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Introduction

Introduction

In this talk I want to relate two quantities

• the entropy of a supersymmetric AdS4 black hole in M theory

• a field theory computation for a partition function in the dual CFT3

The computation uses recent localization techniques that allow to evaluate exact
quantities in supersymmetric gauge theories.
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Introduction

Introduction

One of the success of string theory is the microscopic counting of micro-states for
a class of asymptotically flat black holes entropy [Vafa-Strominger’96]

• The black holes are realized by putting together D-branes, extended objects
that have gauge theories on the world-volume

• The entropy is obtained by counting states in the corresponding gauge theory
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Introduction

Introduction

No similar result for AdS black holes in d ≥ 4. But AdS should be simpler and
related to holography:

• A gravity theory in AdSd+1 is the dual description of a CFTd

The entropy should be related to the counting of states in the dual CFT. People
tried hard for AdS5 black holes (states in N=4 SYM). Still an open problem.
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AdS4 black holes

Prelude

Objects of interest
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AdS4 black holes

AdS4 black holes

The objects of interest are BPS asymptotically AdS4 static black holes

ds2 = −e2U(r)dt2 + e−2U(r)
(
dr2 + V (r)2ds2

S2

)

• supported by magnetic charges on Σg : n = 1
2π

∫
Σ2

g
F

• preserving supersymmetry via an R-symmetry twist

(∇µ − iAµ)ε = ∂µε =⇒ ε = cost

[Cacciatori,Klemm; Gnecchi,Dall’agata; Hristov,Vandoren;Halmagyi;Katmadas]
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AdS4 black holes

AdS4 black holes

The boundary theory is an N = 2 CFT on S2 × S1

ds2 = R2
(
dθ2 + sin2 θ dϕ2

)
+ β2dt2

with a magnetic background for the R- and flavor symmetries:

AR = −1

2
cos θ dϕ = −1

2
ω12 , AF = −nF

2
cos θ dϕ = −nF

2
ω12

In particular AR is equal to the spin connection so that

Dµε = ∂µε+
1

4
ωab
µ γabε− iAR

µε = 0 =⇒ ε = const

This is just a topological twist. [Witten ’88]
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AdS4 black holes

AdS4 black holes and holography

AdS black holes are dual to a topologically twisted CFT on S2 × S1
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The twisted index

Part I

The index for topologically twisted theories in 3d
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The twisted index

The topological twist

Consider a 3d N = 2 gauge theory on S2 × S1 where susy is preserved by a twist
on S2

(∇µ − iAR
µ)ε ≡ ∂µε = 0 ,

∫
S2

FR = 1

[Witten ’88]

Supersymmetry can be preserved by turning on supersymmetric backgrounds for
the flavor symmetry multiplets (AF

µ, σ
F ,DF ):

uF = AF
t + iσF , qF =

∫
S2

F F = iDF

and the path integral becomes a function of a set of magnetic charges qF and
chemical potentials uF . We can also add a refinement for angular momentum.

[Benini-AZ; arXiv 1504.03698]
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The twisted index

A topologically twisted index

We called it the topologically twisted index: a trace over the Hilbert space H of
states on a sphere in the presence of a magnetic background for the R and the
global symmetries,

TrH

(
(−1)F e iJFA

F

e−βH
)

Q2 = H − σF JF

holomorphic in uF

where JF is the generator of the global symmetry.
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The twisted index

The partition function

The path integral on S2 × S1 reduces as usual, by localization, to a matrix model
depending on few zero modes of the gauge multiplet V = (Aµ, σ, λ, λ

†,D)

• A magnetic flux on S2, m = 1
2π

∫
S2 F in the co-root lattice

• A Wilson line At along S1

• The vacuum expectation value σ of the real scalar

The path integral reduces to an r -dimensional contour integral of a meromorphic
form

1

|W |
∑
m∈Γh

∮
C

Zint(u,m) u = At + iσ
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The twisted index

The partition function

• In each sector with gauge flux m we have a meromorphic form

Zint(u,m) = ZclassZ1-loop

ZCS
class = xkm x = e iu

Z chiral
1-loop =

∏
ρ∈R

[ xρ/2

1− xρ

]ρ(m)−q+1

q = R charge

Z gauge
1-loop =

∏
α∈G

(1− xα) (i du)r

• Supersymmetric localization selects a particular contour of integration C
and picks some of the residues of the form Zint(u,m).

[Jeffrey-Kirwan residue - similar to Benini,Eager,Hori,Tachikawa ’13; Hori,Kim,Yi ’14]
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The twisted index

The partition function

Background fluxes n and fugacities y for flavor symmetries are introduced as

xρ → xρ yρf , ρ(m)→ ρ(m) + ρf (n) ,

where ρf is the weight under the flavor group, and

x = e iu , y = e iu
F

, u = At + σ , uF = AF
t + σF

A U(1) topological symmetry with background flux t and fugacity ξ contributes

Z top
class = x t ξm .

The path integral becomes a function of the magnetic charges n, t and chemical
potentials y , ξ.

Alberto Zaffaroni (Milano-Bicocca) AdS4 Black Holes and 3d Gauge Theories KIAS 14 / 39



The twisted index

A Simple Example: SQED

The theory has gauge group U(1) and two chiral Q and Q̃

Z =
∑
m∈Z

∫
dx

2πi x

( x
1
2 y

1
2

1− xy

)m+n( x−
1
2 y

1
2

1− x−1y

)−m+n

U(1)g U(1)A U(1)R
Q 1 1 1

Q̃ −1 1 1

Consistent with duality with three chirals with superpotential XYZ

Z =
( y

1− y2

)2n−1( y−
1
2

1− y−1

)−n+1( y−
1
2

1− y−1

)−n+1
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The twisted index

Dualities and generalizations

Many generalizations

• We can add refinement for angular momentum on S2.

• We can consider higher genus S2 → Σg [also Closset-Kim ’16]

Zint(u,m)→ Zint(u,m) det

(
∂2 logZint

∂u∂m

)g

relation to Gauge/Bethe correspondence [Nekrasov-Shatashvili; Okuda-Yoshida; Gukov-Pei]

We can go up and down in dimension and compute

• amplitudes in gauged linear sigma models for (2, 2) theories in 2d on S2
[also

Cremonesi-Closset-Park ’15]

• an elliptically generalized twisted index for N = 1 theory on S2 × T 2
[also

Closset-Shamir ’13;Nishioka-Yaakov ’14;Yoshida-Honda ’15]

The index adds to and complete the list of existing tools (superconformal indices,
sphere partition functions) for testing dualities: Aharony; Giveon-Kutasov in 3d;
Seiberg in 4d,· · · .

Alberto Zaffaroni (Milano-Bicocca) AdS4 Black Holes and 3d Gauge Theories KIAS 16 / 39



The twisted index

Dualities and generalizations

Many generalizations

• We can add refinement for angular momentum on S2.

• We can consider higher genus S2 → Σg [also Closset-Kim ’16]

Zint(u,m)→ Zint(u,m) det

(
∂2 logZint

∂u∂m

)g

relation to Gauge/Bethe correspondence [Nekrasov-Shatashvili; Okuda-Yoshida; Gukov-Pei]

We can go up and down in dimension and compute

• amplitudes in gauged linear sigma models for (2, 2) theories in 2d on S2
[also

Cremonesi-Closset-Park ’15]

• an elliptically generalized twisted index for N = 1 theory on S2 × T 2
[also

Closset-Shamir ’13;Nishioka-Yaakov ’14;Yoshida-Honda ’15]

The index adds to and complete the list of existing tools (superconformal indices,
sphere partition functions) for testing dualities: Aharony; Giveon-Kutasov in 3d;
Seiberg in 4d,· · · .

Alberto Zaffaroni (Milano-Bicocca) AdS4 Black Holes and 3d Gauge Theories KIAS 16 / 39



The twisted index

Dualities and generalizations

Many generalizations

• We can add refinement for angular momentum on S2.

• We can consider higher genus S2 → Σg [also Closset-Kim ’16]

Zint(u,m)→ Zint(u,m) det

(
∂2 logZint

∂u∂m

)g

relation to Gauge/Bethe correspondence [Nekrasov-Shatashvili; Okuda-Yoshida; Gukov-Pei]

We can go up and down in dimension and compute

• amplitudes in gauged linear sigma models for (2, 2) theories in 2d on S2
[also

Cremonesi-Closset-Park ’15]

• an elliptically generalized twisted index for N = 1 theory on S2 × T 2
[also

Closset-Shamir ’13;Nishioka-Yaakov ’14;Yoshida-Honda ’15]

The index adds to and complete the list of existing tools (superconformal indices,
sphere partition functions) for testing dualities: Aharony; Giveon-Kutasov in 3d;
Seiberg in 4d,· · · .

Alberto Zaffaroni (Milano-Bicocca) AdS4 Black Holes and 3d Gauge Theories KIAS 16 / 39



The twisted index

Dualities and generalizations

Many generalizations

• We can add refinement for angular momentum on S2.

• We can consider higher genus S2 → Σg [also Closset-Kim ’16]

Zint(u,m)→ Zint(u,m) det

(
∂2 logZint

∂u∂m

)g

relation to Gauge/Bethe correspondence [Nekrasov-Shatashvili; Okuda-Yoshida; Gukov-Pei]

We can go up and down in dimension and compute

• amplitudes in gauged linear sigma models for (2, 2) theories in 2d on S2
[also

Cremonesi-Closset-Park ’15]

• an elliptically generalized twisted index for N = 1 theory on S2 × T 2
[also

Closset-Shamir ’13;Nishioka-Yaakov ’14;Yoshida-Honda ’15]

The index adds to and complete the list of existing tools (superconformal indices,
sphere partition functions) for testing dualities: Aharony; Giveon-Kutasov in 3d;
Seiberg in 4d,· · · .

Alberto Zaffaroni (Milano-Bicocca) AdS4 Black Holes and 3d Gauge Theories KIAS 16 / 39



Black Hole Entropy

Part II

Comparison with the black hole entropy
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Black Hole Entropy

Going back to black holes

Consider BPS asymptotically AdS4 static dyonic black holes

ds2 = −e2U(r)dt2 + e−2U(r)
(
dr2 + V (r)2ds2

S2

)
X i = X i (r)

• vacua of N = 2 gauged supergravities arising from M theory on AdS4 × S7

• electric and magnetic charges for U(1)4 ⊂ SO(8)

• preserving supersymmetry via an R-symmetry twist

(∇µ − iAµ)ε = ∂µε =⇒ ε = cost

[Cacciatori,Klemm; Gnecchi,Dall’agata; Hristov,Vandoren;Halmagyi;Katmadas]
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Black Hole Entropy

Going back to black holes
The dual field theory to AdS4 × S7 is known: is the ABJM theory with gauge
group U(N)× U(N)

N
k

N
−k

Ai

Bj

with quartic superpotential

W = A1B1A2B2 − A1B2A2B1

with R and global symmetries

U(1)4 ⊂ SU(2)A × SU(2)B × U(1)B × U(1)R ⊂ SO(8)

.
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Black Hole Entropy

ABJM and the AdS4 black holes

It is then natural to evaluate the topologically twisted index with magnetic
charges p for the R-symmetry and for the global symmetries of the theory

Z twisted
S2×S1 (p,∆) = TrH

(
(−1)F e iJ∆e−βHp

)
∆ = AF

t + iσF

This is the Witten index of the QM obtained by reducing S2 × S1 → S1.

• magnetic charges p are not vanishing at the boundary and appear in the
Hamiltonian

• electric charges q can be introduced using chemical potentials ∆

The BH entropy is related to a Legendre Transform of the index [Benini-Hristov-AZ]

SBH(q, n) ≡ Re I(∆) = Re(logZ (p,∆)− i∆q) ,
dI
d∆

= 0

[similar to Sen’s formalism, OSV, etc]
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Black Hole Entropy

The dual field theory

It is useful to introduce a basis of four R -symmetries Ra, a = 1, 2, 3, 4

R1 R2 R3 R4

A1 2 0 0 0
A2 0 2 0 0
B1 0 0 2 0
B2 0 0 0 2

A basis for the three flavor symmetries is given by Ja = 1
2 (Ra − R4). Magnetic

fluxes na and complex fugacity ya for the symmetries can be introduced. They
satisfy

4∑
a=1

pa = 2 , supersymmetry

4∏
a=1

ya = 1 , invariance of W
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Black Hole Entropy

ABJM twisted index

The ABJM twisted index is

Z =
1

(N!)2

∑
m,m̃∈ZN

∫ N∏
i=1

dxi
2πixi

dx̃i
2πi x̃i

xkmi

i x̃−km̃i

i ×
N∏
i 6=j

(
1− xi

xj

)(
1− x̃i

x̃j

)
×

×
N∏

i,j=1

( √
xi
x̃j
y1

1− xi
x̃j
y1

)mi−m̃j−p1+1( √
xi
x̃j
y2

1− xi
x̃j
y2

)mi−m̃j−p2+1

( √
x̃j
xi
y3

1− x̃j
xi
y3

)m̃j−mi−p3+1( √
x̃j
xi
y4

1− x̃j
xi
y4

)m̃j−mi−p4+1

∏
i yi = 1 ,

∑
pi = 2

where m, m̃ are the gauge magnetic fluxes, yi = e i∆i are fugacities and ni the

magnetic fluxes for the three independent U(1) global symmetries
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Black Hole Entropy

ABJM twisted index
We need to evaluate it in the large N limit. Strategy:

• Re-sum geometric series in m, m̃.

Z =

∫
dxi

2πixi

dx̃i
2πi x̃i

f (xi , x̃i )∏N
j=1(e iBi − 1)

∏N
j=1(e i B̃j − 1)

• Step 1: find the zeros of denominator e iBi = e i B̃j = 1 at large N

• Step 2: evaluate the residues at large N

Z ∼
∑
I

f (x
(0)
i , x̃

(0)
i )

detB

[Benini-Hristov-AZ]

[extended to other models Hosseini-AZ; Hosseini-Mekareeya]
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Black Hole Entropy

The large N limit

Step 1: solve the large N Limit of the algebraic equations e iBi = e i B̃i = 1 giving
the positions of poles

1 = xki

N∏
j=1

(
1 − y3

x̃j
xi

)(
1 − y4

x̃j
xi

)
(

1 − y−1
1

x̃j
xi

)(
1 − y−1

2

x̃j
xi

) = x̃kj

N∏
i=1

(
1 − y3

x̃j
xi

)(
1 − y4

x̃j
xi

)
(

1 − y−1
1

x̃j
xi

)(
1 − y−1

2

x̃j
xi

)

• We dubbed this set of equations Bethe Ansatz Equations because the same
expressions can be reintepreted in the 2d integrability approach
[Nekrasov-Shatashvili; Okuda-Yoshida; Gukov-Pei]

• They can be derived by a BA potential VBA

e iBi = e i B̃i = 1 =⇒ dVBA
dxi

=
VBA
dx̃i

= 0
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Black Hole Entropy

The large N limit

Step 1: the Bethe Ansatz equations can be solved with the ansatz

ui = i
√
Nti + vi , log ũi = i

√
Nti + ṽi (xi = e iui , x̃i = e i ũi )

which has the property of selecting contributions from i ∼ j and makes the
problem local.

ρ(t) =
1

N

di

dt
, δv(t) = vi − ṽi

VBA
iN

3
2

=

∫
dt

[
t ρ(t) δv(t)+ρ(t)2

( ∑
a=3,4

g+

(
δv(t)+∆a

)
−
∑
a=1,2

g−
(
δv(t)−∆a

))]

where g±(u) = u3

6 ∓
π
2 u

2 + π2

3 u.
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Black Hole Entropy

The large N limit

Step 1: the equations can be then explicitly solved

ui = i
√
Nti + vi , log ũi = i

√
Nti + ṽi

ρ(t) δv(t)

and
VBA ∼ N3/2

√
∆1∆2∆3∆4
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Black Hole Entropy

The large N limit

Step 1: it is curious that

• In the large N limit, these auxiliary BAE are the same appearing in a
different localization problem: the path integral on S3

[Hosseini-AZ; arXiv 1604.03122]

VBA(∆) = ZS3 (∆) yi = e i∆i

The same holds for other 3d quivers dual to M theory backgrounds
AdS4 × Y7 (N3/2) and massive type IIA ones (N5/3).
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Black Hole Entropy

The large N limit

Step 2: plug into the partition function. It is crucial to keep into account
exponentially small corrections in tail regions where yixi/x̃i = 1

logZ = N3/2(finite) +
N∑
i=1

log(1− yixi/x̃i ) yixi/x̃i = 1 + e−N
1/2Yi

O(N)

One can by-pass it by using a general simple formula [Hosseini-AZ; arXiv 1604.03122]

logZ = −
∑
a

pa
∂VBA
∂∆a
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Black Hole Entropy

The final result

The Legendre transform of the index is obtained from VBA ∼
√

∆1∆2∆3∆4:

I(∆) =
1

3
N3/2

∑
a

(
−pa

dVBA
d∆a

− i∆aqa

)
ya = e i∆a

logZ

This function can be extremized with respect to the ∆a and

I|crit = BH Entropy(pa, qa)

∆a|crit ∼ X a(rh)

[Benini-Hristov-AZ]
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Black Hole Entropy

AdS4 black holes

• Notice that the explicit expression for the entropy of the AdS4 × S7 black
hole is quite complicated. In the case of purely magnetical black holes with
just

p1 = p2 = p3

is given by

S =

√
−1 + 6p1 − 6(p1)2 + (−1 + 2p1)3/2

√
−1 + 6p1
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Black Hole Entropy

The attractor mechanism

The BPS equations at the horizon imply that the gauge supergravity quantity

R =
(
FΛp

Λ − XΛqΛ

)
, FΛ =

∂F
∂XΛ

with (q, n) electric and magnetic charges, is extremized with respect to the scalar
fields at the horizon and its critical value gives the entropy.

Under XΛ → ∆Λ

F = i
√
X 0X 1X 2X 3 ∼ VBA(∆) =

√
∆1∆2∆3∆4

R =
∑∑

Λ

(
pΛ dF

dXΛ
− qΛX

Λ

)
∼
∑
a

(
−pa

dV
d∆a

− i∆aqa

)
= I(∆)

The previous discussion can be extended to higher genus, again with perfect

agreement [Benini-Hristov-AZ].
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Interpretation and Conclusions

Part III

Interpretation and Conclusions
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Interpretation and Conclusions

A. Statistical ensenble

∆a can be seen as chemical potential in a macro-canonical ensemble defined by
the supersymmetric index

Z = TrH(−1)F e i∆aJae−βH

so that the extremization can be rephrased as the statement that the black hole
has average electric charge

∂

∂∆
logZ ∼< J >

• Similarities with Sen’s entropy formalism based on AdS2.

• Similarly to some asymptotically flat BH, (−1)F does not cause
cancellations at large N. What’s about finite N?
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Interpretation and Conclusions

B. R-symmetry extremization

Recall the cartoon
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Interpretation and Conclusions

B. R-symmetry extremization

The extremization reflects exactly what’s going on in the bulk. Consider no
electric charge, for simplicity. The graviphoton field strength depends on r

Tµν = eK/2XΛFΛ,µν

suggesting that the R-symmetry is different in the IR and indeed

∆i |crit ∼ X i (rh)
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Interpretation and Conclusions

B. R-symmetry extremization

The twisted index depends on ∆i because we are computing the trace

Z (∆) = TrH(−1)F e i∆iJi ≡ TrH(−1)R(∆)

where R(∆) = F + ∆iJi is a possible R-symmetry of the system.

For zero electric charges, the entropy is obtained by extremizing logZ (∆).

Some QFT extremization is at work?
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Interpretation and Conclusions

B. R-symmetry extremization
The extremum logZ (∆̂) is the entropy.

• symmetry enhancement at the horizon AdS2:

QM1 → CFT1

• R(∆̂) is the exact R-symmetry at the superconformal point

• all the BH ground states have R(∆̂) = 0 because of superconformal
invariance (AdS2)

Z (∆̂) = TrH(−1)R(∆̂) =
∑

1 = eentropy

and the extremum is obtained when all states have the same phase (−1)R

• Z is the natural thing to extremize: in even dimensions central charges are
extremized, in odd partition functions...
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Interpretation and Conclusions

Conclusions

The main message of this talk is that you can related the entropy of a class of
AdS4 black holes to a microscopic counting of states.

• first time for AdS black holes in four dimensions

But don’t forget that we also gave a general formula for the topologically twisted
path integral of 2d (2,2), 3d N = 2 and 4d N = 1 theories.

• Efficient quantum field theory tools for testing dualities.

• With many field theory questions/generalizations
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Interpretation and Conclusions

Thank you for the attention !

Alberto Zaffaroni (Milano-Bicocca) AdS4 Black Holes and 3d Gauge Theories KIAS 39 / 39


	Introduction
	AdS4 black holes
	The twisted index
	Black Hole Entropy
	Interpretation and Conclusions

