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Reaction-Diffusion Phenomena 

 Relevance: geochemical systems (precipitation/dissolution, CO2), 

physics, biology (cells) 
 

 Bimolecular reactions: A + B  C 
 

 Treatment via partial differential equation (PDE) and particle 

tracking (PT)  approaches  

 (incorporation of effects of small-scale fluctuations!!!) 
 

 Diffusion mechanism: Fickian, non-Fickian (“anomalous”) 
 

 Reaction term:  

 PDE, Fickian: cAcB, with  a reaction constant 

 PDE, non-Fickian: analytically intractable 
 

 Particle Tracking: Continuous Time Random Walk (CTRW) 

     effectively quantifies anomalous transport and diffusion 
 



A and B diffuse, initially injected at separated points. Production of C (not shown) 

occurs when A, B are within a reaction radius R, which sets the small scale.  
 

Small R enhances interpenetration of A, B.     

Large R (= faster reaction rate) leads to a sharp reaction front  

  → limiting mixing, but due to greater reaction 

Reactions: Averaging Effects 

smaller  R larger  R 



Question: For point injection of reactive species  

A and B, what are patterning dynamics of  

product A + B  C? 

          

    

 

 Concentration profiles for Fickian / non-Fickian diffusion? 

 C may precipitate (immobile) or remain in solution (diffuse) 



Modeling: CTRW Particle Tracking 

 Particle tracking advantage: can study influence of small-scale 

fluctuations in species concentrations on reaction mixing and 

pattern formation (localized, pore-scale nature of reactions) 
 

 Continuous Time Random Walk (CTRW): easily accounts for 

Fickian and non-Fickian diffusion 

 

   

s(N), t(N)  denote location of a particle in space-time after N steps; 

spatial ς(N) and temporal τ(N) random increments assigned to 

particle transitions via a joint probability density ψ(s, t)  

Decoupled form: ψ(s, t)  = p(s) ψ(t)     [independent pdf’s]  
 

      Temporal pdf controls the character of the diffusion 



Spatial: normal distribution for p(s), radially uniform angular component 

Fickian diffusion: 

Non-Fickian diffusion,  

Truncated power law: 

[mean = 1/t] 

0 < β < 2, measure of the degree of anomaly; n normalization constant;  
 

(t) ~ (t/t1)
-1-β  for  t1 « t « t2;  (t) decreases exponentially for t » t2 

Modeling Aspects 

Temporal: 

• Diffusion: D = 2 / (4t); with , t = mean step length, transition time 

• Choose D = 10-9 m2/s  (Fickian: normal p(s), mean  = 10 µm,  = 1) 

• 50,000 particles each of A, B; injection points separated by 100 µm 

• Non-Fickian: β = 0.7, t1 = t (median transition step matched to Fickian), t2 

large  

• Reaction radius: R = 0.1 μm 

• C particles immobile (in cases shown here) 



Concentration Patterns and Profiles 

(a) Representative spatial A and B plume patterns, interacting to produce C (T = 15 s) for Fickian diffusion.  

(b),(c) Spatially integrated (over y axis) concentration profiles of A, B, and C particles, at T = 2 s, for (b) Fickian diffusion         

and (c) non-Fickian diffusion with β = 0.7.  

(d) Ratios of peaks of spatially integrated C profile to A profiles, over time, for Fickian diffusion and non-Fickian diffusion. 



Rate of C Particle Production 

Corresponding decrease in relative concentration of A 

(or B) particles over time, for Fickian and non-Fickian 

diffusion.  

Dashed lines show fits of a stretched 

exponential function, f(t) = exp(−at) 

Fickian: a = 4.54,  = 0.20  

Non-Fickian): a = 6.17,  = 0.08 

[Note: y-axis scale larger for Fickian case] 

Fickian diffusion  

non-Fickian diffusion 



Gaussian and Lorentzian Characterization 

Consider a weighted sum of a Gaussian and a Lorentzian:  

where a, b, c, d, and α are fitting constants. 

 The relative weighting a/b is the key parameter of interest.  

Gaussian distribution: compact 

 

Lorentzian (Cauchy) distribution:  

heavy tailed (“broadening”) 

  

     
From previous figures, we expect C profiles to follow  

a two-time regime evolution.  



C Particle Concentration: Spatial Profiles  

Profiles/curves are normalized by total number of C produced at the given time. Continuous curves 

show best fits of the weighted sum of Gaussian (weight a) and Lorentzian (weight b) distributions.  

Dashed lines (in red) are pure Gaussian fits.  

Ratios of weights a/b (Gaussian/Lorentzian): (a) 2.1, (b) 0.3, (c) 12.8, and (d) 6.0. 

Spatially integrated (over y axis) concentration profiles of (immobile) C particles:  

Fickian:  

(a) T = 2 s 

(b) T = 15 s  

non-Fickian:  

(c) T = 2 s  

(d) T = 15 s  



Fickian:  

Short times (a): profile reflects rapid compact growth in the reaction front 

region (= Gaussian) 
 

 Longer times (b): C production builds up outside the reaction front region and 

the spatial extent of the profile spreads, with heavier tails  
 

 C profile for Fickian diffusion evolves, transiting from a compact Gaussian 

to a heavy tailed Lorentzian 

 

non-Fickian: 

Over same time range, C profile remains Gaussian; a/b also  decreases in 

time, but on a much larger time scale 
 

Difference in reaction patterns: a distinguishing feature of anomalous 

behavior (we do not detect  a/b < 1 out to T = 55 s)  

 

Experiment interpretation: 

Appearance of a Gaussian C profile does not prove that the diffusion process 

is Fickian! 
 

Can detect non-Fickian diffusion by comparing C profile dynamics to 

calculated expectations based on normal diffusion. 

Gaussian and Lorentzian Characterization 



 For mobile C particles (diffusing with same rules as A and B):  

Fickian case: suppresses fluctuations and Gaussian behavior persists 

non-Fickian case: C profiles have equal weights of Gaussian and 

Lorentzian components 
 

 Times, distances show representative behaviors; larger and smaller 

(200 and 50 μm) distances between A and B injection points yield 

similar behaviors, with appropriate scaling 
 

 Initial A and B vertical strip distribution yield the same C particle 

distribution behavior; the point or strip injection is not relevant           

 dynamics are basic phenomena which account for growth of 

concentration fluctuations, as the species numbers decline in the 

reaction front 

Additional Findings 



Conclusions 

 Mixing zone dynamics of a reaction product C during diffusion of 

two species (A and B) are examined, using a 2D particle 

tracking model for the reaction A + B → C, allowing for both 

Fickian and non-Fickian transitions.  
 

 Basic C pattern dynamics – temporal evolution of the spatial 

profile and the temporal C production – are similar for both 

modes of diffusion. But the distinctive time scale for the non-

Fickian case is very much larger. 
  

 For immobile C, the spatial profile pattern is a broadening 

(Gaussian) reaction front evolving to a concentration-fluctuation 

dominated (Lorentzian) shape. The temporal C production is fit 

by a stretched exponential.  
 

 Analyzing experiments: appearance of Gaussian C profiles 

does not prove that the diffusion process is Fickian. 

Berkowitz et al., Phys. Rev. E 2013  
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“Classical” Advection-Dispersion Equation: 

Gee et al. 2006 



Meter scale uniform sand: non-Fickian behavior 
 

Even "homogeneous" systems are "anomalous"… 

Flow direction  

“Expected”  

Fickian: 
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“Actual”  

non-Fickian: 



Probabilistic Approach: Continuous Time Random Walk 

 Transport: sequence of particle transitions (in space and time) 

  ψ(s,t): Probability density function (pdf) 

 Account for rare events: non-Fickian transport 

Continuum approach: CTRW- PDE Particle tracking: CTRW- PT 

Generalized CTRW transport equation:  

Power 

low 

tailing 

ADRE 

solution 

CTRW-PT 

solution 

Edery et al. 2009 Dentz et al. 2004 

CTRW: 

PDE vs PT 

Rubin et al. 2012 
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  ≡ t/t1, 2 ≡ t2/t1,  0 < β < 2  

  

n = normalization constant 

 

(t) ~ τ -1-β   for  1 « τ « τ2     
 

(t) decreases exponentially  

                 for τ » τ2 

“drop-off” 

algebraic tail 

Note: (1) effect of cutoff time t2, (2) algebraic tail,  

(3) drop-off (transition to Fickian) 

Evidence for power law pdf: theoretical analyses, semi-analytical analyses of permeability/flow fields, 

numerical simulations of fluid flow / tracer transport, fits to measured tracer breakthrough curves 

Transit time distribution ψ(t): truncated power law 

(non-Fickian to Fickian evolution) 



Non-Fickian transport 

in heterogeneous 

porous media 

Levy and Berkowitz, J Contam Hydrol 2003 









1

1

2

1 )/1(

)/exp(
)(

tt

tt

t

n
t

 ),(~:),(~)(
~

)(),(~
o ucucuMcucu sDsvss  



[ constant , v/D, v/v, t1, t2; with t1 = s/v and s  15% average grain size ] 

Plume Evolution: (t) sampled at different residence times 

Three experiments: flow rates 

11, 74, 175 mL/min  

Truncated power law (t):  

constant exponent, parameter ratios for all curves 

Berkowitz and Scher, AWR 2009 



Natural Heterogeneity: Transport Patterns “Revisited” 

Spatial map of full K field;  

ln(K) variance 2=5 

 

Statistically homogeneous    

and isotropic, multivariate 

Gaussian field 

 

Color bar in ln(K) scale 

As above; critical path 

analysis (CPA); ln(K) < -0.63  



Transport Patterns “Revisited”: CTRW and ADE 

Ensemble (100 realizations) 

breakthrough curves (points) 

for three ln(K) variances and 

corresponding CTRW fits. 

  

(a) Domain boundary (x=300) 

(b) Domain midpoint (x=150) 

 

Also shown: ADE for 2=5 

(v=3.4; but average fluid 

velocity = 5.6)  

 

Oscillations in tails caused by 

formation of limited set of 

preferential channels, leading 

to variations in the distribution 

of small numbers of particles 

arriving at outlet.  



Transport Patterns – Particle Interrogation of Domain 

Upper: Particle paths (for 2=5).   Note the formation of very limited set of preferential channels 

Lower: Preferential paths in the experiment 

Color bar in log number of 

particles visiting each cell 

Upper: Particle paths (for 2=5).   Note the formation of very limited set of preferential channels 

Lower: Preferential particle paths (cells with visitation of >100 particles = 0.1% of all particles in domain)  



Upper: Spatial map of full K field; ln(K) variance 2=5. Critical path analysis (CPA); ln(K) < -0.63  

Lower: Low conductivity transition cells (below CPA) 

Color bar in ln(K) scale 

Note: Inadequacy of Critical 

Path Analysis (based only on 

structure) 

 

 

 

Cells with Low Conductivity 

Transitions (LCTs) of particles 

are a major, controlling factor! 

 

Effect of K (or v) correlations: 

embedded in preferential paths, 

but they do not “predict” the low 

conductivity transitions. 

Natural Heterogeneity: Critical Path Analysis / Percolation 



Natural Heterogeneity – Effective Conductivities  

Open circles: normalized by the number of cells, for spatial map of full K field; 2=5; mean ln(K)=0.26, 

skewness 0.03 

Filled squares: preferential particle paths, weighted and normalized by number of particles visiting in 

each cell, {wK}; weighted mean ln(K)=1.43, skewness 3.89     Bars in red indicate frequency of LCTs.  

Conductivity Histograms 
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Natural Heterogeneity – CTRW Transport Description 

Ensemble particle-weighted conductivity histogram (2=5, 100 realizations); based on conductivity 

histrogram, transforming to particle transition time distribution within cells, representing (t) vs. t.  

Solid curve shows the TPL with same values for breakthrough curve shown in inset.  

Arrow marks t1, the onset of the power law region at  t1 < t < t2, corresponding to ln(K) < -1. 



From conductivity histogram: determine an average head gradient over each cell 

(weighted by relative number of visiting particles). Then determine average residence 

times in these cells, for each K bin, with Darcy’s law: 

Natural Heterogeneity – Connecting  

Conductivity and Transport 

 obtain a frequency (weighted by relative number of visiting particles) of particle residence 

times in all domain cells 
 

RESULT: statistical analysis of particle paths, which renders, the 

weighted K distribution (previous slide), leads directly to the CTRW (t) !! 
 

Functional form of weighted time distribution: 

Equate log derivative to that of  TPL to develop an analytical expression for   in 

terms of the weighted K histogram parameters: 



• ‘‘Origin’’ of anomalous transport:  we develop a direct connection between CTRW 

parameters and the randomly heterogeneous hydraulic conductivity field. 

 

• Transport cannot be explained solely by the structural knowledge of the disordered 

medium; dynamic/flow controls are critical factors. Low conductivity transition zones largely 

determine the preferential flow paths. 

 

• A basic determinant of the distribution of local transition times, which defines the transition 

time pdf used in the CTRW description, is a conductivity histogram weighted by the particle 

flux. Agreement between simulations, pdf parameters, and matches to BTCs is convincing. 

 

• A quantitative relationship between the power law exponent  and the statistics of the 

underlying (correlated) hydraulic conductivity field has been determined. 

 

• Models based on critical path analysis and percolation theory are not applicable: the power 

law region of the transition times that controls the anomalous transport behavior lies below 

the critical path threshold. 

 

• Use of advection-dispersion equation: particle plume convergence to this model is not due 

to ‘‘homogenization’’ of the plume sampling in the domain, but rather to focusing of flow in 

a limited number of relatively uniform preferential pathways. 

Conclusions 

Edery, Guadagnini, Scher, Berkowitz (WRR, 2014) 




