Higgs Physics

Shinya KANEMURA University of TOYAMA

Yangpyung, Particle Physics, School, December 17-20

Baryogenesis and Higgs

Baryon Asymmetry of the Universe

$$\frac{n_B}{s} \equiv \frac{n_b - n_{\bar{b}}}{s}$$

- n_B Baryon number density
 - S Entropy density

Observations

Stable Galaxies (~ $10^{12} M_{\odot}$)

Cosmic Microwave Background

Light Element Synthesis (H, He, Li, ...) </

$$\frac{n_B}{s} = (0.67 - 0.92) \times 10^{-10}$$

To explain this number is a big question in particle physics

Baryogenesis Initially n_B=0, then it is generated after inflation **Required to satisfy the Sakharov's 3 conditions**

Electroweak Baryogenesis

1-loop effective potential

• Zero temperature

$$V_1(\varphi) = n_i \frac{m_i^4(\varphi)}{64\pi^2} \left(\log \frac{m_i^2(\varphi)}{Q^2} - \frac{3}{2}\right)$$

 $(n_W = 6, n_Z = 3, n_t = -12, n_h = n_H = n_A = 1, n_{H^{\pm}} = 2)$ • Finite temperature

$$\begin{split} V_1(\varphi,T) &= \frac{T^4}{2\pi^2} \Big[\sum_{i=\text{bosons}} n_i I_B(a^2) + n_t I_F(a) \Big] \\ \text{where} \quad I_{B,F}(a^2) &= \int_0^\infty dx \; x^2 \log(1 \mp e^{-\sqrt{x^2 + a^2}}), \qquad \left(a(\varphi) = \frac{m(\varphi)}{T} \right) \end{split}$$

Μ

 \triangleright High temperature expansion $(a^2 \ll 1)$

$$I_B(a^2) = -\frac{\pi^4}{45} + \frac{\pi^2}{12}a^2 - \frac{\pi}{6}(a^2)^{3/2} - \frac{a^4}{32}\left(\log\frac{a^2}{\alpha_B} - \frac{3}{2}\right) + \mathcal{O}(a^6),$$

$$I_F(a^2) = \frac{7\pi^4}{360} - \frac{\pi^2}{24}a^2 - \frac{a^4}{32}\left(\log\frac{a^2}{\alpha_F} - \frac{3}{2}\right) + \mathcal{O}(a^6), \quad \left(\log\alpha_{F(B)} = 2\log(4)\pi - 2\gamma_E\right)$$

 φ^3 -term comes from the "bosonic" loop

Strongly 1st OPT

High Temperature Expansion (just for sketch)

$$\begin{split} V_{\rm eff}(\varphi,T) \simeq D(T^2 - T_0^2)\varphi^2 - ET\varphi^3 + \frac{\lambda_T}{4}\varphi^4 + \cdots \\ \begin{array}{c} \text{Condition of} \\ \text{Strongly 1st OPT} \end{array} \quad \left[\frac{\varphi_C}{T_C} \simeq \frac{2E}{\lambda_{T_C}} > 1 \right] \end{split}$$

However, the SM cannot realize the strongly 1st OPT

$$\begin{split} E \simeq & \frac{1}{12\pi v^3} \left(6m_W^3 + 3m_Z^3 + \cdots \right) \quad \lambda_{T_C} \sim \frac{m_h^2}{2v^2} + \cdots \\ & \left[\frac{\varphi_C}{T_C} \simeq \frac{6m_W^3 + 3m_Z^3 + \cdots}{3\pi v m_h^2} \right] \ll 1 \quad \text{For } m_h = \text{125 GeV} \end{split}$$

We need a mechanism to enlarge *E* to realize strongly 1st OPT

1st OPT in extended Higgs sectors

High Temperature Expansion (just for sketch)

$$\begin{split} V_{\text{eff}}(\varphi,T) \simeq D(T^2 - T_0^2)\varphi^2 - ET\varphi^3 + \frac{\lambda_T}{4}\varphi^4 + \cdots \\ \begin{array}{c} \text{Condition of} \\ \text{Strongly 1^{st} OPT} \end{array} \quad \left[\frac{\varphi_C}{T_C} \simeq \frac{2E}{\lambda_{T_C}} > 1 \right] \end{split}$$

The condition can be satisfied by thermal loop effects of additional scalar bosons Φ (Φ = H, A, H⁺, ...) $m_{\Phi}^2 \simeq M^2 + \lambda_i v^2$

$$\frac{\varphi_C}{T_C} \simeq \frac{1}{3\pi v m_h^2} \left\{ 6m_W^3 + 3m_Z^3 + \sum_{\Phi} m_{\Phi}^3 \left(1 - \frac{M^2}{m_{\Phi}^2} \right)^3 \left(1 + \frac{3M^2}{2m_{\Phi}^2} \right) \right\} > \mathbf{1}$$

In this case, large quantum effects also appear in the hhh coupling

$$\lambda_{hhh} \simeq \frac{3m_h^2}{v^2} \left\{ 1 - \frac{m_t^4}{\pi^2 v^2 m_h^2} + \sum_{\Phi} \frac{m_{\Phi}^4}{12\pi^2 v^2 m_h^2} \left(1 - \frac{M^2}{m_{\Phi}^2} \right)^3 \right\} > \lambda_{hhh}^{\text{SN}}$$

Case of Non-SUSY 2HDM

- Consider when the lightest h is SM-lik [sin(β-α)=1]
- At tree, the *hhh* coupling takes the same form as in the SM

 $\Phi = H, A, H^{\pm}$

Strong 1st OPT and the *hhh* coupling

S.K., Y. Okada, E. Senaha (2005)

450 Strongly 1st OPT 100%400 – Deviatio ⇔ Non-decoupling effect in λ_{hhh} 350 \Leftrightarrow large deviation in *hhh* 300 30% $m_{\Phi} \; [\text{GeV}]$ 20%At LHC, challenging 250to measure λ_{hhh} 200 $\Delta \lambda_{hhh} / \lambda_{hhh} = 10\%$ ILC (1 TeV) can measure λ_{hhh} by 10 % 150 100 $\sin(\beta - \alpha) = \tan\beta = 1$ $m_h = 125 \text{ GeV}$ K.Fujii et al., arXiv:1506.05992 [hep-ex] 2HDM 50 $m_{\Phi} = m_{H} = m_{A} = m_{H^{\pm}}$ Great achievement!!! 0 If $\Delta\lambda$ =100%, then $\Delta\lambda/\lambda \sim$ 15% can be achieved 2040 60 80 0 100120140 J. Tian et al. LCWS 2015 at E=500GeV (H20) $M \,[{\rm GeV}]$

Electroweak Baryogenesis can be tested at ILC!

GW: another probe of 1st OPT?

Gravitational Wave Experiments

aLIGO (USA), KAGRA (JPN), aVIRGO (ITA), ...

- Trial for first discovery of GWs (Underway)
- GWs from astronomical phenomena (binary of neutron stars, ...)

Once, GW is found, era of GW astronomy will come ture Future exp: eLISA [EUR], DESIGO [JPN], BBO [USA]...

- GWs from very early Universe (Inflation, 1st OPT, ...)

GWs may be used for exploration of the Higgs potential, as complementary mean with collider experiments.

GW from the EW bubble

Evaluation according to Grojean and Servant

 $\Omega_{\rm GW}(f)h^2 = \Omega_{\rm coll}(f)h^2 + \Omega_{\rm turb}(f)h^2$

The spectrum are evaluated by inputting the lattent heat α , variation of the bubble nuclearation rate β and transition temperature T_t

Higgs model with O(N) singlet fields

N-scalar singlets $S^{\mathrm{T}} = (S_1, \cdots, S_N)$

 $V_0 = -\mu^2 |\Phi|^2 + \frac{\mu_S}{2}^2 |S|^2 + \frac{\lambda}{2} |\Phi|^4 + \frac{\lambda_S}{4} |S|^4 + \frac{c}{2} |\Phi|^2 |S|^2$

Mass of scalar fields:

$$m_S^2 = \mu_S^2 + \frac{c}{2}v^2$$

 $\varphi_c/T_c > 1$ is satisfied by the nondecoupling effect of the singlet fields (compatible with $m_h = 125 \text{GeV}$)

$$\frac{\varphi_C}{T_C} \simeq \frac{1}{3\pi v m_h^2} \left\{ 6m_W^3 + 3m_Z^3 + Nm_S^3 \left(1 - \frac{\mu_S^2}{m_S^2} \right)^3 \left(1 + \frac{3\mu_S^2}{2m_S^2} \right) \right\}$$
$$\lambda_{hhh}^{O(N)} \simeq \frac{3m_h^2}{v^2} \left\{ 1 - \frac{m_t^4}{\pi^2 v^2 m_h^2} + N \frac{m_S^4}{12\pi^2 v^2 m_h^2} \left(1 - \frac{\mu_S^2}{m_S^2} \right)^3 \right\}$$

Predictions on the hhh coupling

M.Kakizaki, S.Kanemura, T.Matsui, arXiv:1509.08394 [hep-ph]

O(10)% deviations in hhh coupling

Relic abundance of GWs from EWPT

Numerical calculation

``Overshooting-undershooting method''

Model-independent analysis

C. Grojean and G. Servant, PRD75, 043507 (2007)

$$V_{\text{eff}}(\varphi, T) \longrightarrow \alpha, \tilde{\beta}_{\alpha T=T_t} \longrightarrow \Omega_{\text{GW}} h^2 (f)$$

Relic abundance of GWs is composed of two contributions. $\Omega_{\rm GW}h^2(f) \equiv \Omega_{\rm coll}h^2(f) + \Omega_{\rm turb}h^2(f)$ "bubble collision" $\tilde{\Omega}_{\rm coll}h^2 \simeq \frac{1.1 \times 10^{-6}\kappa^2(\alpha)v_b^3(\alpha)}{0.24 + v_b^3(\alpha)} \times \left(\frac{\alpha}{1+\alpha}\right)^2 \tilde{\beta}^{-2}$ $\tilde{f}_{\rm coll} \simeq 5.2 \times 10^{-6} \text{Hz} \times (T_t/100 \text{GeV})\tilde{\beta}$ "turbulence in the plasma" $\tilde{\Omega}_{\rm turb}h^2 \simeq 1.4 \times 10^{-4}u_s^5(\alpha)v_b^2(\alpha)\tilde{\beta}^{-2}$ $\tilde{f}_{\rm turb} \simeq 3.4 \times 10^{-6} \text{Hz} \times (u_s(\alpha)/v_b(\alpha))(T_t/100 \text{GeV})\tilde{\beta}$

Numerical calculation

``Overshooting-undershooting method"

$$V_{\text{eff}}(\varphi, T)$$

Numerical calculation

``Overshooting-undershooting method"

$$V_{\text{eff}}(\varphi, T)$$

"Spherical bubble configuration"

Eq. of motion:
$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} - \frac{dV_{\text{eff}}}{d\varphi} = 0 \longrightarrow \varphi(r)$$

Numerical calculation

``Overshooting-undershooting method''

$$V_{\text{eff}}(\varphi, T)$$

Numerical calculation

``Overshooting-undershooting method''

$$V_{\rm eff}(\varphi,T)$$

r₀: Critical size of vacuum babble

``Definition of phase transition temperature T_t''

$$\left. \frac{\Gamma}{H^4} \right|_{T=T_t} \simeq 1$$
 (H: Hubble parameter)

Phase transition completes when the probability for the nucleation of 1 bubble per 1 horizon volume and horizon time is of order 1.

J- Bubble nucleation rate: $\Gamma(T) \simeq T^4 e^{-\frac{S_3(T)}{T}}$

- 3-dim. Euclidean action:
$$S_3(T) = \int dr^3 \left\{ \frac{1}{2} \left(\vec{\nabla} \varphi \right)^2 + V_{\text{eff}}(\varphi, T) \right\}$$

``Characteristic parameters of GWs''

- α is defined as $\alpha \equiv \frac{\epsilon}{\rho_{rad}}\Big|_{T=T_t}$. (ρ_{rad} is energy density of rad.) Latent heat: $\epsilon(T) \equiv -\Delta V_{eff}(\varphi_B(T), T) + T \frac{\partial \Delta V_{eff}(\varphi_B(T))}{\partial T}$ cf. U=-F+T(dF/dT)

 - β is defined as $\beta \equiv \frac{1}{\Gamma} \frac{d\Gamma}{dt} \Big|_{t=t}$. $\rightarrow \tilde{\beta} \left(\equiv \frac{\beta}{H_t} \right) = T_t \frac{d(S_3(T)/T)}{dT} \Big|_{T=t}$

 $(H_t : Hubble parameter @T_t)$

Relic abundance of GWs from EWPT

Numerical calculation

``Overshooting-undershooting method''

Model-independent analysis

C. Grojean and G. Servant, PRD75, 043507 (2007)

$$V_{\text{eff}}(\varphi, T) \longrightarrow \alpha, \tilde{\beta}_{\alpha T=T_t} \longrightarrow \Omega_{\text{GW}} h^2 (f)$$

Relic abundance of GWs is composed of two contributions. $\Omega_{\rm GW}h^2(f) \equiv \Omega_{\rm coll}h^2(f) + \Omega_{\rm turb}h^2(f)$ "bubble collision" $\widetilde{\Omega}_{\rm coll}h^2 \simeq \frac{1.1 \times 10^{-6}\kappa^2(\alpha)v_b^3(\alpha)}{0.24 + v_b^3(\alpha)} \times \left(\frac{\alpha}{1+\alpha}\right)^2 \widetilde{\beta}^{-2}$ $\widetilde{f}_{\rm coll} \simeq 5.2 \times 10^{-6} \text{Hz} \times (T_t/100 \text{GeV})\widetilde{\beta}$ "turbulence in the plasma" $\widetilde{\Omega}_{\rm turb}h^2 \simeq 1.4 \times 10^{-4}u_s^5(\alpha)v_b^2(\alpha)\widetilde{\beta}^{-2}$ $\widetilde{f}_{\rm turb} \simeq 3.4 \times 10^{-6} \text{Hz} \times (u_s(\alpha)/v_b(\alpha))(T_t/100 \text{GeV})\widetilde{\beta}$

GW spectrum from 1st OPT

M.Kakizaki, S.Kanemura, T.Matsui, arXiv:1509.08394 [hep-ph]

Dependences on (N, m_s)

M.Kakizaki, S.Kanemura, T.Matsui, arXiv:1509.08394 [hep-ph]

Future improvements

There are uncertainties in evaluation of GW from 1st OPT (babble dynamics, formulas of GW spectrum, ...)

Recent detailed analysis of bubble collision Efficiency factor (rate of GW from latent heat) Espinosa, et al. (2010), No (2011) $\kappa(\alpha) \rightarrow \kappa(\alpha, v_w)$

Which model of plasma turbulence to be used? Nicolis (2004) various fluid modes

Understanding of Foregrouds (ex: WD-WD)

Requirement future GW interferometers

ILC vs LISA/DECIGO

Neutrino and Higgs

Introduction

To understand these phenomena, we need to go beyond-SM

Neutrino Oscillation

Neutrino oscillation

Periodic transition of flavors

$$P(\boldsymbol{\nu_{\ell}} \to \boldsymbol{\nu_{\ell'}}) = \begin{vmatrix} \sum_{i} (\boldsymbol{U}_{\text{MNS}})_{\ell i} \exp\left(i\frac{\boldsymbol{m_{i}^{2}}L}{2E}\right) (\boldsymbol{U}_{\text{MNS}}^{\dagger})_{i\ell'} \end{vmatrix}^{2} \begin{bmatrix} \boldsymbol{m_{i}} : \text{Masses} \\ L : \text{Distance} \\ E : \text{Energy} \end{vmatrix}$$

$$W \underbrace{U_{MNS}}_{\ell} \underbrace{U_{MNS}}_{\nu_{\ell}} \underbrace{U_{1}, \nu_{2}, \nu_{3}}_{\nu_{\ell'}} \underbrace{V_{\ell'}}_{\ell'} \underbrace{V_{\ell'}}_{\ell'}$$

First oscillation maximum

$$\frac{\Delta m^2 L}{4E} = 1.27 \ \frac{\Delta m^2 (\text{eV}^2) \ L(\text{m})}{E(\text{MeV})}$$

- Nobel Prize in Physics 2015 -

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

Takaaki Kajita

Director of Institute for Cosmic Ray Research (ICRR)

Atmospheric ν oscillation at Super-Kamiokande

Arthur B. McDonald

Professor (emeritus) in Queen's University

Solar ν oscillation at SNO

Neutrinos do have masses

This is a clear signature of BSM

BSM: Neutrino Mass

Neutirno Mass Term (= Effectively Dim-5 Operator)

$$L^{eff} = (c_{ij}/M) v^{i} v^{j} \varphi \phi$$

 $\langle \phi \rangle = v = 246 \text{GeV}$

Mechanism for tiny masses:

$$m_{ij}^{v} = (c_{ij}/M) v^{2} < 0.1 eV$$

Seesaw (tree level) $m_{ij}^{\nu} = y_i y_j v^2 / M$

M=10¹³⁻¹⁵GeV

Quantum EffectsN-th order of perturbation theory $m^{v}_{ij} = [1/(16\pi^2)]^{N} C_{ij} v^2/M$ M=1 TeV

Seesaw Mechanism?

Super heavy RH neutrinos (M_{NR} ~ 10¹⁰⁻¹⁵GeV)

- Hierarchy between M_{NR} and m_D generates that between m_D and tiny m_v ($m_D \sim 100 \text{ GeV}$)

$$m_v = m_D^2 / M_{N_F}$$

ννφφ

Minkowski Yanagida Gell-Mann et al

– Simple, compatible with GUT etc

Introduction of a super high scale

Hierarchy for hierarchy!

Far from experimental reach...

BSM: Neutrino Mass

Neutirno Mass Term (= Effectively Dim-5 Operator)

$$L^{eff} = (c_{ij}/M) v^{i} v^{j} \varphi \phi$$

 $\langle \phi \rangle = v = 246 \text{GeV}$

Mechanism for tiny masses:

$$m_{ij}^{v} = (c_{ij}/M) v^{2} < 0.1 eV$$

Seesaw (tree level) $m_{ij}^{\nu} = y_i y_j v^2 / M$

M=10¹³⁻¹⁵GeV

Quantum EffectsN-th order of perturbation theory $m^{v}_{ij} = [1/(16\pi^2)]^{N} C_{ij} v^2/M$ M=1 TeV

Scenario of radiative $\nu\nu\phi\phi$ generation

- Tiny v-Masses come from loop effects
 - Zee (1980, 1985)
 - Zee, Babu (1988)
 - Krauss-Nasri-Trodden (2002)
 - Ma (2006),
- Merit
 - Super heavy particles are not necessary

Size of tiny m_v can naturally be deduced from TeV scale by higher order perturbation

Physics at TeV: Testable at collider experiments

Radiative seesaw with Z₂

- 1-loop (Ma)
 - Simplest model
 - SM + NR + Inert doublet (H')
 - DM candidate [H' or NR]
 - H' case
 - NR (LFV and MN not compatible)
- 3-loop (Aoki-Kanemura-Seto)
 - Neutrino mass from O(1) coupling.
 - Electroweak Baryogenesis
 - $2HDM + \eta^{0} + S^{+} + NR$
 - DM candidate [η^0 (or NR)]

Exact Z₂ Parity

- No neutrino Yukawa coupling
- Stabilize Dark Matter

RH neutrinos: N_R (M_{NR} = TeV scale)

Extended Higgs: 2HDM (Φ_1, Φ_2) + singlet scalars (η^0, S^+)

Tiny neutrino mass: DM candidate: EW Baryogenesis: 3 loop effect (N_R, η^0 , S⁺, H⁺, e_R) Lightest Z₂-odd particle (η^0) Extended Higgs [1st Order PT, Source of CPV]

The Higgs sector

NNLO by

- The Higgs sector Φ_1 , Φ_2 (2HDM) + S⁺, η (singlets)
- To avoid FCNC, additional softlybroken Z₂ symmetry is introduced :

 $\Phi_1 \rightarrow + \Phi_1, \quad \Phi_2 \rightarrow - \Phi_2$

by which each quark/lepton couples to only one of the Higgs doublets.

- 4 types of Yukawa interactions!
- Neutrino data prefer a light H⁺(< 200GeV)
- Choose Type-X Yukawa to avoid the constraint from $b \rightarrow sy$.

 Φ_1 only couples to Leptons Φ_2 only couples to Quarks

Aoki, SK, Tsumura, Yagyu, PRD 80, 015017 (2009)

The model

 $SU(3) \times SU(2) \times U(1) \times Z_2 \times Z_2$

 Z_2 (exact) : to forbid v-Yukawa \sim to stabilize DM Z_2 (softly-broken): to avoid FCNC

		$SU(2)_L \times U(1)$	Z_2 (exact)	\tilde{Z}_2 (softly broken)	
f	Q^i	(2, 1/6)	+	+	١
	u_R^i	(1, 2/3)	+	_	
	d_R^i	(1, -1/3)	+	—	
	L^i	(2, -1/2)	+	+	
	e_R^i	(1, -1)	+	+	
	Φ_1	(2, 1/2)	+	+	
	Φ_2	(2, 1/2)	+	_	
	S^-	(1, -1)	—	+	•
	η^0	(1, 0)	—	—	
	N_R^{α}	(1, 0)	—	+	

Type-X 2HDM

Z₂-even physical states h (SM like Higgs) H, A, H⁻ (Extra scalars) Z₂-odd states η, S⁺, N_R

Lagrangian

$SU(3) \times SU(2)$	$\times U(1) \times Z_2 \times \tilde{Z}_2$	Z ₂ (exact) :	to forbid tree v -Yukawa and to stabilize DM
Z ₂ even(2HD	M) + $Z_2 odd(S^+, \eta^0, N_R^{\alpha})$	Z ₂ (softly-k	proken): to avoid FCNC
V =	$-\mu_{1}^{2} \Phi_{1} ^{2} - \mu_{2}^{2} \Phi_{2} ^{2} - (\mu_{12}^{2}\Phi_{1}^{\dagger}\Phi_{2} + h) + \lambda_{1} \Phi_{1} ^{4} + \lambda_{2} \Phi_{2} ^{4} + \lambda_{3} \Phi_{1} ^{2} \Phi_{2} ^{2} + \lambda_{4} \Phi_{1}^{\dagger}\Phi_{2} ^{2} + \left\{\frac{\lambda_{5}}{2}(\Phi_{1}^{\dagger}\Phi_{2})^{2} + h.c.\right\}$	c.)	Z ₂ even 2HDM
	$+\mu_{s}^{2} S ^{2}+\lambda_{s} S ^{4}+\frac{1}{2}\mu_{\eta}\eta^{2}+\lambda_{\eta}\eta^{4}+$	$-\xi S ^2 \eta^2$	Z ₂ odd scalars
	$+\sum_{a=1}^{2} \left\{ \rho_{a} \Phi_{a} ^{2} S ^{2} + \sigma_{a} \Phi_{a} ^{2} \frac{\eta^{2}}{2} \right\} \\ +\sum_{a,b=1}^{2} \left\{ \kappa \epsilon_{ab} (\Phi_{a}^{c})^{\dagger} \Phi_{b} S^{-} \eta + \text{h.c.} \right\}.$		Interaction

RH neutrinos

$$\mathcal{L}_{Y} = -\sum_{\alpha=1}^{2} \sum_{i,j=1}^{3} h_{i}^{\alpha} (e_{R}^{i})^{c} N_{R}^{\alpha} S^{-} + \sum_{\alpha=1}^{2} m_{N}^{\alpha} N_{\alpha}^{c} N_{\alpha} + \text{h.c.}.$$

_

Neutrino Mass

Tree neutrino Yukawa is forbidden by Z₂

$$\begin{split} M_{ij} &= \sum_{\alpha=1}^{2} C_{ij}^{\alpha} F(m_{H}, m_{S}, m_{N_{R}^{\alpha}}, m_{\eta}) \\ & F(m_{H^{\pm}}, m_{S^{\pm}}, m_{N_{R}}, m_{\eta}) = \left(\frac{1}{16\pi^{2}}\right)^{3} \frac{(-m_{N_{R}}v^{2})}{m_{N_{R}}^{2} - m_{\eta}^{2}} \\ & \times \int_{0}^{\infty} dx \left[x \left\{ \frac{B_{1}(-x, m_{H^{\pm}}, m_{S^{\pm}}) - B_{1}(-x, 0, m_{S^{\pm}})}{m_{H^{\pm}}^{2}} \right\}^{2} v_{L^{i}} v_{L^{i}} v_{L^{i}} v_{L^{j}} v_{$$

Universal scale is determined by the3-loop function factor F

• Mixing structure is determined by $C_{ij}^{\alpha} = 4\kappa^2 \tan^2 \beta (y_{\ell_i}^{\text{SM}} h_i^{\alpha}) (y_{\ell_j}^{\text{SM}} h_j^{\alpha})$ Neutrino data and LFV data require that H⁺ should be light (< 200 GeV) N_R should be O(1) TeV

We can describe all the neutrino data (tiny masses and angles) without unnatural assumption among mass scales

Solution of $\boldsymbol{\nu}$ mass and mixing

Case of 2 generation N_{R}^{α}

$$M_{ij} = U_{is} (M_{\nu}^{\text{diag}})_{st} (U^T)_{tj}$$

 $\Delta m_{sol}^{2} \approx 8 \times 10^{-5} \, eV^{2}$ $\Delta m_{atm}^{2} \approx 0.0021 \, eV^{2}$ $\theta_{sol}^{2} \approx 0.553$ $\theta_{atm}^{2} \pi/4$

$$m_{\nu}^{\text{diag}} \equiv \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \sqrt{\Delta m_{\text{solar}}^2} & 0 \\ 0 & 0 & \sqrt{\Delta m_{\text{atom}}^2} \end{bmatrix} \qquad U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & e^{i\tilde{\alpha}} & 0 \\ 0 & 0 & e^{i\tilde{\beta}} \end{bmatrix}$$
$$C_{ij}^{\alpha} = 4\kappa^2 \tan^2 \beta (y_{\ell_i}^{\text{SM}} h_i^{\alpha}) (y_{\ell_j}^{\text{SM}} h_j^{\alpha})$$

Set	Mass (TeV)			Yukawa couplings				LFV			
(hierarchy, $\sin^2 2\theta_{13}$)	m_{η}	m_S	m_{Ni}	$\kappa an eta$	h_e^1	h_e^2	h^1_μ	h_{μ}^2	h_{τ}^1	h_{τ}^2	$B(\mu{\rightarrow}e\gamma)$
A (normal, 0)	0.05	0.4	3	29	2.0	2.0	0.041	-0.020	0.0012	-0.0025	6.8×10^{-12}
B (normal, 0.14)	0.05	0.4	3	34	2.2	2.1	0.0087	0.037	-0.0010	0.0021	5.3×10^{-12}
C (inverted, 0)	0.05	0.4	3	66	3.8	3.7	0.013	-0.013	-0.00080	0.00080	$4.2\! imes\!10^{-12}$
D (inverted, 0.14)	0.05	0.4	3	66	3.7	3.7	-0.016	0.011	0.00064	-0.00096	$4.2\!\times\!10^{-12}$

The model can reproduce all the neutrino data

Thermal Relic Abundance of η^0

 m_{η} would be around 40-65 GeV for $m_s = 400 \text{GeV}$

Strong 1st Order Phase Transition

Successful scenario under current data

The requirement and data taken into account

Neutrino Data DM Abundance Condition for Strong 1st OPT LEP Bounds on Higgs Bosons Tevatron Bounds on m_{H^+} B physics: $B \rightarrow X_s \gamma$, $B \rightarrow \tau \nu$ Tau Leptonic Decays, LFV ($\mu \rightarrow e \gamma$), g-2 Theoretical Consistencies

The mass spectrum is uniquely determined All masses are O(0.1)-O(1) TeV

Many discriminative predictions !

Predictions

- Physics of η (DM)
- Type X THDM with a light H⁺.
- Non-decoupling effect of S⁺.
- Lamdau Pole at 10-100 TeV
- Direct test for Majorana structure.

Cutoff scale of the model

- This model contains lots of scalars.
- Running couplings become larger for higher energies.
- Our scenario is consistent with the RGE analysis with

 Λ =O(10-100) TeV.

Higher Order Effect

- Majorana mass of LH neutrinos may be generated from dim > 5 operators
- For dim-(5+n) operators, additional suppression $LL\phi\phi/\Lambda \times (\phi\phi/\Lambda^2)^n$
- Discrete symmetries forbid lower order operators

Zee; Babu

Summary

- A Higgs boson was found and it turned out to be SM like
- Still, so little is known about the structure of the Higgs sector
- There is a possibility for extended Higgs sectors
- Each extended Higgs sector can be motivated by a new physics model
 - Supersymmetry
 - Composite Higgs models
 - Electroweak Baryogenesis
 - Models of Radiative neutrino mass
 - Dark Matter models
 - …
- Experimental determination of the Higgs sector can be done by direct search and also by indirect search (fingerprinting)
 - LHC good for direct search
 - ILC good for precision measurement
- Higgs sector is the key to new physics beyond the SM