Higgs Physics

Shinya KANEMURA University of TOYAMA

Yangpyung, Particle Physics, School, December 17-20

Physics of Extended Higgs Sectors

Why one doublet?

- There is no principle for one doublet field

 The minimal Higgs model
 For minimality
- VEV can be shared by multiple number of Higgs bosons
- Such multi-Higgs structure provides various new properties that the SM does not have
- In fact, many new physics models predict extended Higgs sectors

Strategy

- Although the 125 GeV Higgs boson was found, we do not know the structure of the Higgs sector yet
- Many new physics scenarios predict special nonminimal Higgs sectors
- Comprehensive study of various extended Higgs sectors is very important
- Reconstruction of the Higgs sector by future experiments at LHC, HL-LHC and future lepton colliders
- From the Higgs sector to new physics BSM!

Extended Higgs Sector

The "SM-like" does not necessarily mean the SM. Every extended Higgs sector can contain the SM-like Higgs boson *h* in its decoupling regime.

General Extended Higgs models

Multiplet Structure

 Φ_{SM} +Singlet, Φ_{SM} +Doublet (2HDM), Φ_{SM} +Triplet, ...

Additional Symmetry

Discrete or Continuous? Exact or Softly broken?

Interaction

Weakly coupled or Strongly Coupled ? Decoupling or Non-decoupling?

Multiplet Structure

If the Higgs sector contains more than one scalar bosons, possibility would be

- SM + extra Singlets (NMSSM, B-L Higgs, ...)
- SM + extra Doublets (MSSM, CPV, EW Baryogenesis, Neutrino mass, ...)
- SM + extra Triplets (Type II seesaw, LR models....)

Basic experimental quantities:

....

- Electroweak rho parameter
- Flavor Changing Neutral Current (FCNC)

Electroweak rho parameter

$$\rho_{exp} = 1.0004 + 0.0003 - 0.0004$$

$$Q = I_3 + Y/2$$

$$\rho = \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \frac{\sum_i \left[4T_i (T_i + 1) - Y_i^2 \right] |v_i|^2 C_i}{\sum_i 2Y_i^2 |v_i|^2}$$

$$T_i : SU(2)_L \text{ isospin} = V_i : v.e.v.$$

$$V_i : v.e.v.$$

$$C_i : 1 \text{ for complex representation} = 1/2 \text{ for real representation}$$

N=1 SM Higgs doublet $\mathcal{O}(T=1/2, Y=1)$ $\rho = 1!$

N=2 What kind of (2 field) extended Higgs sector $\Phi + X(T_X, Y_X)$ can satisfy $\rho = 1$?

Electroweak rho parameter

 $\rho_{exp} = 1.0004^{+0.0003}_{-0.0004}$

$$\rho = \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \frac{\sum_i \left[4T_i(T_i + 1) - Y_i^2 \right] |v_i|^2 c_i}{\sum_i 2Y_i^2 |v_i|^2}$$

$$Q = I_3 + Y/2$$

 $T_i : SU(2)_L$ isospin $Y_i : hypercharge$ $v_i : v.e.v.$ $c_i : 1$ for complex representation 1/2 for real representation

Possibility

1. $\rho=1$ SM + doublets (φ) (+ singlets (S)), (Septet, ...)

$$\begin{array}{ll} \textbf{2. } \rho \approx \textbf{1 SM + Triplets}(\Delta) & \rho_{_{\mathrm{tree}}} = \frac{1 + \frac{2v_{\Delta}^2}{v_{\Phi}^2}}{1 + \frac{4v_{\Delta}^2}{v_{\Phi}^2}} \simeq 1 - \frac{2v_{\Delta}^2}{v_{\Phi}^2} \end{array}$$

b) Combination of several representations

[(ex) Georgi-Machasek model] $V_{\Delta} \approx V_{\omega}$

Multi-doublets (+singlets) seem the most natural choice?

2 Higgs doublet model

2 Higgs Doublet Model

$$V_{\mathsf{THDM}} = +m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - \frac{m_3^2 \left(\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1\right)}{\left|\Phi_1\right|^2 |\Phi_2|^2} \quad \Phi_i = \begin{bmatrix} \\ +\frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 \\ +\lambda_4 \left|\Phi_1^{\dagger} \Phi_2\right|^2 + \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2\right)^2 + (\mathbf{h.c.})\right] \quad \mathbf{Diagonal} \\ \Phi_1 \text{ and } \Phi_2 \Rightarrow \underline{h}, \quad \underline{H}, \quad \underline{A^0}, \ \underline{H^{\pm}} \oplus \text{ Goldstone bosons} \quad \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix} \\ \Phi_1 \text{ and } \Phi_2 \Rightarrow \underline{h}, \quad \underline{H}, \quad \underline{A^0}, \ \underline{H^{\pm}} \oplus \text{ Goldstone bosons} \quad \begin{bmatrix} h_2 \\ h_2 \end{bmatrix} = \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix} \\ \Phi_1 \text{ CPeven CPodd} \quad \mathbf{Masses}$$

$$\begin{split} m_h^2 &= v^2 \left(\lambda_1 \cos^4\beta + \lambda_2 \sin^4\beta + \frac{\lambda}{2} \sin^2 2\beta\right) + \mathcal{O}(\frac{v^2}{M_{\text{soft}}^2}),\\ m_H^2 &= M_{\text{soft}}^2 + v^2 \left(\lambda_1 + \lambda_2 - 2\lambda\right) \sin^2\beta \cos^2\beta + \mathcal{O}(\frac{v^2}{M_{\text{soft}}^2}), \end{split}$$

 $m_{H^{\pm}}^2 = M_{\text{soft}}^2 - \frac{\lambda_4 + \lambda_5}{2}v^2,$ $m_A^2 = M_{\rm coff}^2 - \lambda_5 v^2.$

 $M_{\rm soft}$: soft breaking scale

$$\Phi_i = \begin{bmatrix} w_i^+ \\ \frac{1}{\sqrt{2}}(h_i + v_i + ia_i) \end{bmatrix} \quad (i = 1, 2)$$

ization

 $\begin{array}{c} -\sin\alpha \\ \cos\alpha \end{array} \begin{bmatrix} H \\ h \end{bmatrix} \begin{bmatrix} z_1^0 \\ z_2^0 \end{bmatrix} = \begin{bmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{bmatrix} \begin{bmatrix} z^0 \\ A^0 \end{bmatrix}$ $\begin{bmatrix} w_1^{\pm} \\ w_2^{\pm} \end{bmatrix} = \begin{bmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{bmatrix} \begin{bmatrix} w^{\pm} \\ H^{\pm} \end{bmatrix}$ $\frac{v_2}{v_1} \equiv \tan\beta$ $M_{\text{soft}} \ (= \frac{m_3}{\sqrt{\cos\beta\sin\beta}}):$

> soft-breaking scale of the discrete symm.

Two Possibilities

Non-decoupling effect ¹²

Flavor Changing Neutral Currents

FCNC Suppression

Multi-Higgs model: FCNC appears via Higgs mediation

2 Higgs doublet models:

to avoid FCNC, give different charges to Φ_1 and Φ_2 Discrete sym. $\Phi_1 \rightarrow + \Phi_1$, $\Phi_2 = -\Phi_2$ Each quark or lepton couples only one Higgs doublet No FCNC at tree level

Type of 2HDM

- Type-I Fermiofobic 2HDM Neutrinophillic 2HDM
- Type-II MSSM, NMSSM, other Extended SUSY Higgs models

Aoki, SK, Tsumura, Yagyu (09)

Type-X Lepton-specific 2HDM Radiative Neutrino mass Positron Excess H portal DM (tau spesific)

 $H^{-} V_{I} = \frac{H^{-}}{\sum_{k=1}^{N} \frac{1}{N_{R}^{\alpha}} \frac{1}{N_{R}^{\alpha}} \frac{y_{j}}{h_{j}^{\alpha}} v_{L}^{j}}$

Aoki, SK, Seto (09)

Type-Y Flipped 2HDM

Current LHC data v.s. Full ILC

VEV's: $v_1^2 + v_2^2 = v^2 \simeq (246 \text{ GeV})^2$ **Higgs mixing** $\tan\beta = \frac{v_2}{v_1}$ $\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} H \\ h \end{pmatrix}$ 2HDM Type2 SM hVVHVVGauge coupling: $\phi VV \quad (V = Z, W) \Rightarrow$ $\sin(\beta - \alpha), \quad \cos(\beta - \alpha)$ $Hb\overline{b}$ hbb Yukawa coupling: $\sin \alpha$ $\cos \alpha$ $\phi b\overline{b}$ $\overline{\cos\beta}$ $\cos\beta$ $ht\overline{t}$ $Ht\bar{t}$ $\phi t \overline{t}$ $\cos \alpha$ $\sin \alpha$ $\sin\beta'$ $\sin\beta$

Type2-2HDM (MSSM) Higgs couplings

SM-like regime

$$\begin{array}{ll} hVV & HVV\\ \sin(\beta - \alpha) & \cos(\beta - \alpha) \end{array}$$

Type-II 2HDM

 $\sin(\beta - \alpha) \simeq 1$

Only the lightest Higgs h couples to weak gauge bosons

h behaves like the SM Higgs

 $\begin{array}{ll} g_{hVV} \rightarrow g_{\phi VV}^{\mathsf{SM}} & g_{HVV} \rightarrow 0 \\ \\ y_{ht\bar{t}} \rightarrow y_{\phi t\bar{t}}^{\mathsf{SM}} & y_{Ht\bar{t}} \rightarrow y_{\phi t\bar{t}}^{\mathsf{SM}} \cot \beta \\ \\ y_{hb\bar{b}} \rightarrow y_{\phi b\bar{b}}^{\mathsf{SM}} & y_{Hb\bar{b}} \rightarrow y_{\phi b\bar{b}}^{\mathsf{SM}} \tan \beta \\ \\ y_{h\tau\tau} \rightarrow y_{\phi\tau\tau}^{\mathsf{SM}} & y_{H\tau\tau} \rightarrow y_{\phi\tau\tau}^{\mathsf{SM}} \tan \beta \end{array}$

h(125) as a probe of extended Higgs sectors

How we experimentally study non-minimal Higgs sectors?

- <u>Direct Searches</u> of additional Higgs bosons
 (*H*, *A*, *H*⁺, *H*⁺⁺, ...)
- Indirect Searches by detecting deviations in various quantities

EW observablesmw, s, τ, U, zff, wff', wwv, ...h(125) couplingshWW, hZZ, hγγ, hff, hhh, ...

They will be precisely measured at future experiments

Fingerprinting

The ILC is an idealistic machine for precision measurement of Higgs boson couplings Deviations with a pattern lead to identification of new physics

Future h(125)-coupling measurements

Facility	LHC	HL-LHC	ILC500	ILC500-up
$\sqrt{s} \; (\text{GeV})$	$14,\!000$	$14,\!000$	250/500	250/500
$\int \mathcal{L} dt \ (\text{fb}^{-1})$	$300/\mathrm{expt}$	$3000/\mathrm{expt}$	250 + 500	$1150 {+} 1600$
κ_{γ}	5-7%	2-5%	8.3%	4.4%
κ_g	6-8%	3-5%	2.0%	1.1%
κ_W	4-6%	2-5%	0.39%	0.21%
κ_Z	4-6%	2-4%	0.49%	0.24%
κ_ℓ	6-8%	2-5%	1.9%	0.98%
$\kappa_d = \kappa_b$	10-13%	4-7%	0.93%	0.60%
$\kappa_u = \kappa_t$	14-15%	7-10%	2.5%	1.3%

Snowmass Higgs Working Group Report 1310.8361

Current LHC data v.s. Full ILC

Yukawa Coupling in Extended Higgs Sectors

Multi-Higgs model: FCNC appears via Higgs mediation

2 Higgs doublet models:

to avoid FCNC, give different charges to Φ_1 and Φ_2 Discrete sym. $\Phi_1 \rightarrow + \Phi_1$, $\Phi_2 = -\Phi_2$ Each quark or lepton couples only one Higgs doublet No FCNC at tree level

Pattern in deviations of g_{hVV} and Y_{hff}

Model	μ	τ	b	С	t	g_V
Singlet mixing	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
2HDM-I	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
2HDM-II (SUSY)	1	1	1	\downarrow	\downarrow	\downarrow
2HDM-X (Lepton-specific)	1	1	\downarrow	\downarrow	\downarrow	\downarrow
2HDM-Y (Flipped)	\downarrow	\downarrow	↑	\downarrow	\downarrow	\downarrow

cos(β-α) < 0

Singlet can be distinguished from the Type-I 2HDM

 $Y_{hff}/g_V = 1$ in the singlet model but $Y_{hff}/g_V \neq 1$ in the 2HDM-I

In the triplet model, quark-Yukawa couplings are universally smaller, Lepton-Yukawa deviate universal. κ_v can be greater than 1

 $\kappa_v > 1$ is a signature of exotic Higgs (with higher representations)

Extended Higgs models are distinguishable by precisely measuring *hVV* and *hff*

Pattern in deviations of g_{hVV} and Y_{hff}

Model	μ	τ	b	С	t	g_V
Singlet mixing	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
2HDM-I	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
2HDM-II (SUSY)	1	1	1	\downarrow	\downarrow	\downarrow
2HDM-X (Lepton-specific)	\uparrow	\uparrow	\downarrow	\downarrow	\downarrow	\downarrow
2HDM-Y (Flipped)	\downarrow	\downarrow	1	\downarrow	\downarrow	\downarrow

cos(β-α) < 0

Singlet can be distinguished from the Type-I 2HDM

 $Y_{hff}/g_V = 1$ in the singlet model but $Y_{hff}/g_V \neq 1$ in the 2HDM-I

In the triplet model, quark-Yukawa couplings are universally smaller, Lepton-Yukawa deviate universal. κ_v can be greater than 1

 $\kappa_v > 1$ is a signature of exotic Higgs (with higher representations)

Extended Higgs models are distinguishable by precisely measuring *hVV* and *hff*

Fingerprinting the 2HDM (tree level)

 κ_{ℓ}

with radiative corrections?

Fingerptinting the model (Exotics)

SK, K. Tsumura, K. Yagyu, H. Yokoya 2014

Universal Fermion Coupling (κ_F) VS *hVV* coupling (κ_V)

Exotic models predict $\kappa_V > 1$

We can discriminate Exotic models

Ellipse = 68.27% CL

Deviation in *hff*

Singlet. Exotics.			If $\Delta \kappa_v = 1\%$
$\Delta \kappa_{\rm u} = -(1/2) \ {\rm x}^2,$	$\Delta \kappa_{d} = -(1/2) x^{2}$,	$\Delta \kappa_{\tau} = -(1/2) x^2$	O(1) %
Type I 2HDM			
$\Delta \kappa_{u} = + \cot \beta x,$	$\Delta \kappa_{d} = + \cot \beta x,$	$\Delta \kappa_{\tau} = + \cot \beta x$	O(10) %
Type X (Lepton Specifie	c) 2HDM		
$\Delta \kappa_{u} = + \cot \beta x,$	$\Delta \kappa_{d} = + \cot \beta x,$	$\Delta \kappa_{\tau} = - \tan \beta x$	O(10) %
MSSM (Type II 2HDM)			
$\Delta \kappa_{u} = + \cot \beta x,$	$\Delta \kappa_{d} = - \tan \beta x$,	$\Delta \kappa_{\tau} = - \tan \beta x$	O(10) %
MCHM4			
$\Delta \kappa_{u}^{2} = -(1/2) x^{2},$	$\Delta \kappa_{\rm d} = - (1/2) \ {\rm x}^2,$	$\Delta \kappa_{\tau} = -(1/2) x^2$	O(1) %
MCHM5			
		-	

 $\Delta \kappa_{u} = -(3/2) x^{2}, \quad \Delta \kappa_{d} = -(3/2) x^{2}, \quad \Delta \kappa_{\tau} = -(3/2) x^{2}$ O(1) %

Summary of extended Higgs sector

- Various possibility of extended Higgs sector
- From the constraint from the rho parameter a multidoublet (plus singlet) structure is favored ex) 2HDM
- Other exotics can also possible if the VEV is small
- Mixing effect changes Higgs boson couplings from the SM – Gauge couplings hVV ($\kappa_v < 1$ in multi-doublet, $\kappa_v > 1$ in extotics)
 - Yukawa couplings hff (deviations with a pattern)
- Future precision data can be used to test models

Higgs and Radiative Corrections

Higgs discovery in 2012

The mass is 125 GeV

Spin/Parity O⁺

It couples to γγ, ZZ, WW, bb, ττ, ...

This is really a Higgs!

Measured couplings look consistent with the SM Higgs within the current errors

Radiative Corrections

Rho parameter (unity in the SM)

$$\rho_{exp} = 1.0008 + 0.0017 - 0.0007$$

$$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} \left(=1\right)$$

Loop corrections

$$\Delta \rho = 4\sqrt{2}G_F \left[\Pi_T^{33}(p^2 = 0) - \Pi_T^{11}(p^2 = 0)\right]$$

Loop effect of m_t and m_H

$$\Delta \rho \simeq \frac{3G_F}{8\sqrt{2}\pi^2} \left(m_t^2 - M_Z^2 \sin^2 \theta_W \ln \frac{m_H^2}{m_W^2} \right)$$

Quadratic

Logarithmic

We knew the mass before discovery!

Case of the top quark

- Quadratic mass dep. in p parameter (T parameter)
- Forget about m_Hbecause it is only logarismic
- LEP1 says m_t=150-200GeV
- Discovery at Tevatron (about 175GeV)

Hagiwara, et al

$$\Delta \rho \simeq \frac{3G_F}{8\sqrt{2}\pi^2} \left(m_t^2 - M_Z^2 \sin^2 \theta_W \ln \frac{m_H^2}{m_W^2} \right)$$

It was repeated for Higgs at LEP2

Case of Higgs boson

- Now we know top mass
- Rho is a funcution of only m_H
- Precision measurement at LEP2
- 114GeV< mH <150 GeV!
- LHC found new boson at 126GeV (Higgs boson!)

Victory of precision measurements and theory calculations (VIVA! SM)

LEP Electroweak Working Group 2010

Decoupling Theorem and its breaking

Ex) GUT scale (10¹⁶ GeV) physics does not affect TeV scale physics

Ex) Seesaw Mechanism (Dim 5) at the tree-level

$$\mathcal{L} = \frac{c}{\Lambda} (\Phi^T \overline{\nu_L^c}) (\nu_L \Phi) \qquad \stackrel{*}{\underset{\nu_L \quad N_R}{\overset{*}{\longrightarrow} \quad \nu_L}} \qquad m_\nu \sim \frac{v^2}{M_{N_R}}$$

QED Example of decoupling theorem

One-loop contributions to the two point functions

$$\mathcal{M}_{tree} \sim Qe \frac{1}{k^2} eQ' = \frac{QQ'}{\frac{1}{e^2}k^2}$$
$$\mathcal{M} \sim \frac{QQ'}{\frac{1}{e^2}k^2 - \Pi_{\text{new}}(k^2)}$$

Self-Energy $\Pi_{new}(k^2)$ has dim. 2, so that it can have M^2 or $\ln M$ dependence from power counting (non-decoupling effects)

$$\Pi_{\text{new}}(k^2) = \Pi_{\text{new}}(0) + k^2 \Pi'_{\text{new}}(0) + \cdots$$

However from U(1) gauge symmetry $\Pi_{new}(0)=0$, and $\Pi'_{new}(0)$ is absorbed by renormalization

$$\mathcal{M} \sim \frac{QQ'}{\left(\frac{1}{e^2} - \Pi'(0)_{\text{New}}\right)k^2 - \frac{(k^2)^2}{2}\Pi''_{\text{new}}(k^2)} = \frac{QQ'}{\frac{1}{e_R^2}k^2 - \frac{(k^2)^2}{2}\Pi''_{\text{new}}(0) + \cdots}$$

Remaining $\Pi''_{new}(0)$ is dim. -2, so that at most $1/M^2$ (Decouple!)

QED with spontaneously broken U(1)

$$\mathcal{M}_{tree} \sim Qe \frac{1}{k^2 - m_A^2} eQ' = \frac{QQ'}{\frac{1}{\rho^2}k^2 - \nu^2}$$
$$\mathcal{M} \sim \frac{QQ'}{\frac{1}{e^2}k^2 - \nu^2 - \Pi_{\text{new}}(k^2)}$$

Self-Energy $\Pi_{new}(k^2)$ has dim. 2, so that it can have M^2 or $\ln M$ dependence from power counting (non-decoupling effects)

$$\Pi_{\text{new}}(k^2) = \Pi_{\text{new}}(0) + k^2 \Pi'_{\text{new}}(0) + \cdots$$

This time, U(1) is spontaneously broken, so that $\Pi_{\text{new}}(0)$ is non-zero. But this time, $\Pi_{\text{new}}(0)$ and $\Pi'_{\text{new}}(0)$ are absorbed by \mathbf{v} (or m_A) and \mathbf{e}

$$\mathcal{M} \sim \frac{QQ'}{\left(\frac{1}{e^2} - \Pi'_{\text{new}}(0)\right)k^2 - \left(v^2 + \Pi_{\text{new}}(0)\right) - \frac{(k^2)^2}{2}\Pi''_{\text{new}}(0) + \cdots} = \frac{QQ'}{\frac{1}{e_R^2}k^2 - v_R^2 - \frac{(k^2)^2}{2}\Pi''_{\text{new}}(0) + \cdots}$$

Remaining $\Pi''_{new}(0)$ is dim-(-2), so that at most $1/M^2$

(Decoup

Non-vanishing non-decoupling effect

Electroweak Theory SU(2) × U(1) with SSB

Two point functions 6 nondec. d.o.f. $\stackrel{w}{\sim} \qquad \stackrel{w}{\longrightarrow} = M_{\text{New}}^2 + p^2 \ln \frac{M_{\text{New}}^2}{p^2} + \cdots$ $\stackrel{z}{\sim} \qquad \stackrel{z}{\longrightarrow} = M_{\text{New}}^2 + p^2 \ln \frac{M_{\text{New}}^2}{p^2} + \cdots$ $\stackrel{y}{\longrightarrow} \qquad \stackrel{z}{\longrightarrow} = M_{\text{New}}^2 + p^2 \ln \frac{M_{\text{New}}^2}{p^2} + \cdots$ $\stackrel{y}{\longrightarrow} \qquad \stackrel{y}{\longrightarrow} = M_{\text{New}}^2 + p^2 \ln \frac{M_{\text{New}}^2}{p^2} + \cdots$

Input parameters (α , GF, MZ) can absorb 3 of 6 non-decoupling effects.

Still, there are 3 non-vanishing non-decoupling effects

$$\begin{split} \Pi^{\gamma\gamma}_{T}(p^2) &= e^2 \Pi^{QQ}_{T}(p^2), \\ \Pi^{\gamma Z}_{T}(p^2) &= eg_{Z} \big[\Pi^{3Q}_{T}(p^2) - s^2_{W} \Pi^{QQ}_{T}(p^2) \big], \\ \Pi^{ZZ}_{T}(p^2) &= g^2_{Z} \big[\Pi^{33}_{T}(p^2) - 2s^2_{W} \Pi^{3Q}_{T}(p^2) + s^4_{W} \Pi^{QQ}_{T}(p^2) \big], \\ \Pi^{WW}_{T}(p^2) &= g^2 \Pi^{11}_{T}(p^2). \end{split}$$

3 non-decoupling parameters: *S*,*T*,*U* (Peskin-Takeuchi)

$$\begin{split} S &= 16\pi \big[\overline{\Pi}_T^{3Q'}(p^2 = 0) - \overline{\Pi}_T^{33'}(p^2 = 0) \big], \\ T &= \frac{4\sqrt{2}G_F}{\alpha_{\rm EM}} \big[\overline{\Pi}_T^{33}(p^2 = 0) - \overline{\Pi}_T^{11}(p^2 = 0) \big], \\ U &= 16\pi \big[\overline{\Pi}_T^{33'}(p^2 = 0) - \overline{\Pi}_T^{11'}(p^2 = 0) \big], \end{split}$$

Non-decoupling effects

Non-decoupling effects on various electroweak parameters Γ_z , sin θw , m_w, ρ , ... are all described by S, T, U (at the leading level)

$$\begin{split} S &= 16\pi \left[\overline{\Pi}_T^{3Q'}(p^2 = 0) - \overline{\Pi}_T^{33'}(p^2 = 0) \right], \\ T &= \frac{4\sqrt{2}G_F}{\alpha_{\rm EM}} \left[\overline{\Pi}_T^{33}(p^2 = 0) - \overline{\Pi}_T^{11}(p^2 = 0) \right], \\ U &= 16\pi \left[\overline{\Pi}_T^{33'}(p^2 = 0) - \overline{\Pi}_T^{11'}(p^2 = 0) \right], \end{split}$$

$$\Delta \rho \equiv \rho - 1 = \alpha T$$
$$\Delta \rho \simeq \frac{3G_F}{8\sqrt{2}\pi^2} \left(m_t^2 - M_Z^2 \sin^2 \theta_W \ln \frac{m_H^2}{m_W^2} \right)$$

Non-decoupling effects

What kind of new physics can produce nondecoupling effects?

Chiral Fermion Loop

$$m_f = 0 \rightarrow m_f = y_f v$$

- Higgs Loop $m_h^2 = 2 \lambda v^2$
- Scalar Loop

 $m_S^2 = \lambda v^2 + M_{inv}^2$

Custodial Symmetry

SM Higgs Potential has the Global Symmetry after EWSB (Custodial Symmetry)

$$V(\Phi) = +\mu^2 |\Phi|^2 + \lambda |\Phi|^4$$

Define a bi-dobulet field
$$\mathcal{M} \equiv (\tilde{\Phi}, \Phi) = \begin{pmatrix} \phi^{0*} & \phi^+ \\ -\phi^- & \phi^0 \end{pmatrix}$$

Transformations

$$\mathcal{M} \to g_L \mathcal{M} (g_L \in SU(2)_L)$$

 $\mathcal{M} \to \mathcal{M}g_R^{-1} (g_R \in SU(2)_R)$

The Higgs potential is invariant under $SU(2)_{L} \times SU(2)_{R}$ (= O(4)) transformations

$$V(\Phi) = V(\mathcal{M}) = +\frac{\mu^2}{2} \operatorname{Tr}[\mathcal{M}^{\dagger}\mathcal{M}] + \frac{\lambda}{4} \left(\operatorname{Tr}[\mathcal{M}^{\dagger}\mathcal{M}] \right)^2$$

By EWSB, $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$ Custodial symmetry

Note that the custodial symmetry is broken in general extended Higgs sectors₄₁

Yukawa sector does not respect SU(2)_R

Yukawa interaction in the SM can be written as

$$\mathcal{L} \sim (\bar{t}, \bar{b})_L (y_t \tilde{\Phi}, y_b \Phi) \begin{pmatrix} t \\ b \end{pmatrix}_R$$

$$= \frac{y_t + y_b}{2} (\bar{t}, \bar{b})_L \mathcal{M} \begin{pmatrix} t \\ b \end{pmatrix}_R + \frac{y_t - y_b}{2} (\bar{t}, \bar{b})_L \mathcal{M} \tau_3 \begin{pmatrix} t \\ b \end{pmatrix}_R$$

$$SU(2)_R \text{ is broken} \qquad g_L \tau_3 g_R^{-1} \neq \tau_3$$
Only when $y = y$ (namely when $m = m$)

Only when $y_t = y_b$ (namely when $m_t = m_b$), the Yukawa sector is invariant under SU(2)_L × SU(2)_R

$$T \sim (m_t - m_b)^2$$
$$\implies \Delta \rho \simeq \frac{3G_F}{8\sqrt{2}\pi^2} \left(m_t^2 - M_Z^2 \sin^2 \theta_W \ln \frac{m_H^2}{m_W^2} \right)$$

It was repeated for Higgs at LEP2

Case of Higgs boson

- Now we know top mass
- Rho is a funcution of only m_H
- Precision measurement at LEP2
- 114GeV< mH <150 GeV!
- LHC found new boson at 126 GeV (Higgs boson!)

Victory of precision measurements and theory calculations

(VIVA! SM)

$$\Delta \rho \simeq \frac{3G_F}{8\sqrt{2}\pi^2} \left(m_t^2 - M_Z^2 \sin^2 \theta_W \ln \frac{m_H^2}{m_W^2} \right)$$
ass
only m_H
ent at
$$\int_{0.5}^{0.25} \frac{1}{9} \int_{0.5}^{0.25} \frac{1$$

LEP Electroweak Working Group 2010

All SM parameters are found

Next target is new physics!

- Importance of Radiative Correction calculation
- Future precision measurements
 - S, T, U (Giga Z, Mega W)
 - Top (e.g. ttZ) couplings
 - Couplings of the discovered Higgs

hgg, hγγ, hWW, hZZ, htt, hbb, hττ, hμμ, hcc, ..., hhh

At ILC, we may be able to distinguish models by detecting a pattern of deviations in the *h* couplings from the SM values!

Fingerprinting new physics models

Non-decoupling effect on the Higgs couplings

Top-loop contribution in the SM

How about the new physics loop contributions?

Current LHC data v.s. Full ILC

All SM parameters are found

Next target is new physics!

Experiments

Fingerprinting new physics models

Theory

Radiative Corrections

In future, the Higgs couplings will be measured with much better accuracies

Clearly, tree level analyses are not enough

Analysis with Radiative Corrections (including quantum effect of the 2nd Higgs/BSM particles) is necessary

 Theoretical predictions at loop levels
 ×
 Precision measurements at future colliders

 Vertical predictions
 ×
 Precision measurements at future colliders

 New Physics !
 •

Scale Factors (1-loop level) in 2HDM

Mixing parameter $\mathbf{x} = \cos(\beta - \alpha) \qquad \left[\sin(\beta - \alpha) = 1 - \frac{x^2}{2}\right] \qquad \text{SM-like} \\ \mathbf{x} << 1$

Scale Factor of the *hVV* Couplings

$$\begin{split} \Delta \kappa_{\rm X} &= \kappa_{\rm X} - 1 \\ \Delta \hat{\kappa}_{\rm V} &\simeq -\frac{1}{2} x^2 - \underline{A(m_{\Phi}^2, M^2)} \\ & {\rm mixing} & {\rm loop} \end{split}$$

Loop Effect

whe

$$A(m_{\Phi}, M) = \frac{1}{16\pi^{2}} \frac{1}{6} \sum_{\Phi} c_{\Phi} \frac{m_{\Phi}^{2}}{v^{2}} \left(1 - \frac{M^{2}}{m_{\Phi}^{2}} \right)^{2} \qquad \begin{array}{c} m_{\Phi}^{-2} = M^{2} + \lambda_{i} v^{2} \\ \left(\Phi = H^{\pm}, A, H \right) \end{array}$$

re
$$m_{\Phi}^{2} \left(1 - \frac{M^{2}}{m_{\Phi}^{2}} \right)^{2} \left\{ \begin{array}{c} \infty & \frac{1}{m_{\Phi}^{2}} \\ \infty & m_{\Phi}^{2} \end{array} \right. (M >> v) \qquad \begin{array}{c} \text{Decoupling!} \\ \infty & m_{\Phi}^{2} \end{array} \right. \left(M \sim v \right) \qquad \begin{array}{c} \text{Non-decoupling!} \\ \end{array}$$

Which Yukawa Type ? (tree)

Which Yukawa Type ? (loop)

μ	τ	b	С	t	g_V
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
1	↑	↑	\downarrow	\downarrow	\downarrow
1	↑	\downarrow	\downarrow	\downarrow	\downarrow
\downarrow	↓	1	\downarrow	\downarrow	\downarrow
	$\begin{array}{c} \mu \\ \downarrow \\ \downarrow \\ \uparrow \\ \downarrow \\ \downarrow \end{array}$	$\begin{array}{c c} \mu & \tau \\ \downarrow & \downarrow \\ \downarrow & \downarrow \\ \uparrow & \uparrow \\ \uparrow & \uparrow \\ \downarrow & \downarrow \end{array}$	$\begin{array}{c cccc} \mu & \tau & b \\ \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow \\ \uparrow & \uparrow & \uparrow \\ \uparrow & \uparrow & \downarrow \\ \downarrow & \downarrow & \uparrow \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Evaluation at one-loop

Scan of inner parameters under theoretical and experimental constraints (for each tanβ)

The separation of type can also be done at loop level !

Comparison of 1. 2HDM-I 2. Doublet-Singlet Model (HSM) 3. Inert Doublet Model (IDM)

Scan of inner parameters (mass, mixing angles) under the theoretical conditions of Perturbative unitarity Vacuum stability Condition for avoiding wrong vacuum (HSM)

These models may be distinguished, as long as a deviation in κ_z is detected

Ellipse, ±1σ at LHC3000 and ILC500

Extraction of parameters

Slide by Mariko Kikuchi

In the future,

how much precise can we extract values of inner parameters by using LHC3000 and ILC500 data ?

In addition to the type, parameters x and $tan\beta$ can be extracted !!

Another example of non-decoupling effects Higgs potential

Self-Coupling Constant

It is very important to know *hhh* coupling to reconstruct the Higgs potential

$$V_{\text{Higgs}} = \frac{1}{2} \underline{m_h^2 h^2} + \frac{1}{3!} \underline{\lambda_{hhh}} h^3 + \frac{1}{4!} \underline{\lambda_{hhhh}} h^4 + \cdots$$

Effective Potential
$$V_{\text{eff}}(\varphi) = -\frac{\mu_0^2}{2}\varphi^2 + \frac{\lambda_0}{4}\varphi^4 + \sum_f \frac{(-1)^{2s_f} N_{C_f} N_{S_f}}{64\pi^2} m_f(\varphi)^4 \left[\ln \frac{m_f(\varphi)^2}{Q^2} - \frac{3}{2} \right]$$

Renoramalization $\partial V_{\text{eff}} = 2 - \frac{\partial^2 V_{\text{eff}}}{Q^2} + \frac{2}{3} - \frac{\partial^3 V_{\text{eff}}}{Q^2} + \frac{2}{3} - \frac{2}{3} - \frac{\partial^3 V_{\text{eff}}}{Q^2} + \frac{2}{3} - \frac{\partial^3 V_{\text{eff}}}{Q^2} + \frac{2}{3} - \frac{\partial^3 V_{\text{eff}}}{Q^2} + \frac{2}{3} - \frac{\partial^3 V_{\text{eff}}}{Q^2$

$$\frac{\partial V_{\text{eff}}}{\partial \varphi} \bigg|_{\varphi=v} = 0, \quad \frac{\partial^2 V_{\text{eff}}}{\partial \varphi^2} \bigg|_{\varphi=v} = m_h^2, \quad \frac{\partial^3 V_{\text{eff}}}{\partial \varphi^3} \bigg|_{\varphi=v} = \lambda_{hhh} \quad \text{if } \varphi = \lambda_{hhh}$$

Top loop Effect in the SM

$$\lambda_{hhh}^{\mathsf{SMloop}} \sim \frac{3m_h^2}{v} \left(1 - \frac{N_c m_t^4}{3\pi^2 v^2 m_h^2} + \cdots \right)$$

Non-decoupling effect

Tree level coupling

$$\lambda_{hhh} = \frac{3m_h^2}{v_0}$$

Effective Potential

$$V_{\rm eff}(\varphi) = V_{\rm tree}(\varphi) + \frac{1}{64\pi^2} N_{c_i} N_{s_i} (-1)^{2s_i} (M_i(\varphi))^4 \left[\ln\left(\frac{(M_i(\varphi))^2}{Q^2} - \frac{3}{2}\right) \right]$$

Top quark effect $M_{\varphi} = \frac{y_t \varphi}{\sqrt{2}}$

Expand the V_{eff} by $h \qquad \varphi = v_0 + h$

$$V_{\text{eff}} = -\frac{\mu^2}{2}(v_0 + h) + \frac{1}{4}\tilde{\lambda}(v_0 + h)^4 - \frac{N_c}{16\pi^2}\frac{y_t^4}{2}v_0^4\left(\frac{h}{v_0} + \frac{7}{2}\frac{h^2}{v_0^2} + \frac{13}{3}\frac{h^3}{v_0^3} + \cdots\right)$$
$$\tilde{\lambda} = \lambda - \frac{N_c}{16\pi^2}y_t^4\left(\ln\frac{y_t^2v_0^2}{2Q^2} - \frac{3}{2}\right)$$

Renormalization
$$\frac{\partial V}{\partial \varphi}\Big|_{\varphi=v} = 0, \qquad \frac{\partial^2 V}{\partial h^2}\Big|_{\varphi=v} = m_h^2, \qquad \frac{\partial^3 V}{\partial h^3}\Big|_{\varphi=v} = \lambda_{hhh}^R$$

$$\begin{aligned} \frac{\partial V_{\text{eff}}}{\partial h} &= -\mu^2 v_0 + \tilde{\lambda} v_0^3 - \frac{1}{2} A v_0^3 = 0, \\ \frac{\partial^2 V_{\text{eff}}}{\partial^2 h} &= -\mu^2 + 3 \tilde{\lambda} v_0^2 - \frac{7}{2} A v_0^2 = m_h^2, \qquad A = \frac{N_c y_t^4}{16\pi^2} \\ \frac{\partial^3 V_{\text{eff}}}{\partial^3 h} &= 6 \tilde{\lambda} v_0 - 13 A v_0 = \lambda_{hhh}^R, \end{aligned}$$

Eliminating
$$\mu^2$$
 and $\tilde{\lambda}$, and using $y_t = rac{\sqrt{2}m_t}{v_0}$

$$\lambda_{hhh}^{R} = \frac{3m_{h}^{2}}{v_{0}} \left(1 - \frac{N_{c}}{3\pi^{2}} \frac{m_{t}^{4}}{v_{0}^{2}m_{h}^{2}} \right)$$

Case of Non-SUSY 2HDM

- Consider when the lightest h is SM-lik [sin(β-α)=1]
- At tree, the *hhh* coupling takes the same form as in the SM

 $\Phi = H, A, H^{\pm}$

Summary of Radiative Corrections

- In order to really test theory calculation by using future precision data, evaluation with radiative corrections is inevitable
- Radiative correction to EW parameters (*S*, *T*, *U*) revealed mass of top and Higgs before their discovery!
- Radiative corrections to Higgs boson couplings in various new physics models make it possible to fingerprint models by future precision data
- The *hhh* coupling is essentially important to explore the Higgs potential. The coupling can deviate largely by the new physics loop effect