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1 Introduction

It is believed that confinement in QCD is due to formation of confining

vortex strings.

Nambu, Mandelstam and ’t Hooft 1970’s:

Confinement is a dual Meissner effect upon condensation of

monopoles.

Monopoles condense → electric Abrikosov-Nielsen-Olesen flux tubes are

formed → electric charges are confined

monopoles
Higgs Phase for

charge

anticharge



Hadron spectrum is well described by linear Regge trajectories.

However in all known examples the Regge trajectories show linear

behavior only at asymptotically large spins.

Examples:

• Abrikosov-Nielsen-Olesen (ANO) vortex in weakly coupled

Abelian-Higgs model

• Seiberg-Witten confinement in N = 2 super-Yang-Mills theory

Length of the rotating string:

L2 ∼ J

T

Transverse size of the string is given by the inverse mass of the bulk

fields forming the string:

m ∼ g
√
T



String length ≫ its transverse size:

mL ≫ 1, J ≫ 1

g2

We expect



In the real world Regge trajectories are linear at J ∼ 1

Can we find any example of 4D theory

where confining string remains thin at J ∼ 1?

Thin string condition:

T ≪ m2



2 Thin string regime

How the problem of ”thick” string is seen in the world sheet effective

theory?

ANO string: Nambu-Goto action

SNG = T
∫
d2σ

{√
h+O

(
∂n

mn

)}

where

h = det(∂αx
µ ∂βxµ)

Polchinski-Strominger, 1991: Without higher derivative terms

the world sheet theory is not UV complete



Higher derivative terms at weak coupling, g ≪ 1

O

(
∂n

mn

)
, m ∼ g

√
T

At J ∼ 1 ∂ →
√
T

Thus higher derivative terms

→
(
T

m2

)n

blow up at weak coupling!

Polyakov: string surface become ”crumpled”.



We want to find a regime in which the string remains thin. This means

that the higher derivative corrections should be parametrically small.

The low-energy world-sheet theory should be UV complete. This leads

us to the following necessary conditions to have such a regime:

(i) The low-energy world-sheet theory on the string must be conformally

invariant;

(ii) It must have the critical value of the Virasoro central charge.

• Bosonic string D=26

Superstring D=10

• ANO string in D=4 is not critical



Non-Abelian vortex strings

Non-Abelian strings were suggested in N = 2 U(N) QCD

Hanany, Tong 2003

Auzzi, Bolognesi, Evslin, Konishi, Yung 2003

Shifman Yung 2004

Hanany Tong 2004

ZN Abelian string: Flux directed in the Cartan subalgebra, say for

SO(3) = SU(2)/Z2

flux ∼ τ3

Non-Abelian string :
Orientational zero modes

Rotation of color flux inside SU(N).



S

Idea:

Non-Abelian string has more moduli then ANO string.

It has translational + orientaional moduli

Shifman and Yung, 2015:

Non-Abelian vortex in N = 2 supersymmetric QCD can behave as a

critical superstring

We can fulfill the criticality condition: The solitonic non-Abelian vortex

must have six orientational moduli, which, together with four

translational moduli, will form a ten-dimensional space.



3 Non-Abelian vortex strings

For U(N) gauge group in the bulk we have 2D CP (N − 1) model on the

string

CP(N − 1) == U(1) gauge theory in the strong coupling limit

SCP(N−1) =
∫
d2x

{∣∣∣∇αn
P
∣∣∣
2
+

e2

2

(
|nP |2 − 2β

)2
}

,

where nP are complex fields P = 1, ..., N ,

Condition

|nP |2 = 2β =
4π

g2
,

imposed in the limit e2 → ∞



More flavors ⇒ semilocal non-Abelian string

The orientational moduli described by a complex vector nP (here

P = 1, ..., N),

Ñ = (Nf −N) size moduli are parametrized by a complex vector ρK

(K = N + 1, ..., Nf).

The effective two-dimensional theory is sigma model with the target

space O(−1)
⊕(Nf−N)

CP 1 ( N = (2, 2) weighted CP model )

SWCP =
∫
d2x

{∣∣∣∇αn
P
∣∣∣
2
+
∣∣∣∇̃αρ

K
∣∣∣
2
+

e2

2

(
|nP |2 − |ρK |2 − 2β

)2
}
,

P = 1, ..., N , K = N + 1, ..., Nf .

The fields nP and ρK have charges +1 and −1 with respect to the

auxiliary U(1) gauge field

e2 → ∞



4 From non-Abelian vortices to critical

strings

String theory

S =
T

2

∫
d2σ

√
hhαβ∂αx

µ ∂βxµ

+
∫
d2σ

√
h
{
hαβ

(
∇̃αn̄P ∇β n

P +∇αρ̄K ∇̃β ρ
K
)

+
e2

2

(
|nP |2 − |ρK |2 − 2β

)2
}
+ fermions ,

where hαβ is the world sheet metric. It is independent variable in the

Polyakov formulation.



What about necessary conditions for thin string?

• Conformal invariance

bWCP = N − Ñ = 0 ⇒ N = Ñ , Nf = 2N

• Critical dimension =10

Number of orientational + size degrees of freedom

= 2(N + Ñ − 1) = 2(2N − 1)

4 + 2(2N − 1) = 4 + 6 = 10, for N = 2

Our string is BPS so we have N = (2, 2) supersymmetry on the world

sheet.

For these values of N and Ñ the target space of the weighted CP (2, 2)

model is a non-compact Calabi-Yau manifold studied by Witten and

Vafa, namely conifold.



Given that for non-Abelian vortex low energy world sheet theory is

critical

Conjecture:

Thin string regime

T ≪ m2

is actually satisfied at strong coupling g2c ∼ 1.

m(g) → ∞, g2 → g2c

Higher derivative corrections can be ignored



Strings in the U(N) theories are stable; they cannot be broken. Thus, we

deal with the closed string.

For closed string moving on Calabi-Yau manifold N = (2, 2) world sheet

supersymmetry ensures N = 2 supersymmetry in 4D.

This is expected since we started with 4D QCD with

N = 2 supersymmetry.

Type IIB string is a chiral theory and breaks parity while Type IIA

string theory is left-right symmetric and conserves parity.

Our bulk theory conserves parity ⇒ we have Type IIA superstring



There is self-duality in 4D bulk theory

τ → τD = −1

τ
, τ =

4πi

g2
+

θ4D
2π

,

We conjectured that the string becomes thin at g2 → g2c ∼ 1.

It is natural to expect that g2c = 4π = self-dual point.

m2 → T ×





g2, g2 ≪ 1

∞, g2 → 4π

16π2/g2, g2 ≫ 1

,

In 2D theory on the string self-dual point is β = 0

Conifold develops conical singularity.



5 4D Graviton

Our goal:

Study massless states of closed string propagating on

R4 × Y6, Y6 = conifold

and interpret them as hadrons in 4D N = 2 QCD.

Massless 10D graviton

δGµν = δgµν(x) g6(y), δGµi = Bµ(x) gi(y), δGij = g4(x) δgij(y)

Lichnerowicz equation

(∂µ∂
µ +∆6) g4(x)g6(y) = 0



Expand g6(y) in eighenfunctions

−∆6g6(y) = λ6g6(y), λ6 = mass

Consider massless states λ6 = 0

−∆6g6(y) = 0.

Solutions of this equation for Calabi-Yau manifolds are given by elements

of Dolbeault cohomology H(p,q)(Y6), where (p, q) denotes numbers of

holomorphic and anti-holomorphic indices in the form. The dimensions

of these spaces h(p,q) are called Hodge numbers for a given Y6.



For 4D graviton g6(y) is scalar

−Di∂
ig6 = 0

The only solution is

g6(y) = const

Non-normalizable on non-compact conifold Y6.

No 4D graviton == good news!

We do not have gravity in our 4D N = 2 QCD



6 Kahler form deformations

Consider 4D scalar fields

Lichnerowicz equation on Y6

DkD
kδgij + 2Rikjlδg

kl = 0.

Solutions = Kahler form deformations or complex structure

deformations.

Kahler form deformations = variations of 2D coupling β

D-term condition in weighted CP(2,2) model

|nP |2 − |ρK|2 = β, P = 1, 2, K = 1, 2

Resolved conifold



The effective action for β(x) is

S(β) = T
∫
d4x hβ(∂µβ)

2,

where

hβ =
∫
d6y

√
ggli

(
∂

∂β
gij

)
gjk

(
∂

∂β
gkl

)

Using explicit Calabi-Yau metric on resolved conifold we get

hβ = (4π)3
5

6

∫
dr r = ∞

β - non-normalizable mode



Physical nature of non-normalizable modes

Gukov, Vafa, Witten 1999: Non-normalizable moduli = coupling

constants in 4D

• 4D metric do not fluctuate. It is fixed to be flat. ”Coupling

constants.”

• 2D coupling β is related to 4D coupling g2. Fixed. Non-dynamical.

Another option:

Large yi ⇒ large nP and ρK

Non-normalizable modes are not localized on the string.

Unstable states. Decay into massless perturbative states.

Higgs branch: dimH = 4NÑ = 16.



7 Deformation of the complex structure

D-term condition

|nP |2 − |ρK|2 = β, P = 1, 2, K = 1, 2

Construct U(1) gauge invariant ”mesonic ” variables”

wPK = nPρK .

detwPK = 0

Take β = 0

Complex structure deformation ⇒ Deformed conifold

detwPK = b



b – complex modulos

The effective action for b(x) is

S(β) = T
∫
d4x hb(∂µb)

2,

where

hb =
∫
d6y

√
ggli

(
∂

∂b
gij

)
gjk

(
∂

∂b̄
gkl

)

Using explicit Calabi-Yau metric on deformed conifold we get

hb = (4π)3
4

3
log

T 2L4

|b|

For Type IIA string b is a part of hypermultiplet.

Another complex scalar b̃ comes from 10D 3-form.

S(b) = T
∫
d4x

{
|∂µb|2 + |∂µb̃|2

}
log

T 4L8

|b|2 + |b̃|2



8 Monopole-monopole baryon

Weak coupling

Strings in the U(N) theories are stable; they cannot be broken. Thus, we

deal with the closed string.

Quarks are condensed in the bulk theory. Therefore, monopoles are

confined.

In U(N) gauge theories the confined monopoles are junctions of two

non-Abelian vortex strings.

a b

Monopole-antimonopole meson Monopole-monopole baryon

Stringy states are massive, with mass ∼
√
T .



Strong coupling

Global group of the 4D QCD:

SU(2)× SU(2)× U(1)

U(1) - ”baryonic” symmetry.

b-hypermultiplet: (1, 1, 2)

Logarithmically divergent norm == Marginal stability at β = 0

b-state can decay into massless bi-fundamental (screened) quarks living

on the Higgs branch.



9 Conclusions

• In N = 2 supersymmetric QCD with gauge group U(2) and Nf = 4

quark flavors non-Abelian BPS vortex behaves as a critical

fundamental superstring.

• Massless closed string state b associated with deformations of the

complex structure of the conifold == monopole-monopole baryon.

• Successful tests of our gauge-string duality:

• N = 2 supersymmetry in 4D QCD

• Absence of graviton and unwanted vector fields.

• Massless monopole-monopole baryon is present only at β = 0 and

cannot be continued to weak coupling.


