 0 0

0 0 0 0

i 0 0 0




µ

ν

. (11.49)

3. Show that for any finite φ,

(Bi)µν(φ) = [[ lim
n→∞

]]

(
1− iφ

n
Ki

)nµ

ν

= exp
[
−iφKi

]µ
ν
. (11.50)

4. Show that

(K1)2nµ
ν = (K1)µα1

(K1)α1

α2
(K1)α2

α3
· · · (K1)α2n

ν = (−1)n




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




µ

ν

,(11.51a)

(K2)2nµ
ν = (K2)µα1

(K2)α1

α2
(K2)α2

α3
· · · (K2)α2n

ν = (−1)n




1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0




µ

ν

,(11.51b)

(K3)2nµ
ν = (K3)µα1

(K3)α1

α2
(K3)α2

α3
· · · (K3)α2n

ν = (−1)n




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1




µ

ν

. (11.51c)

5. Show that

(K1)2n+1 µ
ν = (K1)µα1

(K1)α1

α2
(K1)α2

α3
· · · (K1)α2n+1

ν = (−1)n(K1)µν , (11.52a)

(K2)2n+1 µ
ν = (K2)µα1

(K2)α1

α2
(K2)α2

α3
· · · (K2)α2n+1

ν = (−1)n(K2)µν , (11.52b)

(K3)2n+1 µ
ν = (K3)µα1

(K3)α1

α2
(K3)α2

α3
· · · (K3)α2n+1

ν = (−1)n(K3)µν . (11.52c)
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6. Show that

(B1)µν(φ) =
∞∑

n=0

(−iφ)n
n!

(K1)nµ
ν =




coshφ sinhφ 0 0

sinhφ cosh φ 0 0

0 0 1 0

0 0 0 1




µ

ν

, (11.53)

(B2)µν(φ) =
∞∑

n=0

(−iφ)n
n!

(K2)nµ
ν =




coshφ 0 sinhφ 0

0 1 0 0

sinhφ 0 cosh φ 0

0 0 0 1




µ

ν

, (11.54)

(B3)µν(φ) =
∞∑

n=0

(−iφ)n
n!

(K3)nµ
ν =




coshφ 0 0 sinhφ

0 1 0 0

0 0 1 0

sinhφ 0 0 coshφ




µ

ν

. (11.55)

11.4 Commutation Relations for J and K

Problem 11.8 Show that the Lorentz transformation with determinant +1 must be expressed as

Λµ
ν(θ,φ) = exp

[
−iθiJ i − iφiKi

]µ
ν

(11.56)

and is a group of SO(4).

Problem 11.9 Let V be an arbitray three-vector operator. Under rotation, this operator must

transform like

V ′ = [[R−1(θn̂)V R(θn) = R(θn̂)TV R(θn) = R(−θn̂)V R(θn), ]] (11.57)

where

R(θn̂) = exp [−iθn̂ · J ] . (11.58)

1. For an infinitesimal angle θ and an arbitrary unit vector n̂, show that

V ′ = V + θn̂× V +O(θ2). (11.59)

2. For an infinitestimal transformation (θ → 0), show that

V ′ = V [[+]]iθ[n̂ · J ,V ] +O(θ2). (11.60)
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3. Based on these results, show that

(1[[+]]iθn̂ · J)V (1[[−]]iθn̂ · J) = V + θn̂× V . (11.61)

We can read off the coefficient of n̂i to find that

[J i, V j] = iǫijkV k. (11.62)

4. Based on the fact that the angular momentum must be a vector operator, the following

commutation relation must hold.

[J i, J j ] = iǫijkJk. (11.63)

Problem 11.10 We generalize the previous result for the three-vector operator to the four-vector

operator V µ. We consider an infinitesimal rotation operator R(θn̂) with θ → 0.

1. For an infinitesimal angle θ and an arbitrary unit vector n̂, show that

V ′ = (V ′0,V ′) = (V 0,V + θn̂× V ) +O(θ2) = V + (0, θn̂ × V ) +O(θ2). (11.64)

2. For an infinitestimal transformation (θ → 0), show that

V ′0 = V 0, (11.65a)

V ′ = V [[+]]iθ[n̂ · J ,V ] +O(θ2). (11.65b)

3. Based on these results, show that

[J i, V 0] = 0, (11.66a)

[J i, V j ] = iǫijkV k. (11.66b)

4. We define antisymmetric tensor operator Mαβ such that

M12 ≡ −M21 = J3, M23 ≡ −M32 = J1, M31 ≡ −M13 = J2. (11.67)

Based on the previous results, show that

[M ij , V 0] = 0, (11.68a)

[M12, V 1] = [J3, V 1] = iV 2 = −iV 2g11, (11.68b)

[M12, V 2] = [J3, V 2] = −iV 1 = iV 1g22, (11.68c)

[M12, V 3] = [J3, V 3] = 0, (11.68d)

[M12, V k] = i(V 1g2k − V 2g1k), (11.68e)

[M ij, V k] = i(V igjk − V jgik). (11.68f)
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Problem 11.11 We consider an arbitrary boost by φ = tanh−1 β along an arbitray axis.

Λµ
ν = exp [−iφ ·K]µν (11.69)

1. For any parameter φ = tanh−1 β and an arbitrary boost along a unit vector n̂, show that

(V ′0,V ′) = [[Λ−1(φ)(V 0,V )Λ(φ) = Λ(−φ)(V 0,V )Λ(φ).]] (11.70)

2. For an infinitestimal transformation ([[φ]]→ 0), show that four-momentum transforms like

V ′0 = V 0 + β · V +O(β2) = V 0 + φn̂ · V +O(φ2), (11.71a)

V ′ = βV 0 + V +O(β2) = φn̂V 0 + [[V ]] +O(φ2). (11.71b)

3. Based on these results, show that

(1[[+]]iφn̂ ·K)V 0(1[[−]]iφn̂ ·K) = V 0 + φn̂ · V , (11.72a)

(1[[+]]iφn̂ ·K)V (1[[−]]iφn̂ ·K) = V + φn̂V 0. (11.72b)

We can read off the coefficient of n̂i to find that

[Ki, V 0] = [[−]]iV i, (11.73a)

[Ki, V j ] = [[−]]iδijV 0 = [[]]iV 0gij , (11.73b)

4. We define antisymmetric tensor operator Mαβ such that

M [[01]] ≡ −M [[10]] = K1, M [[02]] ≡ −M [[20]] = K2, M [[03]] ≡ −M [[30]] = K3. (11.74)

5. Based on these results, show that

[M i0, V 0] = [[−]][Ki, V 0] = iV ig00 = i(V ig00 − V 0gi0), (11.75a)

[M0i, V 0] = [[]][Ki, V 0] = −iV ig00 = i(V 0gi0 − V ig00), (11.75b)

[M i0, V j] = [[−]][Ki, V j ] = −iV 0gij = i(V ig0j − V 0gij), (11.75c)

[M0i, V j] = [[]]][Ki, V j] = iV 0gij = i(V 0gij − V ig0j). (11.75d)
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Problem 11.12 We have shown that

[M ij , V 0] = i(V igj0 − V jgi0), (11.76a)

[M ij, V k] = i(V igjk − V jgik), (11.76b)

[M i0, V 0] = i(V ig00 − V 0gi0), (11.76c)

[M0i, V 0] = i(V 0gi0 − V ig00), (11.76d)

[M i0, V j ] = i(V ig0j − V 0gij), (11.76e)

[M0i, V j ] = i(V 0gij − V ig0j). (11.76f)

Show that this result is equivalent to

[Mµν , V α] = i(V µgνα − V νgµα). (11.77)

Problem 11.13 We investigate the commutation relations among the 6 generators of the Lorentz

transformation:

[P,Q]µν = Pµ
αQ

α
ν −Qµ

αP
α
ν . (11.78)

1. Show that

[J i, J j ]µν = iǫijk(Jk)µν , (11.79a)

[Ki,Kj ]µν = −iǫijk(Jk)µν , (11.79b)

[J i,Kj ]µν = iǫijk(Kk)µν . (11.79c)

2. Based on the commutation relations

[J i, J j ]µν = iǫijk(Jk)µν , (11.80a)

[J i,Kj ]µν = iǫijk(Kk)µν , (11.80b)

show that both J and K are vector operators.

3. Based on the commutation relation

[Ki,Kj ]µν = −iǫijk(Jk)µν (11.81)

confirm that a set of successsive boosts along x̂ and ŷ results in a rotation about the axis

along ẑ.
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l1:=mat((0,0,0,0),(0,0,0,0),(0,0,0,-i),(0,0,i,0));

l2:=mat((0,0,0,0),(0,0,0,i),(0,0,0,0),(0,-i,0,0));

l3:=mat((0,0,0,0),(0,0,-i,0),(0,i,0,0),(0,0,0,0));

k1:=mat((0,i,0,0),(i,0,0,0),(0,0,0,0),(0,0,0,0));

k2:=mat((0,0,i,0),(0,0,0,0),(i,0,0,0),(0,0,0,0));

k3:=mat((0,0,0,i),(0,0,0,0),(0,0,0,0),(i,0,0,0));

l1*l2-l2*l1-(i*l3);

l2*l3-l3*l2-(i*l1);

l3*l1-l1*l3-(i*l2);

k1*k2-k2*k1-(-i*l3);

k2*k3-k3*k2-(-i*l1);

k3*k1-k1*k3-(-i*l2);

l1*k2-k2*l1-(i*k3);

l2*k3-k3*l2-(i*k1);

l3*k1-k1*l3-(i*k2);

matrix a1,a2,a3,b1,b2,b3;

a1:=(l1+i*k1)/2;

a2:=(l2+i*k2)/2;

a3:=(l3+i*k3)/2;

b1:=(l1-i*k1)/2;

b2:=(l2-i*k2)/2;

b3:=(l3-i*k3)/2;

a1*b1-b1*a1;

a1*b2-b2*a1;

a1*b3-b3*a1;

a2*b1-b1*a2;

a2*b2-b2*a2;

a2*b3-b3*a2;

a3*b1-b1*a3;

109



11.4 Commutation Relations for J and K

a3*b2-b2*a3;

a3*b3-b3*a3;

a1*a2-a2*a1-(i*a3);

a2*a3-a3*a2-(i*a1);

a3*a1-a1*a3-(i*a2);

b1*b2-b2*b1-(i*b3);

b2*b3-b3*b2-(i*b1);

b3*b1-b1*b3-(i*b2);

Problem 11.14

We define

(Ai)µν ≡
1

2
(J i + iKi)µν , (11.82a)

(Bi)µν ≡
1

2
(J i − iKi)µν . (11.82b)

1. Show that

[Ai, Bj]µν = 0, (11.83a)

[Ai, Aj ]µν = iǫijk(Ak)µν , (11.83b)

[Bi, Bj]µν = iǫijk(Bk)µν . (11.83c)

2. Show that SO(4) is equivalent to the direct product of two SU(2) groups:

SO(4) = SU(2) ⊗ SU(2). (11.84)
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11.5 Commutation Relations for Mµν

Problem 11.15 We recall the 6 generators of the Lorentz transformation Λµ
ν =

exp [−iθ · J − iφ ·K]µν with det(Λµ
ν) = +1:

(J1)µν =




0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0



, (J2)µν =




0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0



, (J3)µν =




0 0 0 0

0 0 −i 0
0 i 0 0

0 0 0 0



, (11.85a)

(K1)µν =




0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0



, (K2)µν =




0 0 i 0

0 0 0 0

i 0 0 0

0 0 0 0



, (K3)µν =




0 0 0 i

0 0 0 0

0 0 0 0

i 0 0 0



. (11.85b)

The argument of the exponential function in the transformation matrix can be expressed as

Λµ
ν = exp [−iθ · J − iφ ·K]µν = exp

[
− i
2
ωαβM

αβ

]µ

ν

, (11.86)

where the matrices (Mαβ)
µ
ν are defined by

(M00)µν ≡ 0, (11.87a)

(M [[0i]])µν ≡ −(M [[i0]])µν = (Ki)µν , (11.87b)

(M ij)µν ≡ −(M ji)µν = ǫijk(Jk)µν . (11.87c)

1. Show that

(J1)µν = (M12)µν , (J2)µν = (M23)µν , (J3)µν = (M31)µν . (11.88)

2. Show that

(K1)µν = (M [[01]])µν , (K2)µν = (M [[02]])µν , (K3)µν = (M [[03]])µν . (11.89)

3. Show that

(θ1, θ2, θ3) = (ω23, ω31, ω12) = −(ω32, ω13, ω21). (11.90a)

(φ1, φ2, φ3) = [[(ω01, ω02, ω03) = −(ω10, ω20, ω30).]] (11.90b)
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4. Show that both (J i)µν and (Ki)µν are antisymmetric:

(J i)µν = −(J i)νµ, (11.91)

(Ki)µν = −(Ki)νµ. (11.92)

5. Show that the commutation relations

[J i, J j ]µν = iǫijk(Jk)µν (11.93)

is equivalent to

[M23,M23]µν = [J1, J1]µν = 0, (11.94a)

[M23,M31]µν = [J1, J2]µν = i(J3)µν = i(M12)µν , (11.94b)

[M31,M23]µν = [J2, J1]µν = −i(J1)µν = −i(M12)µν , (11.94c)

and similar relations that can be obtained by the replacements: (1, 2, 3) → (2, 3, 1) and

(1, 2, 3) → (3, 1, 2).

6. Show that the commutation relations

[Ki,Kj ]µν = −iǫijk(Jk)µν (11.95)

is equivalent to

[M [[01]],M [[01]]]µν = [K1,K1]µν = 0, (11.96a)

[M [[01]],M [[02]]]µν = [K1,K2]µν = −i(J3)µν = −i(M12)µν , (11.96b)

[M [[02]],M [[01]]]µν = [K2,K1]µν = i(J3)µν = i(M12)µν , (11.96c)

and similar relations that can be obtained by the replacements: (1, 2, 3) → (2, 3, 1) and

(1, 2, 3) → (3, 1, 2).

7. Show that the commutation relations

[J i,Kj ]µν = iǫijk(Kk)µν (11.97)

is equivalent to

[M23,M [[01]]]µν = [J1,K1]µν = 0, (11.98a)

[M23,M [[02]]]µν = [J1,K2]µν = i(K3)µν = i(M [[03]])µν , (11.98b)

[M [[02]],M23]µν = [K2, J1]µν = −i(K3)µν = −i(M [[03]])µν , (11.98c)
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and similar relations that can be obtained by the replacements: (1, 2, 3) → (2, 3, 1) and

(1, 2, 3) → (3, 1, 2).

8. Show that the previous relations are equivalent to

[M23,M23]µν = 0, (11.99a)

[M23,M31]µν = i(M12)µν = −i(M21)µν = i(M21g33)µν , (11.99b)

[M31,M23]µν = −i(M12)µν = i(M12g33)µν , (11.99c)

[M [[01]],M [[01]]]µν = 0, (11.99d)

[M [[01]],M [[02]]]µν = −i(M12)µν = −i(M12g00)µν , (11.99e)

[M [[02]],M [[01]]]µν = i(M12)µν = −i(M21)µν = −i(M21g00)µν , (11.99f)

[M23,M [[01]]]µν = 0, (11.99g)

[M23,M [[02]]]µν = i(M [[03]])µν = −i(M30g22)µν , (11.99h)

[M [[02]],M23]µν = −i(M [[03]])µν = i(M [[30]])µν = −i(M03g22)µν . (11.99i)

9. Show that all of the above relations are completely obtained from

[Mµν ,Mαβ ]ρσ = i
[(
Mµβgνα −Mνβgµα

)
−
(
Mµαgνβ −Mναgµβ

)]ρ
σ

= i
[(
Mµβgνα + gµβMνα

)
−
(
Mµαgνβ + gµαMνβ

)]ρ
σ
. (11.100a)

Problem 11.16 We recall that

(J1)µν =




0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0



, (J2)µν =




0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0



, (J3)µν =




0 0 0 0

0 0 −i 0
0 i 0 0

0 0 0 0



, (11.101a)

(K1)µν =




0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0



, (K2)µν =




0 0 i 0

0 0 0 0

i 0 0 0

0 0 0 0



, (K3)µν =




0 0 0 i

0 0 0 0

0 0 0 0

i 0 0 0



. (11.101b)
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1. Show that

(M23)µν =




0 0 0 0

0 0 0 0

0 0 0 i

0 0 −i 0



, (M31)µν =




0 0 0 0

0 0 0 −i
0 0 0 0

0 i 0 0



, (M12)µν =




0 0 0 0

0 0 i 0

0 −i 0 0

0 0 0 0



,(11.102a)

(M01)µν =




0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0



, (M02)µν =




0 0 −i 0
0 0 0 0

i 0 0 0

0 0 0 0



, (M03)µν =




0 0 0 −i
0 0 0 0

0 0 0 0

i 0 0 0



.(11.102b)

By definition, (Mαβ)µν is antisymmetric under exchange of α ↔ β. We have shown that

(Mαβ)µν is antisymmetric under exchange of µ↔ ν.

2. Show that

(M01)µν = i(g0µg1ν − g1µg0ν), (11.103a)

(M02)µν = i(g0µg2ν − g2µg0ν), (11.103b)

(M03)µν = i(g0µg3ν − g3µg0ν), (11.103c)

(M12)µν = i(g1µg2ν − g2µg1ν), (11.103d)

(M23)µν = i(g2µg3ν − g3µg2ν), (11.103e)

(M31)µν = i(g3µg1ν − g1µg3ν). (11.103f)

In summary, the explicit values of the matrix elements (Mαβ)µν is given by

(Mαβ)µν = i(gαµgβν − gβµgαν), (11.104a)

(Mαβ)µν = i(gαµgβν − gβµgαν). (11.104b)

3. By making use of the relation

(Mαβ)µν = i(gαµgβν − gβµgαν), (11.105)

show that

[Mµν ,Mαβ ]ρσ = i
[(
Mµβgνα −Mνβgµα

)
−
(
Mµαgνβ −Mναgµβ

)]ρσ

= i
[(
Mµβgνα + gµβMνα

)
−
(
Mµαgνβ + gµαMνβ

)]ρσ
, (11.106a)

[Mµν ,Mαβ ]ρσ = i
[(
Mµβgνα −Mνβgµα

)
−
(
Mµαgνβ −Mναgµβ

)]ρ
σ

= i
[(
Mµβgνα + gµβMνα

)
−
(
Mµαgνβ + gµαMνβ

)]ρ
σ
. (11.106b)
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4. The commutation relations for the generators Mαβ of the Lorentz transformation constructs

a Lie algebra:

[Mµν ,Mαβ ]ρσ = fµναβκλ(M
κλ)ρσ. (11.107)

Show that the structure constant is given by

fµναβκλ =
(
gναgµκgβλ − gµαgνκgβλ

)
−
(
gνβgµκgαλ − gµβgνκgαλ

)
. (11.108)

11.6 Orbital Angular Momentum Lµν

Problem 11.17 We generalize quantum mechanical orbital angular momentum operator L =

x× p in the 3 + 1 Minkowski space:

Lµν = xµpν − xνpµ = i(xµ∂ν − xν∂µ). (11.109)

Note that Lαβ is not a matrix for a given α and β, while (Mαβ)µν is a matrix. We define

L12 = −L21 = L3, (11.110a)

L23 = −L32 = L[[1]], (11.110b)

L31 = −L13 = L[[2]], (11.110c)

L[[01]] = −L[[10]] = K1, (11.110d)

L[[02]] = −L[[20]] = K2, (11.110e)

L[[03]] = −L[[30]] = K3, (11.110f)

1. Show that

[Li, Lj ] = iǫijkLk, (11.111a)

[Li,Kj] = iǫijkKk, (11.111b)

[Ki,Kj] = −iǫijkKk. (11.111c)

2. We define

(Ai)µν ≡
1

2
(Li + iKi)µν , (11.112a)

(Bi)µν ≡
1

2
(Li − iKi)µν . (11.112b)
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Show that

[Ai, Bj]µν = 0, (11.113a)

[Ai, Aj ]µν = iǫijk(Ak)
µ

ν , (11.113b)

[Bi, Bj]µν = iǫijk(Bk)
µ

ν . (11.113c)

3. Show that

[xµ, xν ] = 0, (11.114a)

[pµ, pν ] = 0, (11.114b)

[xµ, pν ] = −igµν . (11.114c)

4. By making use of the identity

[A,BC] = [A,B]C +B[A,C], (11.115)

show that

[Lµν , pα] = i([[pµ]]gνα − [[pν ]]gµα), (11.116a)

[Lµν , xα] = i(xµgνα − xνgµα). (11.116b)

5. Show that Lµν satisfies the commutation relation that is identical to that of Mµν :

[Lµν , Lαβ ] = i
[(
Lµβgνα − Lνβgµα

)
−
(
Lµαgνβ − Lναgµβ

)]

= i
[(
Lµβgνα + gµβLνα

)
−
(
Lµαgνβ + gµαLνβ

)]
. (11.117a)

11.7 Pauli-Lubanski operator W µ

Problem 11.18 The Pauli-Lubanski operator W µ is defined by

W µ =
1

2
ǫµναβpνMαβ , (11.118)

where ǫµναβ is a completely antisymmetric tensor and conventionally ǫ0123 = −ǫ0123 = 1 and

Mµν = Lµν + Sµν , (11.119a)

Lµν ≡ xµpν − pµxν = i(xµ∂ν − xν∂µ). (11.119b)

Here, Mµν is the generator for the total angular momentum, Lµν is for the orbital angular mo-

mentum, and Sµν is for the spin angular momentum.
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1. Show that the contribution of Lµν vanishes completely:

W µ =
1

2
ǫµναβpνSαβ. (11.120)

2. Show that Wµp
µ = 0.

3. Show that

[pµ,W ν ] = 0. (11.121)

Therefore, W µ must be invariant under translation.

4. Show that

ǫ0ijk = −ǫijk, (11.122a)

ǫi0jk = +ǫijk, (11.122b)

ǫij0k = −ǫijk, (11.122c)

ǫijk0 = +ǫijk. (11.122d)

Note that our convention is ǫ0123 = −ǫ0123 = ǫ123 = ǫ123 = 1.

5. Show that

ǫjkiǫjkℓ = 2δiℓ. (11.123)

6. Show that

W 0 =
1

2
(−ǫijk)(−pi)(+Sjk)

=
1

2
ǫijkpiǫjkℓSℓ

= p · S, (11.124)

where the angular-momentum operator J is defined in Eq. (11.101a). This operator is

proportional to the helicity operator:

λ = p̂ · S =
p · S
|p| . (11.125)

7. Show that

W i =
1

2
ǫiµαβpµSαβ

=
1

2

(
ǫi0jkp0Sjk + ǫij0kpjS0k + ǫijk0pjSk0

)

=
1

2

[
ǫijkp0Sjk + (−ǫijk)(−pj)(−S0k) + ǫijk(−pj)(−Sk0)

]

= (ES[[−]]p ×K)i , (11.126)
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11.7 Pauli-Lubanski operator Wµ

where the operators J = S and K are defined in Eqs. (11.101a) and (11.101b), respectively.

Therefore, we have shown that

W µ = (p · S, ES[[−]]p ×K). (11.127)

We observe that W 0 is a scalar and W is a three-vector under rotation.

8. Because p is a three-vector,

[Si, pj ] = iǫijkpj. (11.128)

Confirm this relation by an explicit computation.

9. Because W 0 = p · S is a scalar under rotation,

[S,W 0] = 0. (11.129)

Confirm this relation by an explicit computation:

[Si,W 0] = [Si, pjSj] = iǫijk(pkSj + pjSk) = 0. (11.130)

10. According to our previous calculation, W = ES[[−]]p ×K. Provide an argument that the

following commutation must be valid:

[Si,W j] = iǫijkW k. (11.131)

Confirm this commutation relation that states that W is a three-vector by an explicit cal-

culation.

11. Provide an argument that the following commutation must be valid:

[Ki,W 0] = [[−]]iW i, (11.132a)

[Ki,W j] = [[−]]iW 0δij = [[]]igijW 0. (11.132b)

Confirm this commutation relation by an explicit calculation.

12. Show that

[Sµν ,Wα] = i(W µgνα −W νgµα). (11.133)

13. Show that

[Sµν ,WαW
α] = 0. (11.134)
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11.7 Pauli-Lubanski operator Wµ

Problem 11.19 We would like to find the commutation relations for [W µ,W ν ]. Note that we

have derived

[Pµ,W ν ] = 0, (11.135)

[Li,W 0] = 0, (11.136)

[Li,W j ] = iǫijkW k, (11.137)

[Ki,W 0] = iW i, (11.138)

[Ki,W j ] = iW 0δij . (11.139)

1. Show that

[W µ,W µ] = 0, (11.140)

where there is no sum over µ.

2. Show that

[AB,C] = A[B,C] + [A,C]B, (11.141)

[A,BC] = [A,B]C +B[A,C] (11.142)

3. Show that

[W 0,W i] = [pjLj ,W i]

= pj[Lj ,W i] + [pj ,W i]Lj

= iǫjikpjW k = −i(p×W )i = i(W × p)i

= iǫ0ijkpjWk = iǫ0iαβpαWβ, (11.143)

[W i,W 0] = iǫi0αβpαWβ. (11.144)

4. Show that

[W i,W j] = [ELi + ǫiℓmpℓKm,W i]

= E[Li,W j ] + ǫiℓmpℓ[Km,W j]

= iǫijkp0W k + iǫiℓjpℓW 0

= i(−ǫ0ijk)p0(−Wk) + iǫ0ijℓ(−pℓ)W0

= iǫij0kp0Wk + iǫijℓ0pℓW0

= iǫ0iαβpαWβ. (11.145a)
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In summary, we have shown that

[W µ,W ν ] = iǫµναβpαWβ. (11.146)

12. Poincaré transformation

Problem 12.1 Lorentz transformation has 6 generators: 3 for rotations and 3 for boosts:

x′µ = Λµ
νx

ν . (12.1)

The transformation can further be generalized to include 4 generators that generates translational

operation:

x′µ = Λµ
νx

ν + aν . (12.2)

This is called the Poincaré transformation and is represented by P(Λ, a). Show that

P(Λ2, b)P(Λ1, a) = P(Λ, c), (12.3)

where

Λ = Λ2Λ1, cµ = Λµ
2 νa

ν + bµ. (12.4)

Therefore, the set of Poincaré transformations forms a group.

Problem 12.2 The translational operation:

x′µ = xµ + aµ (12.5)

can be obtained by multiplying an operator

U(a) = exp [−iaαpα] ≡ exp [aα∂
α] . (12.6)

where pα is the relativistic quantum mechanical version of the momentum operator

pα = i∂α ≡ i ∂

∂xα
. (12.7)

1. Show also that the generators pµ satisfy the following commutation relations:

[pµ, pν ] = 0. (12.8)
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2. Show that for an arbitrary scalar function φ(x) transforms under the translation like

φ(x)→ U(a)φ(x) = φ(x− a). (12.9)

Problem 12.3 The Pauli-Lubanski operator W µ is defined by

W µ =
1

2
ǫµναβpνMαβ . (12.10)

where Mαβ is the generators for the Lorentz transformation and

1. Show that W µ is orthogonal to pµ:

Wµp
µ = 0. (12.11)

2. Prove the following commutation relations:

[pµ,W ν ] = 0, (12.12a)

[Mµν ,Wα] = i(W µgνα −W νgµα), (12.12b)

[W µ,W ν ] = iǫµναβpαWβ. (12.12c)

3. Show that

[pµ,WαWα] = [pµ,Wα]Wα +Wα[pµ,Wα] = 0, (12.13a)

[Mµν ,WαWα] = [Mµν ,Wα]Wα +Wα[M
µν ,Wα]

= i(W µgνα −W νgµα)Wα + iWα(W
µgνα −W νgµα),

= i(W µW ν −W νW µ) + i(W νW µ −W µW ν) = 0. (12.13b)

Therefore, W 2 =WαWα is invariant under Poincaré transformation.

4. Show that

ǫλκστ ǫλκστ = −4! = −24. (12.14)

5. Show that

ǫλκσµǫλκστ = −3!gµτ . (12.15)

6. Show that

ǫλκµνǫλκστ = −2!

∣∣∣∣∣∣
gµσ g

µ
τ

gνσ gντ

∣∣∣∣∣∣
= −2(gµσgντ − gµτgνσ). (12.16)
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7. Show that

ǫλµναǫλκστ = −

∣∣∣∣∣∣∣∣∣

gµκ g
µ
σ gµτ

gνκ gνσ gντ

gακ g
α
σ g

α
τ

∣∣∣∣∣∣∣∣∣
. (12.17)

8. Show that

MµνM
µν = M0iM

0i +Mi0M
i0 +MijM

ij

= −2M i0M i0 +M ijM ij

= 2(J2 −K2). (12.18)

9. Show that

pipjJ jJ i = pj
(
piJ j

)
J i

= pj
(
J jpi + iǫijkpk

)
J i

= (p · J)2 + ip · p× J

= (p · J)2. (12.19)

10. Show that in the rest frame, where p = (mc,0), we have

pαpβMµαM
µβ
∣∣
rest

= pipjM0iM
0j + p0p0Mi0M

i0 + pjp0MijM
i0 + p0pjMi0M

ij + pjpkMijM
ik

= −p0p0M i0M i0

= −(mc)2K2. (12.20)
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11. Show that

W 2 ≡ W λWλ

= −1

4
pσMµνpτMαβ

∣∣∣∣∣∣∣∣∣

gστ gσα gσβ

gµτ gµα gµβ

gντ gνα gνβ

∣∣∣∣∣∣∣∣∣
← [Mµν , pτ ] = i(pµgντ − pνgµτ )

= −1

4
pσ [pτMµν + i(pµgντ − pνgµτ )]Mαβ

∣∣∣∣∣∣∣∣∣

gστ gσα gσβ

gµτ gµα gµβ

gντ gνα gνβ

∣∣∣∣∣∣∣∣∣

= −1

4
pσpτ

∣∣∣∣∣∣∣∣∣

gστ gσα gσβ

gµτ gµα gµβ

gντ gνα gνβ

∣∣∣∣∣∣∣∣∣
MµνMαβ

= −1

4
pσpτ

∣∣∣∣∣∣∣∣∣

p2 pα pβ

pµ gµα gµβ

pν gνα gνβ

∣∣∣∣∣∣∣∣∣
MµνMαβ

= −1

4

[
p2(gµαgνβ − gµβgνα)− gµαpνpβ − gνβpµpα + gµβpνpα + gναpµpβ

]
MµνMαβ

= −1

4

(
2p2MµνM

µν − 2pαpβMµαM
µβ + 2pαpβMµαM

βµ
)

= −1

2
p2MµνM

µν + pαpβMµαM
µβ . (12.21)

p.p*( - al.mu*be.nu + al.nu*be.mu)

+ al.mu*be.p*nu.p

- al.nu*be.p*mu.p

- al.p*be.mu*nu.p

+ al.p*be.nu*mu.p;

vector p,s,u,v,ta,al,be;

mm:=mat((s.ta,s.al,s.be),

(u.ta,u.al,u.be),

(v.ta,v.al,v.be));

dd:=det(mm);

index s,ta;operator m;

xx1:=p.s*p.ta*m(u,v)*m(al,be)*dd;

index u,v;

xx2:=p.s*i*(p.u*v.ta-p.v*u.ta)*dd;% zero
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12. Show that in the rest frame, we have

W 2 = −(mc)2J2. (12.22a)

Note that W 2 is invariant.

13. Show that the following operators are Casimir operators:

[P(Λ, a), P 2] = 0, (12.23)

[P(Λ, a),W 2] = 0, (12.24)

where P 2 = PµPµ and W 2 =W µWµ.

vector al,be,mu,nu;

index al,be,mu,nu;

n4:=eps(al,be,mu,nu)*eps(al,be,mu,nu);

x4:=-24;

n3:=eps(al,be,mu,u)*eps(al,be,mu,v);

x3:=-6*u.v;

n2:=eps(al,be,u,v)*eps(al,be,x,y);

m2:=mat((u.x,u.y),

(v.x,v.y));

x2:=-2det(m2);

y2:=-2*(u.x*v.y-u.y*v.x);

n1:=eps(al,u,v,w)*eps(al,x,y,z);

m1:=mat((u.x,u.y,u.z),

(v.x,v.y,v.z),

(w.x,w.y,w.z));

x1:=-det(m1);

n2-x2;

n2-y2;

n1-x1;

remind mu,nu,al,be;

mm1:=mat(( p.p, p.al, p.be),
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(mu.p,mu.al,mu.be),

(nu.p,nu.al,nu.be));

zz1:=-det(mm1);

zz1f:= p.p*( - al.mu*be.nu + al.nu*be.mu)

+ al.mu*be.p*nu.p

- al.nu*be.p*mu.p

- al.p*be.mu*nu.p

+ al.p*be.nu*mu.p;
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V. Four-Vector

13. Lorentz Covariance

13.1 Metric tensor

Exercise 13.1 In the 3-dimensional Euclidean space, the distance d(x,y) between two points

x = (x1, x2, x3) and y = (y1, y2, y3) is defined by

d(x,y) =
√

(x− y)2 =
√

(x− y) · (x− y), (13.1)

where the scalar product of the three-vectors x and y is

x · y = xiyi. (13.2)

This can be expressed in terms of the metric tensor δij in the 3-dimensional Euclidean space:

x · y = xiδijyj. (13.3)

Show that the matrix representation of the metric tensor of the 3-dimensional Euclidean space is

δij = (1)ij =




1 0 0

0 1 0

0 0 1


 . (13.4)

Problem 13.2 Show that the metric tensor δij of the 3-dimensional Eucliean space is invariant

under rotation:

δij = Ria(θ)Rjb(θ)δab, (13.5)

where

R(θ) = R(θn̂) = exp
[
− iθn̂ · J

]
(13.6)

is the rotation matrix about an axis n̂ by an angle θ. For example,

R(θẑ)




1

0

0


 =




cos θ

sin θ

0


 , (13.7)
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13.1 Metric tensor

in three dimensions. Therefore, the metric tensor is the same in any frame of references that are

related by rotation.

Problem 13.3 Show that the scalar product is invariant under rotation:

x′ · y′ = x · y, (13.8)

where the primed vector is obtained by rotation:

x′i = Rij(θ)xj . (13.9)

Exercise 13.4 The (3 + 1)-dimensional Minkowski space consists of a single time component

x0 = ct, (13.10)

where c is the speed of light and t is the time, and 3 spatial components defined in the 3-dimensional

Euclidean space. An element x of that space is called a four-vector:

x = (x0, x1, x2, x3) = (x0,x). (13.11)

We use a Greek letter to represent an index for the four-vector. For example, the µth component is

xµ, where µ = 0, 1, 2, 3 while i = 1, 2, 3 for a three-vector. In the (3 + 1)-dimensional Minkowski

space, the distance d(x, y) between two points x = (x0,x) and y = (y0,y) is defined by

d(x, y) =
√

(x− y)2 =
√

(x− y) · (x− y) =
√

(x0 − y0)2 − (x− y)2, (13.12)

where the scalar product of two four-vectors x and y is

x · y = x0y0 − x · y = x0y0 − xiyi. (13.13)

We introduce two ways to express components of a four-vector. One way is the contravariant

form xµ and the other way is the covariant form xµ:

xµ = (x0,+x), (13.14a)

xµ = (x0,−x). (13.14b)

Note that

x0 = x0 = ct, (13.15a)

x1 = −x1 = −x, (13.15b)

x2 = −x2 = −y, (13.15c)

x3 = −x3 = −z, (13.15d)

in 3 + 1 dimensions.
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13.1 Metric tensor

1. Show that the scalar product of two four-vectors x and y can be expressed as

x · y = xµy
µ = xµyµ. (13.16)

2. Show that

x · y 6= xµyµ, xµyµ. (13.17)

Therefore, in any pair of repeated four-vector indices, one must be covariant and the other

must be contravariant.

3. Show that the scalar product x · y can be expressed as

x · y = xµyνgµν = xµyνg
µν , (13.18)

where

gµν = gµν =

{
+1, µ = ν = 0,
−1, µ = ν = 1, 2, 3,
0, µ 6= ν.

(13.19)

4. The tensor gµν is called the metric tensor of the Minkowski space. Show that its matrix

representation is

gµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




µν

, gµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




µν

. (13.20)

5. Show that the matrix representations of gµν and gµ
ν are given by

gµν = gµαgαν =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




µ

ν

, (13.21a)

gµ
ν = gµαg

αν =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




µ

ν

. (13.21b)

Note that we must not use the form gνµ which is ambiguous.
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14.1 Definition

14. Lorentz transformation

14.1 Definition

Problem 14.1 Lorentz transformation represents the rules of the coordinate transformations

of a physical quantity f in an inertial reference frame S to the corresponding quantity f ′ in another

inertial reference frame S′. If there is a physical quantity s defined in S that is invariant under

Lorentz transformation, s = s′, then we call s a Lorentz scalar. Under Lorentz transformation,

a four-displacement xν defined in S transforms into x′µ as

x′µ = Λµ
νx

ν , (14.1)

where the summation over the repeated index ν is assumed for µ = 0, 1, 2, and 3. We restrict

ourselves for the 3 + 1 Minkowski space. Any physical quantity fµ that transforms like Eq. (14.1)

is a four-vector.

Because we have required that the scalar product of two four-vectors is invariant in any inertial

reference frame, the scalar product must be a Lorentz scalar:

x′ · y′ = x · y. (14.2)

An implicit way defining Lorentz transformation is to require the transformation matrix Λ in

Eq. (14.1) to respect the invariance of the scalar product.

Show that the metric tensor gµν is invariant under Lorentz transformation:

gµν = Λµ
αΛ

ν
βg

αβ . (14.3)

Problem 14.2 Let us consider the Lorentz transformation of four-displacement xν :

x′µ = Λµ
νx

ν . (14.4)

We assume that the transformation matrix Λ is independent of the position. By taking appropriate

partial derivatives of Eq. (14.4), verify the following identities. Note that the identity (14.3) is

particularly useful for that verification.

1. The derivative operator ∂
∂xν

transforms like a contravariant four-vector xν :

∂

∂x′µ
= Λµ

ν
∂

∂xν
. (14.5)
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14.2 Four-displacement and proper time

2. The derivative operator ∂
∂xν transforms like a covariant four-vector xν :

∂

∂x′µ
= Λµ

ν ∂

∂xν
. (14.6)

Therefore, we are justified to write

∂µ ≡ ∂

∂xµ
, ∂µ ≡

∂

∂xµ
. (14.7)

3. Show that

∂µ =

(
1

c

∂

∂t
,−∇

)
, ∂µ =

(
1

c

∂

∂t
,+∇

)
. (14.8)

14.2 Four-displacement and proper time

Problem 14.3 We recall that the four-displacement x = (ct,x) transforms covariantly under

Lorentz transforamtion

x′µ = Λµ
νx

ν , (14.9)

where Λµ
ν is the Lorentz transformation matrix and its square is Lorentz invariant:

x′2 ≡ gµνx′µx′ν = gµνx
µxν = x2. (14.10)

We define the proper time

τ ≡
√
x2

c
, (14.11)

which is a Lorentz scalar.

1. Show that in the rest frame S of a particle, the four-displacement of that particle is expressed

as

x = (cτ,0). (14.12)

2. Suppose that there is a frame S′ in which that particle is moving with the constant velocity

v. We denote x′ by the displacement of that particle in the frame S′. Show that the

four-diplacement x′ of the particle at time t must be

x′ = (ct,x), (14.13)

where

x = vt. (14.14)
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14.3 Four-velocity

3. Show that the invariance constraint x′2 = x2 requires

t = γτ, (14.15)

where

γ =
1√

1− β2
, β =

v

c
. (14.16)

14.3 Four-velocity

Problem 14.4 We recall that the four-displacement x = (ct,x) transforms covariantly under

Lorentz transforamtion

x′µ = Λµ
νx

ν . (14.17)

We can take the derivative with respect to a Lorentz scalar to keep the transformation rule the

same as that of the four-displacement. If we take the derivative with respect to the proper time

τ =
√
x2/c, then we find that

u′µ = Λµ
νu

ν , (14.18)

where u is the four-velocity ,

u =
dx

dτ
. (14.19)

1. Show that in the rest frame S of a particle, the four-velocity of that particle is expressed as

u = (c,0). (14.20)

2. Show that in any inertial reference frame the square of the four-velocity is invariant:

u2 = c2. (14.21)

3. Suppose that there is a frame S′ in which that particle is moving with the constant velocity

v. We denote x′ by the displacement of that particle in the frame S′. Show that the

four-velocity u′ of the particle is

u′ = (γc, γv). (14.22)

4. By squaring u′ explicitly, show that

u′2 = c2 = u2. (14.23)
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14.4 Four-momentum

14.4 Four-momentum

Problem 14.5 We recall that the four-velocity u = (γc, γv) transforms covariantly under Lorentz

transforamtion

u′µ = Λµ
νu

ν (14.24)

and

u′2 = c2 = u2. (14.25)

We multiply the rest mass m, the mass of a particle measured when it is at rest, to the four-velocity

to define the four-momentum:

p = mu. (14.26)

1. Show that in the rest frame S of a particle, the four-momentum of that particle is expressed

as

p = (mc,0). (14.27)

2. Show that in any inertial reference frame the square of the four-momentum is invariant:

p2 = m2c2. (14.28)

3. Suppose that there is a frame S′ in which that particle is moving with the constant velocity

v. We denote x′ by the displacement of that particle in the frame S′. Show that the

four-momentum p′ of the particle is

p′ = (mγc,mγv). (14.29)

4. By squaring p′ explicitly, show that

p′2 = m2c2 = p2. (14.30)

Problem 14.6 Let us interpret the expression for the four-momentum:

p = (mγc,mγv). (14.31)
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14.4 Four-momentum

1. Show that the three-momentum p is of the form

p = m
dx

dτ
= mγ

dx

dt
= mγv. (14.32)

Therefore, the three-momentum is the product of mγ and velocity v. Here, the mass of a

moving particle is mγ that is greater than the rest mass m:

mγ =
m√
1− β2

. (14.33)

2. We can compute the force F on a particle of rest mass m. Show that

F =
dp

dt
=

d

dt

(
mv√

1− (v/c)2

)
. (14.34)

3. We can compute the kinetic energy T by evaluating the work done on the massive particle

from the instant at rest to the instant when the velocity reaches v:

T =

∫
F · dx =

∫
v · dp. (14.35)

Show that

T =
1

2m

∫ √
1− (v/c)2dp2. (14.36)

4. Show that

T =
mc2

2

∫ d
(

p2

m2c2

)

√
1 + p2

m2c2

= mc2
∫
d

√
1 +

p2

m2c2

=
√

(mc2)2 + (pc)2 −mc2. (14.37)

5. Show that the time-component p0 of the four-momentum is

p0 = mγc =
√

(mc)2 + p2 =
mc2 + T

c
. (14.38)

Therefore, it is natural to interpret this result as

p0 =
E

c
, (14.39)

where E is the energy of a particle:

E = mγc2 = mc2 + T. (14.40)
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15.1 Maxwell’s equations

In addition, a particle of rest mass m has the intrinsic energy mc2 when it is at rest. We

call mc2 the rest energy of that particle. We conclude that the four-momentum of a free

particle of rest mass m is

p =

(
E

c
,p

)
, E = mγc2. (14.41)

15. Four-vectors in Electrodynamics

15.1 Maxwell’s equations

Problem 15.1 Let us derive Maxwell’s equations of differential form from the integral form. We

first consider the expressions in the MKSA unit system.

1. Gauss law for the electrostatic field E in free space is given by

∮

∂V
E · dσ =

Q

ǫ0
=

1

ǫ0

∫

V
ρdV, (15.1)

where ǫ0 is the electric permittivity of free space, dσ is the differential surface element on

the closed surface ∂V which is the boundary of a connected volume V . Q is the net charge

contained in the volume V and ρ is the charge density at a point inside the region V .

(a) By making use of the divergence theorem, show that the differential form of this equa-

tion is

∇ ·E =
ρ

ǫ0
. (15.2)

(b) Show that the electric field at a point r due to a point charge q at the origin is given

by

E =
q

4πǫ0

r̂

r2
, (15.3)

where r̂ = r/r and r = |r|.

2. Gauss law for the magnetic field B in free space is given by

∮

∂V
B · dσ = 0, (15.4)

where dσ is the differential surface element on the closed surface ∂V which is the boundary

of a connected volume V .
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15.1 Maxwell’s equations

(a) Explain why this equation implies that there is no magnetic monopole.

(b) By making use of the divergence theorem, show that the differential form of this equa-

tion is

∇ ·B = 0. (15.5)

(c) Show that there must exist a vector field A that satisfies

B = ∇×A. (15.6)

We denote A by the vector potential.

(d) Show that the vector potential A that gives the magnetic field B is not unique. You

can check this by computing ∇×A′, where

A′ = A−∇χ. (15.7)

Here, χ is an arbitrary scalar field.

3. Faraday’s law of induced electric field in free space is given by

∮

∂S
E · dℓ = − d

dt

∫

S
B · dσ, (15.8)

where dℓ is the differential displacement on a closed curve ∂S which is the boundary of a

connected surface S and dσ is the differential surface element on S.

(a) By making use of the Stokes’ theorem, show that the differential form of this equation

is

∇×E = −∂B
∂t

. (15.9)

(b) We can choose a vector potential A that satisfies

B = ∇×A. (15.10)

Show that there must exist electrostatic potential φ which is a scalar field such that

E = −∇φ− ∂A

∂t
. (15.11)

(c) Show that the transformation of the vector potential

A′ = A−∇χ, (15.12)
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15.1 Maxwell’s equations

requires the simultaneous transformation of the scalar potential φ as

φ′ = φ+
∂χ

∂t
. (15.13)

Therefore, we have a freedom to choose the scalar and vector potentials φ and A that

yield given electromagnetic fields E and B, that are physical and uniquely defined.

This is called the gauge degree of freedom and under the electromagnetic gauge

transformation,

(φ,A)→ (φ′,A′) =
(
φ+

∂χ

∂t
,A−∇χ

)
, (15.14)

the electromagnetic fields E and B are invariant.

4. Maxwell-Ampere’s law of induced magnetic field in free space is given by

∮

∂S
B · dℓ = µ0

∫

S
J · dσ + µ0

d

dt

∫

S
ǫ0E · dσ, (15.15)

where dℓ is the differential displacement on a closed curve ∂S which is the boundary of a

connected surface S and dσ is the differential surface element on S. Here, µ0 is the magnetic

permeability, J = ρv is the electric current density and ǫ0E is the electric displacement

vector of free space whose time derivative is called the displacement current density.

(a) Explain the mechanism of inducing magnetic field when there is no physical flow of

electric charge in space by making use of the displacement current.

(b) By making use of the Stokes’ theorem, show that the differential form of this equation

is

∇×B = µ0

(
J + ǫ0

∂E

∂t

)
. (15.16)

(c) Show that the magnetic field induced by the electric current I flowing around a closed

circuit C is

B =
µ0I

4π

∮

C

dℓ× r̂

r2
, (15.17)

which is called Biot-Savart’s law . Here, dℓ is the differential line element of C, r is

the displacement vector from the line element to the field point, and r̂ = r/r.

(d) Show that the Lorentz force on a charged particle in an electromagnetic field is

F = q(E + v ×B). (15.18)
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15.2 Propagation of electromagnetic field

15.2 Propagation of electromagnetic field

Problem 15.2 Let us consider the propagation of the electromagnetic field in free space. Thus

we set ρ = 0 and J = 0. Then the Maxwell’s equations reduce into the form:

∇ ·E = 0, (15.19a)

∇×E = −∂B
∂t

, (15.19b)

∇ ·B = 0, (15.19c)

∇×B = µ0ǫ0
∂E

∂t
. (15.19d)

1. Show that

∇× (∇×E) = − ∂

∂t
∇×B = −µ0ǫ0

∂2E

∂t2
, (15.20a)

∇× (∇×B) = µ0ǫ0
∂

∂t
∇×E = −µ0ε0

∂2B

∂t2
, (15.20b)

which lead to

(
µ0ǫ0

∂2

∂t2
−∇

2
)
E = 0, (15.21a)

(
µ0ǫ0

∂2

∂t2
−∇

2
)
B = 0. (15.21b)

2. It has been experimentally confirmed that the electromagnetic fields propagate in free space

with the speed c ≡ 299 792 458 m/s, which is exact. Show that

µ0ǫ0 =
1

c2
. (15.22)

3. Show that the following set of plane waves are solutions to the wave equations:

E = ǫ̂ e−iωt+ik·x, (15.23a)

B =
k̂× ǫ̂

c
e−iωt+ik·x, (15.23b)

where

ω2

c2
= k2, (15.24)

and

ǫ̂ · k̂ = 0. (15.25)

Therefore, the electromagnetic fields are perpendicular to the propagation so that there are

two degrees of freedom in choosing ǫ̂: The polarization vector ǫ̂ is on the two-dimensional

plane that is perpendicular to k̂.
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15.3 Heaviside-Lorentz unit system

Problem 15.3 In particle physics, it is conventional to use the Heaviside-Lorentz unit which is

most natural. In this unit system, Lorentz force, Coulomb’s law, and Biot-Savart law are written

in the form

F = q
(
E +

v

c
×B

)
. (15.26a)

E =
q

4π

r̂

r2
, (15.26b)

B =
I

4πc

∮
dℓ× r̂

r2
, (15.26c)

1. Show that the E and B are of the same physical dimension in the Heaviside-Lorentz unit

system.

2. Show in the Heaviside-Lorentz unit system that

charge = current× c× time. (15.27)

3. Show in the Heaviside-Lorentz unit system that the Maxwell’s equations in free space are

expressed as

∇ ·E = ρ, (15.28a)

∇ ·B = 0, (15.28b)

∇×E = −1

c

∂B

∂t
, (15.28c)

∇×B =
1

c

(
J +

∂E

∂t

)
. (15.28d)

4. Show in the Heaviside-Lorentz unit system that

E = −∇φ− 1

c

∂A

∂t
, (15.29a)

B = ∇×A. (15.29b)

5. Show in the Heaviside-Lorentz unit system that the electromagnetic fields are invariant under

gauge transformation:

φ → φ+
1

c

∂χ

∂t
, (15.30a)

A → A−∇χ, (15.30b)

where χ is an arbitrary scalar field. From now on, we employ the Heaviside-Lorentz unit

system instead of MKSA unit system.

138



15.4 Field-strength tensor

Problem 15.4 Let us reconsider the propagation of the electromagnetic field in free space in the

Heaviside-Lorentz unit system. Then the Maxwell’s equations reduce into the form:

∇ ·E = 0, (15.31a)

∇×E = −1

c

∂B

∂t
, (15.31b)

∇ ·B = 0, (15.31c)

∇×B =
1

c

∂E

∂t
. (15.31d)

1. Show that

∇× (∇×E) = −1

c

∂

∂t
∇×B = − 1

c2
∂2E

∂t2
, (15.32a)

∇× (∇×B) =
1

c

∂

∂t
∇×E = − 1

c2
∂2B

∂t2
, (15.32b)

which lead to

( 1

c2
∂2

∂t2
−∇

2
)
E = 0, (15.33a)

( 1

c2
∂2

∂t2
−∇

2
)
B = 0. (15.33b)

2. Show that the following set of plane waves are solutions to the wave equations:

E = ǫ̂ e−iωt+ik·x, (15.34a)

B = k̂ × ǫ̂ e−iωt+ik·x, (15.34b)

where

ω2

c2
= k2, (15.35)

and

ǫ̂ · k̂ = 0. (15.36)

15.4 Field-strength tensor

Problem 15.5 We define the electromagnetic field strength tensor Fµν as

Fµν = ∂µAν − ∂νAµ, (15.37)

where Aµ is the electromagnetic four-vector potential:

A = (φ,A). (15.38)
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15.5 Covariant form of Maxwell’s equations

1. Show that A = (φ/c,A) in the MKSA unit system.

2. Show that Fµν is antisymmetric so that

F 00 = F 11 = F 22 = F 33. (15.39)

3. Show that the antisymmetricity of Fµν requires that there are only 6 independent elements.

F 01 = −F 10, F 02 = −F 20, F 03 = −F 30,

F 12 = −F 21, F 23 = −F 32, F 31 = −F 13. (15.40)

4. By making use of the fact that

E = −∇φ− 1

c

∂A

∂t
, (15.41a)

B = ∇×A, (15.41b)

show that

F 0i = −Ei, i = 1, 2, 3. (15.42a)

F 12 = −B3, F 23 = −B1, F 31 = −B2. (15.42b)

Therefore,

Fµν =




0 −E1 −E2 −E3

+E1 0 −B3 +B2

+E2 +B3 0 −B1

+E3 −B2 +B1 0




µν

. (15.43)

We have not proved that A is a four-vector. This can be confirmed in the next problem.

15.5 Covariant form of Maxwell’s equations

Problem 15.6 We would like to show that the equation for the Lorentz force reduces into the

form,

dpµ

dτ
=
q

c
Fµνuν . (15.44)

Here, τ is the proper time, u is the four-velocity, and Fµν is the electromagnetic field strength

tensor.

140



15.5 Covariant form of Maxwell’s equations

1. Derive the relation (15.44).

2. By making use of the fact that both p and u are four-vectors, verify that Fµν = ∂µAν−∂νAµ

must be a Lorentz covariant tensor.

3. Show that A must be a four-vector.

Problem 15.7 Show that Fµν transforms like

F
′αβ = Λα

µΛ
β
νF

µν (15.45)

under Lorentz transformation.

Problem 15.8 In classical electrodynamics, dynamincs of the electromagnetic field is described

in terms of the Lagrangian density

L = −1

4
FµνFµν −

1

c
J ·A, (15.46)

where Fµν is the electromagnetic field strength tensor:

Fµν = ∂µAν − ∂νAµ. (15.47)

Here, A is the electromagnetic four-vector potential:

A = (φ,A), (15.48)

and J is the electromagnetic four-current:

J = (cρ,J). (15.49)

In the Heaviside-Lorentz unit system, Maxwell’s equations are written in the form:

∇ ·E = ρ, (15.50a)

∇ ·B = 0, (15.50b)

∇×E = −1

c

∂B

∂t
, (15.50c)

∇×B =
1

c

(
J +

∂E

∂t

)
. (15.50d)

1. Show that the Euler-Lagrange equation for the field Aν that minimizes the action

S =

∫
d4xL (15.51)
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15.5 Covariant form of Maxwell’s equations

is

∂µ
[

∂L
∂(∂µAν)

]
− ∂L
∂Aν

= 0, (15.52)

which leads to

∂µF
µν =

Jν

c
. (15.53)

2. Show that ∂µF
µν = Jν/c is equivalent to two of the Maxwell equations:

∇ ·E = ρ, (15.54a)

∇×B =
1

c

(
J +

∂E

∂t

)
. (15.54b)

3. Let us define the dual field strength tensor

Fµν = −1

2
ǫµναβFαβ . (15.55)

Show that

∂µFµν = 0 (15.56)

is an identity that follows directly from the definition (15.55). Show also that this equation

is equivalent to the two remaining Maxwell’s equations:

∇ ·B = 0, (15.57a)

∇×E = −1

c

∂B

∂t
. (15.57b)

Problem 15.9 We recall that the electromagnetic fields are invariant under the gauge transfor-

mation

φ → φ+
1

c

∂χ

∂t
, (15.58a)

A → A−∇χ. (15.58b)

We also have found that non-vanishing elements of the field strength tensor Fµν are electromagnetic

fields.

1. Show that the gauge transformation (15.58) is equivalent to the following covariant form:

Aµ → A′µ = Aµ + ∂µχ. (15.59)

2. Show that the field strength tensor Fµν is invariant under gauge transformation:

F ′µν = ∂µ(Aν + ∂νχ)− ∂ν(Aµ + ∂µχ) = Fµν . (15.60)
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16.2 Invariant Mass

16. Four-momentum and mass

16.1 Momentum and Mass

Exercise 16.1 Suppose p = (p0, p1, p2, p3) = (E/c,p) is a four-vector. Show that p2 is a Lorentz

scalar and its value is given by

p2 ≡ pµpµ =
E2

c2
− p2 = m2c2, (16.1)

where m is the rest mass. For convenience, we set the speed of light to be unity: c = 1.

16.2 Invariant Mass

Problem 16.2 Let us consider the collision of two particles with momenta p1 and p2 with p
2
i = m2

i .

The invariant mass of the two particles is defined by

m12 ≡
√

(p1 + p2)2. (16.2)

We define p ≡ p1 + p2.

1. Show in the rest frame of p that

p = (
√
p2,0). (16.3)

2. Show in any inertial reference frame that

p1 · p2 =
1

2
(p2 − p21 − p22) =

1

2
(m2

12 −m2
1 −m2

2). (16.4)

3. Show that the energy E∗
i of particle i in the rest frame of p is given by

E∗
i =

p · pi√
p2
. (16.5)

4. (a) Show that

p · p1 = p2 · p1 +m2
1 =

1

2
(m2

12 +m2
1 −m2

2), (16.6a)

p · p2 = p1 · p2 +m2
2 =

1

2
(m2

12 −m2
1 +m2

2). (16.6b)

Therefore,

E∗
1 =

m2
12 +m2

1 −m2
2

2m12
, (16.7a)

E∗
2 =

m2
12 −m2

1 +m2
2

2m12
. (16.7b)

143



16.2 Invariant Mass

(b) For m1 = m2, show that

E∗
1 = E∗

2 =
1

2
m12. (16.8)

(c) For m1 = m and m2 = 0, show that

E∗
1 =

m2
12 +m2

1

2m12
, (16.9a)

E∗
2 =

m2
12 −m2

1

2m12
. (16.9b)

5. Show that the magnitude of the momentum |pi| of particle i in the rest frame of p is given

by

|pi| =
√
E2

i −m2
i =

√
(p · pi)2 − p2p2i

p2
. (16.10)

6. It is trivial to show that p1 + p2 = 0 in the p rest frame. Therefore, p1 = −p2 = p∗ in this

frame.

(a) By making use of this fact, show that

√
p2 =

√
m2

1 + p∗2 +
√
m2

2 + p∗2. (16.11)

(b) Show that

|p∗| =
√
p2

2

√
λ

(
1,
m2

1

p2
,
m2

2

p2

)
, (16.12)

where

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2bc− 2ca. (16.13)

7. Let us investigate the mass dependence of the formula.

(a) Show that

λ(1, a, b) = 1 + a2 + b2 − 2ab− 2b− 2a, (16.14a)

λ(1, a, a) = 1− 4a, (16.14b)

λ(1, a, 0) = (1− a)2, (16.14c)

λ(1, 0, 0) = 1. (16.14d)
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16.3 2 → 2 reaction and Mandelstam variables

(b) For m1 = m2 = m, show that

2|p∗|√
p2

= λ1/2
(
1,
m2

p2
,
m2

p2

)
=

√
1− 4m2

p2
, (16.15)

(c) For m1 = m and m2 = 0, show that

2|p∗|√
p2

= λ1/2
(
1,
m2

p2
, 0

)
= 1− m2

p2
, (16.16)

(d) For m1 = m2 = 0, show that

2|p∗|√
p2

= λ1/2 (1, 0, 0) = 1. (16.17)

Problem 16.3 Show that

λ(a2, b2, c2) =
[
a2 − (b+ c)2

] [
a2 − (b− c)2

]
= (a+ b+ c)(a− b− c)(a+ b− c)(a− b+ c). (16.18)

16.3 2 → 2 reaction and Mandelstam variables

Problem 16.4 Let us consider the 2→ 2 scattering 1(p1) + 2(p2)→ 3(p3) + 4(p4) with

p21 = m2
1, p22 = m2

2, p23 = m2
3, p24 = m2

4. (16.19)

We define Mandelstam variables that are invariant under Lorentz transformation:

s = (p1 + p2)
2 = (p3 + p4), (16.20a)

t = (p1 − p3)2 = (p2 − p4), (16.20b)

u = (p1 − p4)2 = (p2 − p3). (16.20c)

1. Show in any inertial reference frame that

s = m2
1 + 2E1E2 − 2p1 · p2 +m2

2 = m2
3 + 2E3E4 − 2p3 · p4 +m2

4, (16.21a)

t = m2
1 − 2E1E3 + 2p1 · p3 +m2

3 = m2
2 − 2E2E4 + 2p2 · p4 +m2

4, (16.21b)

u = m2
1 − 2E1E4 + 2p1 · p4 +m2

4 = m2
2 − 2E2E3 + 2p2 · p3 +m2

3, (16.21c)

where pi = (Ei,pi).

2. Show that

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4. (16.22)
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17. Phase space

17.1 Two-body phase space

Problem 17.1 Let us consider the decay of a particle A into two massive particles 1 and 2:

A(p)→ 1(p1) + 2(p2), (17.1)

where p, p1, and p2 are the momenta for A, 1, and 2, respectively. We assume that the particles

are on their mass shells:

p2 =M2, p21 = m2
1, p22 = m2

2. (17.2)

1. The conservation of energy and momentum is equivalent to the four-momentum conser-

vation:

p = p1 + p2. (17.3)

Show that the following factor
∫
d4x e−i(p−p1−p2)·x = (2π)4δ(4)(p − p1 − p2) (17.4)

guarantees the four-momentum conservation and is invariant under Lorentz transformation.

Here,

δ(4)(p− p1 − p2) = δ(p0 − p01 − p02)δ(p1 − p11 − p12)δ(p2 − p21 − p22)δ(p3 − p31 − p32). (17.5)

2. Show that the following factor
∫
dp0i θ(p

0
i )δ(p

2
i −m2

i ) (17.6)

guarantees that i is on its mass shell and the expression is invariant under Lorentz transfor-

mation. Explain the role of the factor θ(p0i ).

3. The phase space of the two-body final state dΦ2(p→ p1 + p2) is defined by the product of

phase-space elements d3p1/(2π)
3 and d3p2/(2π)

3 for the two final-state particles multiplied

by the four-momentum conservation factor and the on-shell condition factor:

dΦ2(p→ p1 + p2) = (2π)4δ(4)(p− p1 − p2)
d4p1
(2π)3

θ(p01)δ(p
2
1 −m2

1)
d4p2
(2π)3

θ(p02)δ(p
2
2 −m2

2).

(17.7)

Show that this expression is valid in any inertial reference frame because the phase space is

invariant under Lorentz transformation.
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17.1 Two-body phase space

Problem 17.2 Let us continue to consider the two-body phase space (17.7).

1. By integrating over p01 and p02, show that

dΦ2(p→ p1 + p2) = (2π)4δ(4)(p− p1 − p2)
d3p1

(2π)32
√
m2

2 + p2
1

d3p2

(2π)32
√
m2

2 + p2
2

=
1

(2π)2
δ

[
p0 −

√
m2

1 + p2
1 −

√
m2

2 + (p− p1)2
]

× d3p1

4
√
m2

1 + p2
1

√
m2

2 + (p− p1)2
,

(17.8)

where

p = p1 + p2. (17.9)

2. Let us choose the p rest frame, where p0 =
√
p2, p = 0, and p2 = −p1. Show that

dΦ2(p→ p1 + p2)
∣∣∣
p rest

=
1

(2π)2
δ

[
p0 −

√
m2

1 + p2
1 −

√
m2

2 + p2
1

]
d3p1

4
√
m2

1 + p2
1

√
m2

2 + p2
1

=
1

(2π)2

[
|p1|√
m2

1 + p2
1

+
|p1|√
m2

2 + p2
1

]−1
|p1|2dΩ

4
√
m2

1 + p2
1

√
m2

2 + p2
1

=
1

(2π)2

√
m2

1 + p2
1

√
m2

2 + p2
1

|p1|
(√

m2
1 + p2

1 +
√
m2

2 + p2
1

) |p1|2dΩ
4
√
m2

1 + p2
1

√
m2

2 + p2
1

=
1

8π

2|p1|√
p2
dΩ

4π

=
1

8π

√
λ

(
1,
m2

1

p2
,
m2

2

p2

)
dφ

2π

d cos θ

2
, (17.10)

where θ and φ are the polar and azimuthal angles of particle 1 in the p rest frame.

3. For m1 = m2 = m, show that

dΦ2(p→ p1 + p2)
∣∣∣
p rest

=
1

8π

√
1− 4m2

p2
dφ

2π

d cos θ

2
. (17.11)

4. For m1 = m and m2 = 0, show that

dΦ2(p→ p1 + p2)
∣∣∣
p rest

=
1

8π

(
1− m2

p2

)
dφ

2π

d cos θ

2
. (17.12)

5. For m1 = m2 = 0, show that

dΦ2(p→ p1 + p2)
∣∣∣
p rest

=
1

8π

dφ

2π

d cos θ

2
. (17.13)
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17.2 Three-body phase space

Problem 17.3 We can define one-body phase space:

dΦ1(p→ p1) = (2π)4δ(4)(p − p1)
d4p1
(2π)3

θ(p01)δ(p
2
1 −m2

1). (17.14)

Show that

dΦ1(p→ p1) = 2πδ(p2 −m2
1). (17.15)

Here, we do not need θ(p0) because p0 ≥ 0 is manifest since p is the initial-state momentum that

is physical.

17.2 Three-body phase space

We consider a three-body decay A(p)→ 1(p1) + 2(p2) + 3(p3).

Problem 17.4 The phase space of the three-body final state is defined by

dΦ3(p→ p1 + p2 + p3) = (2π)4δ(4)(p− p1 − p2 − p3)
d4p1
(2π)3

θ(p01)δ(p
2
1 −m2

1)

× d4p2
(2π)3

θ(p02)δ(p
2
2 −m2

2)
d4p3
(2π)3

θ(p03)δ(p
2
3 −m2

3). (17.16)

1. Show that

1 =

∫
d4p12δ

(4)(p12 − p1 − p2)
∫
dm2

12θ(p
0
12)δ(p

2
12 −m2

12). (17.17)

2. Show that the three-body phase space can be expressed as

dΦ3(p→ p1 + p2 + p3)

=
1

2π

∫
dm2

12(2π)
4δ(4)(p12 − p1 − p2)

× d4p1
(2π)3

θ(p01)δ(p
2
1 −m2

1)
d4p2
(2π)3

θ(p02)δ(p
2
2 −m2

2)

×(2π)4δ(4)(p− p12 − p3)
d4p

(2π)3
θ(p0)δ(p212 −m2

12)
d4k

(2π)3
θ(p03)δ(p

2
3 −m2

3). (17.18)

3. Show that

dΦ3(p→ p1 + p2 + p3) =
1

2π

∫
dm2

12dΦ2(p→ p12 + p3)dΦ2(p12 → p1 + p2). (17.19)

4. Show that the physical range of the invariant mass m12 is

m1 +m2 ≤ m12 ≤
√
p2 −m3. (17.20)
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We can generalize the result for the three-body phase space to the phase space calculation for an

n-body system.

Problem 17.5 We consider a four-body decay A(p)→ 1(p1) + 2(p2) + 3(p3) + 4(p4). If 1 + 2 and

3 + 4 are decay products of X and Y , respectively, then it is convenient to break the phase space

into the following form:

dΦ4(p→ p1+p2+p3+p4) ∝ dX2dY 2d2Φ(p→ X+Y )d2Φ(X → p1+p2)d2Φ(Y → p3+p4). (17.21)

For convenience, we choose the rest frame of A.

1. Show that

dΦ4(p→ p1 + p2 + p3 + p4) =
dX2dY 2

(2π)8
|X|dΩ∗

X

4
√
p2
|p∗

1|dΩ∗
1

4
√
X2

|p∗
3|dΩ∗

3

4
√
Y 2

, (17.22)

where X∗ and dΩ∗
X = dφ∗Xd cos θ

∗
X are the three-momentum and the solid angle of X in

the A rest frame, respectively, p∗
1 and dΩ∗

1 = dφ∗1d cos θ
∗
1 are the three-momentum and the

solid angle of 1 in the X = p1+ p2 rest frame, respectively, p∗
3 and dΩ∗

3 = dφ∗3d cos θ
∗
3 are the

three-momentum and the solid angle of 3 in the Y = p3 + p4 rest frame, respectively.

2. Show that the physical ranges of the integration variables are given by

m1 +m2 ≤
√
X2 ≤

√
p2 − (m3 +m4), (17.23a)

m3 +m4 ≤
√
Y 2 ≤

√
p2 −

√
X2, (17.23b)

0 ≤ θ∗i ≤ π, (17.23c)

0 ≤ φ∗i ≤ 2π, (17.23d)

for i = X, 1, and 3.

Problem 17.6 Let us consider the three-body decay A(p)→ 1(p1) + 2(p2) + 3(p3), where

p2 =M2, p21 = m2
1, p22 = m2

2, p23 = m2
3. (17.24)

We define

pij = pi + pj, mij =
√
p2ij . (17.25)

We recall that the three-body phase space reduces into the form

dΦ3(p→ p1 + p2 + p3) =
1

2π

∫
dm2

12dΦ2(p→ p12 + p3)dΦ2(p12 → p1 + p2). (17.26)
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1. Show that

m2
12 +m2

23 +m2
31 =M2 +m2

1 +m2
2 +m2

3. (17.27)

2. Show that

m2
12 = (p − p3)2 =M2 +m2

3 − 2ME3, (17.28)

where E3 is the energy of the particle 3 in the A rest frame.

3. Show that

dΦ3(p→ p1 + p2 + p3) =
dm12|p∗

1||p3|dΩ∗
1dΩ3

8M(2π)5
, (17.29)

where p∗
1 and Ω∗

1 are the three-momentum and its direction of particle 1 in the p12 rest frame.

p3 and Ω3 are the three-momentum and its direction of particle 3 in the A rest frame.

4. Show that

|p∗
1| =

√
[m2

12 − (m1 +m2)2][m2
12 − (m1 −m2)2]

2m12
, (17.30a)

|p3| =
√

[M2 − (m12 +m3)2][M2 − (m12 −m3)2]

2M
. (17.30b)
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