2015 KIAS Workshop on Anomalous Dynamics in Biological Systems

Dynamic Regulation of Mismatch Excision in DNA Mismatch Repair

Physics & IBIO

Jong-Bong Lee

During DNA Replication

(Part et al. unpublished)

Error rate ~ 10⁻⁷ /bp

Deficient DNA mismatch repair function

• Error rate of DNA polymerase: I error per 10⁷ bp

DNA mismatch repair increases the fidelity of DNA replication up to 1,000 times.

Error rate ~ 10⁻¹⁰/bp

DNA Mismatch Repair

by UvrD/Exo and DNA Polymerase

MutS

• ATP binding sites EcMutS (Homodimer) HsMsh2-HsMsh6 (Heterodimer) 90° 90° Msh2 Msh6 G/T Mismatched DNA G/T Mismatched DNA 4 nm 9 X 7 X I2 nm

Footprint: 24 bp

Lamers et al. Nature (2001) Warren et al. Mol Cell (2007)

Searching MutS (No ATP)

Polarization of Cy3-MutS

Footprint of MutS: ~ 24 bp

Searching a mismatch by facilitated diffusion

Helical Diffusion along DNA backbone

In the presence of ATP (ATP γ S)

30 bp matched DNA

30 bp mismatched DNA

- ✓ MutS scans duplex DNA in a continuous contact with the DNA backbone to find a mismatch.
- \checkmark ATP-bound MutS moves away from the mismatch in a non-helical diffusion.

Crystal Structure of E. coli ATP-bound MutS

Groothuiaen et al. eLife 2015

Acknowledgements

Current Lab members

Yongmoon Jeon Dae-Hyung Kim Min-Hyeok Jang Jungsik Oh Ranggeun Lee Byoungjoo Park Jaeho Oh Sohyun Ku

Dr. Cherlhyun Jeong (KIST) Dr. Won-Ki Cho (MIT) In collaboration with

Prof. Richard Fishel Ohio State University

Dr. Juana Martín-López

Supported by National Research Foundation