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BHH - dimers and trimers

The Bose-Hubbard Hamiltonian (BHH):

HBHH =
U

2

M∑
j=1

a†ja
†
jajaj −

K

2

M∑
j=1

(
a†j+1aj + a†jaj+1

)
u ≡

NU

K

Dimer (M=2): minimal BHH; Bosonic Josephson junction; Pendulum physics [1,5].

Driven dimer: Landau-Zener dynamics [2], Kapitza effect [3], Zeno effect [4], Standard-map physics [5].

Trimer (M=3): minimal model for chaos; Coupled pendula physics.

Triangular trimer: minimal model with topology, Superfluidity [6], Stirring [7].

Coupled trimers: minimal model for mesoscopic thermalization [8,9].
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Scope

• The recent experimental realization of confining potentials with toroidal shapes [1]

has opened a new arena of studying superfluidity in low dimensional circuits.

HBHH =
U

2

M∑
j=1

a†ja
†
jajaj −

K

2

M∑
j=1

(
a†j+1aj + a†jaj+1

)
• The hallmark of superfluidity is a metastable non-equilibrium steady-state current.

• The traditional paradigm is based on the Landau criterion and the BdG stability analysis [3-5].

• We challenge the traditional paradigm and highlight the role of chaos in the analysis.
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The Model (non-rotating ring)

A Bose-Hubbard system with M sites and N bosons:

H =

M∑
j=1

[
U

2
a†ja
†
jajaj −

K

2

(
a†j+1aj + a†jaj+1

)]

In a semi-classical framework:

aj =
√
nj eiϕj , [ϕj ,ni] = iδij

z = (ϕ1, · · · ,ϕM , n1, · · · ,nM )

This is like M coupled oscillators with H = H(z)

H(z) =

M∑
j=1

[
U

2
n2
j −K

√
nj+1nj cos (ϕj+1−ϕj)

]

The dynamics is generated by the Hamilton equation:

ż = J∂H , J =

 0 I

−I 0


(DNLS)

Classically there is a single

dimensionless parameter:

u =
NU

K

Rescaling coordinates:

ñ = n/N

[ϕj , ñi] = i~δij

~ =
1

N



The model (rotating ring)

In the rotating reference frame we have a Coriolis force,

which is like magntic field B = 2mΩ. Hence is is like having flux

Φ = 2πR2m Ω =
M2

2π

(
m

meff

)
Ω

K

Note: there are optional experimental realizations.

H =

M∑
j=1

[
U

2
a†ja
†
jajaj −

K

2

(
ei(Φ/M)a†j+1aj + e−i(Φ/M)a†jaj+1

)]

Summary of model parameters:

The ”classical” dimensionless parameters of the DNLS are u and Φ.

The mumber of particles N is the ”quantum” paramater.

The system has effectively d = M−1 degrees of freedom.

M = 2 Bosonic Josephson junction (Integrable)

M = 3 Minimal circuit (mixed chaotic phase-space)

M > 3 High dimensional chaos (Arnold diffusion)

M →∞ Continuous ring (Integrable)



Types of meta-stability

• (traditional) Energetic metastability, aka Landau criterion.

• (traditional) Dynamical metastability via linear stability analysis, aka BdG.

• Strict dynamical metastability (KAM, applies if d = 2)

• Quasi dynamical metastability (might be the case for d > 2)

In the absence of constants of motion, a generic system with d > 2 degrees-of-freedom

is always ergodic. But the equilibration might be an extremely slow process.

Quasi stability might become Quantum stability due to dynamical localization.

The breaktime is determined from the breakdown of the QCC requirement:

t � tH [Ω(t)] ; t∗

Implication: violation of the Eigenstate Thermalization Hypothesis.



The many-body spectrum

We characterize each eigenstate |α〉 of the BHH by (Iα, Eα) and colorcode by Mα

The expected location of a vortex state, and the maximum current state, are encircled by © and ©
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|m〉 =
(
ã†m

)N
|0〉 m = 1...M

Im = N ×
(
K

M

)
sin

(
1

M
(2πm− Φ)

)
Iα ≡ −

〈
∂H
∂Φ

〉
α

ρij ≡
1

N
〈a†jai〉α = reduced probability matrix

Mα ≡ [trace(ρ2)]−1 ∈ [1,M ]

Mα = 1 for coherent state (condensation).

Mα ∼M for maximally fragmented or chaotic state.

Constructing the regime diagram:

For every (Φ, u) value we plot max{Iα}

Φ/π

u
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Regime diagram

The I of the maximum current state is imaged as a function of (Φ, u)

solid lines = energetic stability borders (Landau); dashed lines = dynamical stability borders (BdG)
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The traditional paradigm associates vortex states with stationary fixed-points

in phase space. Consequently the Landau criterion, and more generally the

Bogoliubov de Gennes linear-stability-analysis, are conventionally used to de-

termine the viability of superfluidity.

• We challenge the application of the traditional paradigm to low-dimensional circuits.

• We highlight the role of chaos in the “stability analysis”.

• We identify novel types of states that can support superfluidity.



Stability analysis of the excited vortex state

The dynamics is generated by the Hamilton equation: ż = J∂H(z) (DNLS)

Coherent states are supported by fixed-points of the classical Hamiltonian: ∂H(z) = 0

Technical note: The cyclic degree of freedom has to be separated (N is constant of motion).

Linear stability analysis (Bogoliubov de Gennes): ż = JAz where Aν,µ = ∂ν∂µH

Energetic stability: Energy local extremal points (Landau criterion) – based on A diagonalization

Dynamical stability: Zero Lyapunov exponents (real BdG frequencies) – based on JA diagonalization

Schematic illustration of the energy landscape E = H(z)

E

dynamically

stable state

z

chaotic
pond

z



Stability of the ”ground” vortex state

(digression)

The ground-state vortex can destabilize as well:

Quantum transition: Mott transition for u > N2/M

Classical transition: Self-trapping for u > something

Note: upper state is like ground state for U 7→ −U
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Beyond the traditional view

• Dynamical instability of a vortex state does imply that superfluidity is diminished.

Kolmogorov-Arnold-Moser (KAM) structures ; Chaotic and irregular vortex states.

• Dynamical stability of a vortex state does not imply in general strict stability.

For M > 3 the KAM tori do not block transport (Arnold diffusion).

• One should take into account quantum fluctuations (uncertainty width of a coherent state).

Stability is required within a Plank cell around the fixed-point. Regime-diagram is ~ dependent.

chaotic
pond

z



Regime Diagram for M = 3

A stable vortex state carries current:

Im =
N

M
K sin

(
1

M
(2πm−Φ)

)
Here: M=3; m=1; Im ∼ N

M
K

Energetic stability (solid line):

u >
3− 12 sin2

(
Φ
3
− π

6

)
4 sin

(
Φ
3
− π

6

)
Dynamical instability (dashed line):

u >
9

4
sin

(
π

6
−

Φ

3

)
& Φ <

π

2

Swap transition (dotted line):

u = 18 sin

(
π

6
−

Φ

3

)

I of maximal current state:

Φ/π
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Energetic vs Dynamical stability

Poincare section n2 = n3 at the vortex energy.

(1) Energetic stability; (2) Dynamical stability.

red trajectories = large positive current

blue trajectories = large negative current

The Vortex fixed-points are located along the symmetry axis:

n1 = n2 = · · · = N/M, ϕi − ϕi−1 =

(
2π

M

)
m

Φ/π

u
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Swap transition

In (3) and (4) dynamical stability is lost ; chaotic motion.

But the chaotic trajectory is confined within a chaotic pond;

uni-directional chaotic motion; superfluidity persists!

At the separatrix swap-transition superfluidity diminishes.

Swap transition (dotted line):

u = 18 sin

(
π

6
−

Φ

3

)
(non-linear resonance) Φ/π

u
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Phase space tomography (I)
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Phase space tomography (II)
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Representative Wavefunctions (M = 3)

We use standard Fock basis representation.

Images of |ψ(n)|2 = |〈n|Eα〉|2

(a) Regular coherent vortex state.

(b) Self-trapped state (“bright soliton”).

(c) Typical state in the chaotic sea.
−1 0 1
0

0.5

1

n2−n1

n3

−1 0 1
0

0.5

1

n2−n1

n3

−1 0 1
0

0.5

1

n2−n1

n3

(a) (b) (c)

Launching trajectories at the vicinity of the vortex fixed-point we encounter 3 possibilities.

A trajectories might be:

• locked at the vortex fixed point

(regular vortex state (a))

• chaotic but unidirectional

(chaotic vortex state (d))

• quasi-periodic in phase-space

(breathing vortex state (e))

Panels of (d) and (e):

Left: quantum eigenstates.

Right: underlying classical dynamics.
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What about M = 4 ?

n2

n4

n1

n3

n3

n2

n4

n1

Regular vortex state Irregular vortex state

But there is a dramatic difference compared to M = 3



”Large” rings (M > 3)

M = 4 , N = 16 M = 5 , N = 11
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• Energy surface is 2d− 1 dimensional (reminder: d = M − 1)

• KAM tori are d dimensional

• Arnold diffusion: the KAM tori in phase space are not effective in blocking the transport on the

energy shell if d > 2.

• As u becomes larger this non-linear leakage effect is enhanced, stability of the motion is

deteriorated, and the current is diminished.

• Due to the finite uncertainty width of the vortex state superfluidity can diminish even in the

energetically stable region.



Semiclassical reproduction of the regime diagram M = 4

We launch a Gaussian cloud of trajectories that has an uncertainty width that corresponds to N .

Then we calculate the cloud-averaged current I(t).

Sufficient criterion for quasi-stability is I(tH) & (1/2)I(0) where tH ∝ Nd (Heisenberg time)

In practice: the fraction of trajectories that escape is used as a measure for the stability.
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Results are displayed for clouds that have uncertainty width ∆ϕ ∼ π/2 (left) and ∆ϕ ∼ π/4 (right).



Indication for an underlying multi-fractal structure

The escape time of classical trajectories: section along the cloud.
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Concluding Remarks regarding superfluidity

• The essence of superfluidity is the possi-

bility to witness metastable vortex states

(”dissipationless current”)

• The standard energetic stability analysis

implies that vortex states whose rotation

velocity is less than a critical velocity are

metastable (”Landau criterion”)

• We challenge the application of the tra-

ditional BdG analysis to low-dimensional

superfluid circuits.

• We have highlighted a novel type of su-

perfluidity that is supported by irregular

or chaotic or breathing vortex states.

unstable vortex state

stable vortex state fragmented states

u ~ 0
u > 0

αE excitations
one−particle

u < 0
bright soliton band

I/N

• We emphasize that the role of chaos should be recognized in the analysis of superfluidity.


