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Outline

I Brief Summary of recent developments in understanding
4d N = 3 SCFTs

I An explicit counting of degrees of freedom contributing to
the central charges

I SUSY enhancement and 1/2-BPS dyonic states

I 3-pronged strings in S-fold background



Recent Developments

I 4d N = 3 theories must necessarily be non-Lagrangian

I Aharony and Evtikhiev: Consider the constraints due to
N = 2 ⊂ N = 3 superalgebra and compare with properties
of N = 4 theories (when thought of as trivial examples of
N = 3 theories)

1. central charges are such that a = c
2. no N = 3 preserving deformations
3. no non-R global symmetries
4. dimension of Coulomb branch operators(CBO) must be ≥ 3
5. dimension 2 CBO =⇒ SUSY enhancement



F-theory construction

I By Inaki Garcia-Etxebarria and Diego Regalado

I k-fold generalization of the M-theory lift of orientifolds

I M-theory on R2,1 × (C3 × T 2)/Zk , k = 1,2,3,4,6

I T 2 → 0 gives rise to a stack of N D3-branes with C3/Zk as
their transverse space

I k =1 gives N = 4 SU(N) SYM living on a stack of N D3
branes in flat background

I k=2 gives N D3-branes on top of an orientifold

I k=3,4,6 gives N D3-branes on top of an “S-fold”



M-theory on R2,1 × (C3 × T 2)/Zk , k = 3,4,6

I T 2 : τ = e
2πi
k

I Claim: This background generically preserves only 12
supercharges

I Zk is embedded diagonally inside SL(2,Z)em × SO(6)R

I Zk ⊂ SL(2,Z)em :
(Q1,Q2,Q3,Q4)→ γ−

1
2 (Q1,Q2,Q3,Q4), γk = 1

I Zk ⊂ SO(6)R :
(Q1,Q2,Q3,Q4)→ (γ

1
2 Q1, γ

1
2 Q2, γ

1
2 Q3, γ

− 3
2 Q4)

I Combined action therefore preserves only 3 sets of
supercharges



Relationship with Complex Reflection Groups

I Aharony and Tachikawa: N D3-branes probing a Zk
twisted S-fold background are intimately related to the
Complex Reflection Group G(k ,p,N)

I Complex Reflection Groups generalize Euclidean
reflections to the group of reflections in an N dimensional
complex vector space with a Hermitian inner product

I For our purposes we can think of them as generalization of
Weyl reflection groups of Lie algebras.



Complex Reflection Groups As Generalized Weyl
Reflections

I Indeed

G(1,1,N) ≡ SN , Weyl subgroup of AN−1

G(2,1,N) ≡Weyl subgroup of BN and CN

G(2,2,N) ≡Weyl subgroup of DN

I Weyl subgroup of the gauge symmetry associated to the
N = 4 SYM theory living on the world volume of
D3-branes probing Zk -twisted S-fold for k = 1,2

I Claim: G(k ,p,N) is the equivalent of “Weyl subgroup” of
the gauge symmetry enjoyed by the world-volume theory
of D3-branes probing a Zk -twisted S-fold



I p corresponds to discrete torsion.

I N D3-branes transverse to C3/Zk imply that vacuum
moduli space of 4d theory is (C3/Zk )N/SN

I For k=2, 4d N = 4 theory with SO(2N + 1), Sp(N) or
SO(2N) gauge symmetry

I Use R-symmetry and gauge transformations to make all
the branes coplanar in the transverse space with positions
zi , i = 1, . . . ,N

I Vector multiplet scalars: 〈ϕ1〉 = diag(z1, . . . , zN) and
〈ϕ2〉 = 〈ϕ3〉 = 0



I Weyl subgroup of Sp(N):

zi ↔ zj , all others fixed,
zi → −zi , all other za fixed

I Gives (C/Z2)N/SN , by rotating the 3 scalars into each
other using R-symmetry, we get (C3/Z2)N/SN

I Weyl subgroup of SO(2N):

zi ↔ zj , all others fixed,
(zi , zj)→ (−zi ,−zj) all other za fixed

I Clearly, will not give the same moduli space

I Resolution: Introduce a Z2 discrete symmetry in the
disconnected part of the gauge symmetry

I The gauge symmetry is O(N) rather than SO(N)



I This action of G(k ,1,N) on zi is given by

zi ↔ zj , all others fixed,

zi → γzi , γ
k = 1 all other za fixed

I Orbifolding CN by G(k ,1,N) gives (C/Zk )N/SN

I R-symmetry implies that the vacuum manifold is
(C3/Zk )N/SN

I Zk twisted S-fold

I Refining the S-fold classification by discrete torsion is
equivalent to realizing a Zp subgroup of G(k ,1,N) as a
discrete gauge group in the disconnected part of the gauge
symmetry



I Gives G(k ,p,N)× Zp

I Action of G(k ,p,N)

zi ↔ zj , all others fixed,

(zi , zj)→ (γzi , γ
−1zj) all other za fixed

zi → γpzi , γ
k = 1 all other za fixed



I A-T showed that for k < 6 only p = 1, k are realizable in
M-theory. For k = 6, only p = 6 is physical

I When p > 1, there is a additional Zp gauge symmetry in a
disconnected sector of the gauge group

I Zp gauge symmetry is such that it only changes the global
structure of the gauge symmetry and doe not change the
dynamics on R4

I Can ungauge the Zp symmetry for the purpose of
computing central charges

I Ring of Coulomb branch operators is given by the ring of
invariants of G(k ,p,n)

∆(Oi) = k , . . . , (n − 1)k ; n`, ` =
k
p



I Substitute in

2a− c =
1
4

∑
i

(2∆(Oi)− 1),

a = c

I We find 4a = 4c = kN2 + N(2`− k − 1)



Explicit counting of degrees of freedom

I In N = 2 theories, define effective number of vector
multiplets, nv and effective number of hypers nh, s.t.

c =
2nv + nh

12
, a =

5nv + nh

24

I For the present case this gives

nv = nh = 4a = kN2 + N(2`− k − 1)

I An N = 2 vector combines with a hyper to form an N = 3
vector

I Define effective number of N = 3 vectors to be

ñv = 4a = kN2 + N(2`− k − 1)



I For k = 1,2, ñv = dim. of adjoint rep. of the respective
gauge group

I For k ≥ 3, no such interpretation of ñv is possible as there
is no Lie algebra

I Can still interpret ñv as the number of fundamental strings
stretched between the D3-branes



I The space transverse to the D3-branes is C3/Zk

I C3/Zk is k -fold connected

I For any pair of branes, suspend a fundamental string along
each of the k homotopically distinct paths between them

I Each such string gives rise to a state labeled by a 4-vector
of electromagnetic charges (na1

e ,n
a1
m ; na2

e ,n
a2
m ) with respect

to the U(1)a1 × U(1)a2 gauge symmetry associated to the
pair of branes. A string going in the opposite direction,
then gives rise to the a state with a conjugate charge
vector. See figure 1

Figure 1: The fundamental string stretched between a pair of
branes probing an S3-fold



I For each pair of branes we thus get 2k N = 3 vector
multiplets. In a stack of N branes, this gives(N

2

)
× 2k = kN(N − 1) vector multiplets.

I We also have to include strings going from a brane to it
self. We conjecture that when, p = k , the strings going
from a brane to itself along non-contractible paths, do not
give rise to any vector mutliplets and hence do not
contribute to the central charges a, c. This gives rise to
2`− 1, ` = k

p additional vector multiplets for each brane in
the stack. See figure 2

Figure 2: The fundamental string stretched from a brane to itself
in an S3-fold background



I The total number of vector multiplets associated to strings
suspended between the branes in the stack is therefore
given by

ñv = kN(N − 1) + (2`− 1)N

= kN2 + (2`− k − 1)N

I An equivalent way of drawing the above cartoons is by
considering the branes and their images in the S-fold as
shown in figure 3

Figure 3: Strings suspended between branes and their images



I The state corresponding to a (p,q) string ending on the
n-th image of a brane, acquires electromagnetic quantum
numbers (ne,nm) with respect to the corresponding U(1)
gauge symmetry, such that

ne + nmγ = (p + qγ)γn, γk = 1



Rank-2 theories with SUSY enhancement

I Turns out that

G(3,3,2) ≡ S3, Weyl subgroup of SU(3)

G(4,4,2) ≡Weyl subgroup of SO(5)

G(6,6,2) ≡Weyl subgroup of G2

I In each case, the dimension of the CBO corresponding to
the generalized pfaffian is 2

I A-T: When there are exactly two branes probing the S-fold,
there is SUSY enhancement to N = 4 SYM with
SU(3), SO(5) and G2 gauge symmetry respectively

I The spectrum of CBO and central charges also match



Pair of D3-branes probing S3-fold

I A pair of branes probing S3-fold background with no
discrete torsion i.e. p = k = 3

I Dual to 4d N = 4 SU(3) SYM

I The manifest U(1)2 gauge symmetry arising from the
branes is NOT isomorphic to the Cartan subgroup of SU(3)

I Admixture of the SU(3) Cartans and their magnetic
counterparts



I The 6 non-zero roots of SU(3) are dual to

(n1
e,n

1
m; n2

e,n
2
m) = ±(1,0;−1,0), ±(0,1; 1,1), ±(1,1; 0,1)

(a) S3-fold
background

(b) Flat background

I Require that for every state arising from a (p,q)-strings
suspended between the branes in the S3-fold background,
there exists a corresponding dyon of the N = 4 SU(3)
theory.



I This gives us the map between the theory in the S3-fold
background and the flat background

z̃1 = −ω2(z1 − ω2z2)

z̃2 = ω(z1 − ωz2)

ω : ω3 = 1

and

n1
e = ñ1

e − ñ1
m − ñ2

m, n1
m = ñ1

e + ñ2
e − ñ2

m

n2
e = ñ2

e − ñ1
m − ñ2

m, n2
m = ñ1

e + ñ2
e − ñ1

m

(n1
e,n1

m; n2
e,n2

m) and (ñ1
e, ñ1

m; ñ2
e, ñ2

m) are the charge vectors
in the S3-fold and flat background respectively.



String Junctions in S3-fold

I For simplicity, consider the 3-pronged string with prongs
formed by (1,0), (0,1) and (−1,−1) strings respectively

I In the S3-fold background, all three prongs have the same
tension =⇒ angle enclosed between any two prongs is 2π

3

I Let (1,0) prong end of the first brane positioned at z1,
(0,1) prong end on the brane at z2 and the (−1,−1) prong
end on the brane at the image of the second brane, at
z ′2 = ωz2



I only possible if,
1. z1 = −λω2z2, λ > 0 with the vertex of the string junction at
−ω2z2

2. z1 = λω2z2, λ > 0 with the vertex of the string junction at
the origin

(a) (b)

Figure 4: The two possible configurations for the 3-string



I Compute the mass of the above 3-string configurations and
compare it the central charge of the corresponding state

I The mass of 3-string configuration in figure 4a matches
perfectly with its central charge for all λ > 0. 1/3-BPS state
of the N = 3 SUSY manifestly preserved by the
background

I This configuration corresponds to a monopole of the
N = 4 SU(3) SYM. More precisely, to a D1-string
stretched from the brane at origin to the brane at z̃1

I The mass of the 3-string configuration in figure 4b is larger
than its central charge for all λ > 0. Non-BPS state?



I The map between the electromagnetic charges suggests
that this corresponds to a 1/2-BPS magnetic monopole of
the N = 4 SU(3) SYM. Such a state should therefore
transform non-trivially under the action of at most two sets
of supercharges.

I The requirement that it be a non-BPS object of N = 3
set-up suggest that it transforms non-trivially under all the
three sets of N = 3 supercharges

I Contradiction!

I Conjecture: Such 3-string configurations can not exist in
S3-fold background



Walls of Marginal Stability

I Let λ→ 1 in figure 4a

I The (1,0) prong reduces to zero length

I The (−1,−1) and (0,1) prongs can now move
independent of each other



Corresponding phenomenon in Flat background

I λ→ 1 in S3-fold implies z1 → −ω2z2

I The position of the branes in the flat background are then
given by: Origin, z̃1 = 2ωz2 and z̃2 = ωz2

I The D1-string between the branes at Origin and z̃1 can
now break on the brane at z̃2



I In fact, (−1,−1) prong of the 3-string in S-fold corresponds
to a D1-string between the branes at Origin and z̃2

I (0,1)-prong corresponds to a D1-string between the
branes at z̃1 and z̃2

I Wall crossing in S3-fold background gets mapped to
wall-crossing in the flat background realizing N = 4 SU(3)
SYM



String Junctions in N = 4 SU(3) SYM

I 3-string with (1,0), (0,1) and (−1,−1) prongs in flat
background

I Let the (−1,−1) prong terminate on the brane at the
origin, the (0,1) prong terminate on the brane at z̃1 and
(1,0) prong terminate on the brane at z̃2

I 1/4-BPS state of N = 4 SU(3) SYM with

(ñ1
e, ñ

1
m; ñ2

e, ñ
2
m) = (0,1; 1,0)

I This maps to a S3-fold state with charges

(n1
e,n

1
m; n2

e,n
2
m) = (1,1; 0,0)



I This set of charges can only be generated by an F1-string
stretched between the brane at z1 and its image at
z ′1 = ωz1

I Consistent with the earlier assertion that in the absence of
discrete torsion , a fundamental string stretched between a
brane and its image does not give rise to an N = 3 vector
multiplet



Thank you!



I T 2 → 0, N D3-branes transverse to C3/Zk

I Vacuum moduli space of 4d theory: (C3/Zk )N/SN

I For k=2, 4d N = 4 theory with SO(2N + 1), Sp(N) or
SO(2N) gauge symmetry

I Use R-symmetry and gauge transformations to make all
the branes coplanar in the transverse space with positions
zi , i = 1, . . . ,N

I Vector multiplet scalars: 〈ϕ1〉 = diag(z1, . . . , zN) and
〈ϕ2〉 = 〈ϕ3〉 = 0



I Weyl subgroup of Sp(N):

zi ↔ zj , all others fixed,
zi → −zi , all other za fixed

I Gives (C/Z2)N/SN , by rotating the 3 scalars into each
other using R-symmetry, we get (C3/Z2)N/SN

I Weyl subgroup of SO(2N):

zi ↔ zj , all others fixed,
(zi , zj)→ (−zi ,−zj) all other za fixed

I Clearly, will not give the same moduli space

I Resolution: Introduce a Z2 discrete symmetry in the
disconnected part of the gauge symmetry

I The gauge symmetry is O(N) rather than SO(N)



I This action of G(k ,1,N) on zi is given by

zi ↔ zj , all others fixed,

zi → γzi , γ
k = 1 all other za fixed

I Orbifolding CN by G(k ,1,N) gives (C/Zk )N/SN

I R-symmetry implies that the vacuum manifold is
(C3/Zk )N/SN

I Zk twisted S-fold

I Refining the S-fold classification by discrete torsion is
equivalent to realizing a Zp subgroup of G(k ,1,N) as a
discrete gauge group in the disconnected part of the gauge
symmetry



I Gives G(k ,p,N)× Zp

I Action of G(k ,p,N)

zi ↔ zj , all others fixed,

(zi , zj)→ (γzi , γ
−1zj) all other za fixed

zi → γpzi , γ
k = 1 all other za fixed


