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Working on…

• Nonequilibrium statistical physics

• Quantum information theory

In particular, thermodynamics of information 

Review:  J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa,
Nature Physics 11, 131-139 (2015).
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Nonequilibrium Statistical Mechanics

Linear response 
theory

Nonequilibrium
Equilibrium

Universal thermodynamic law far from equilibrium?

Ryogo KuboLars Onsager



A New Field:
Thermodynamics in the Fluctuating World

Thermodynamics of small systems with large heat bath(s)

 Second law W F 

 Nonlinear & nonequilibrium relations

Thermodynamic quantities are fluctuating!



Information Thermodynamics

Information processing at the level of thermal fluctuations

 Foundation of the second law of thermodynamics

 Application to nanomachines and nanodevices

System Demon

Information

Feedback
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Conventional Second Law of Thermodynamics

FW 

With a cycle, 0F holds, and therefore

0W (impossibility of any perpetual motion of 
the second kind)

Heat bath 
(temperature T )

Work W

(the equality is achieved in the quasi-static process)

Free-energy 
change ΔF



Second Law in Small Systems

W becomes stochastic due to thermal fluctuations

FW 
can occur with a small probability
(stochastic violation of the second law)

with a large heat bath

Drive the system from equilibrium

Work W

Free-energy 
change ΔF

FW  on average

W

P(W)

WΔF



Fluctuation-Dissipation Theorem (FDT)

 22

2
WWFW 



In the linear response (or Gaussian) regime

Dissipative work Work fluctuation

Right-hand side is obviously nonnegative Second law

Beyond the linear response theory?



Jarzynski Equality (1997)

( ) 1W Fe   

Second law can be expressed by an equality
by including the higher-order fluctuations!

C. Jarzynski, PRL 78, 2690 (1997)

Reproduce Second Law and FDT



Second Law from Jarzynski Equality 

Concavity of exponential function (Jensen’s inequality)

XX ee 

)()( FWFW ee
 



1 (Jarzynski equality)

0 FW
Second law

for arbitrary  X

X

Xe
Xe

X
e



FDT from Jarzynski Equality
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Cumulant expansion:

(Exact if the work distribution is Gaussian)

0
(Jarzynski equality)

)(
2

22 WWFW 




Free-energy Estimation by the Jarzynski Equality

Quasi-static process:
revWF 

FW ee   Finite time process:

WeF   ln1

Jarzynski equality

Three estimators of the free-energy difference

WeW   ln: 1

JE
: expected to be exact

 22

FD
2

: WWWW 
 : up to the second cumulant

(exact for the Gaussian distribution)

WW :A
: not good in general



Experiment

Science 296, 1832-1835 (2002)



Crooks’ Fluctuation Theorem (FT) (1)

Characterize the work distribution more quantitatively

Consider “forward experiment” VS “backward experiment”

Forward: push (folding)

Backward: stretch (unfolding)

For example…
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Work distribution in 
backward experiment

Work distribution in 
forward experiment

Dissipative work in 
forward experiment

The probability of the second-law violation is exponentially small

But observable in small systems

Crooks’ Fluctuation Theorem (FT) (2)

Collin et al, Nature  
437, 231–234 (2005) 

G. E. Crooks, Phys. Rev. E 60, 2721 (1999)



Jarzynski equality from Crooks’ FT
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Summary: Hierarchy of Nonequilibrium Relations
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1)(  FWe 

0 FW

Crooks’ fluctuation theorem

Jarzynski equality

Second law



Torward Quantum

• Fundamental structure of nonequilibrium relations is very 
similar to the classical case; 
But some difficulties to introduce the concept of work

Classical: Work can be measured by continuously monitoring the system

Quantum: Such continuous monitoring will make the wave function collapse, 
and the dynamics of the system will be drastically changed.

How to observe the work in the quantum regime 
without changing the dynamics of the system?



Several Approaches
• Unitary formalism: “Tasaki-Crooks” fluctuation theorem

• Hal Tasaki, arXiv:cond-mat/0009244

• J. Kurchan, arXiv:cond-mat/0007360

• M. Esposito, U. Harbola & S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009)

– Two projection method
• Experiment: S. An et al., arXiv:1409.4485

– Interferometer method
• Theory: R. Dorner et al., Phys. Rev. Lett. 110, 230601 (2013)

• Experiment: T. B. Batalhao et al., Phys. Rev. Lett. 113, 140601 (2014)

• Quantum trajectory formalism
• J. M. Horowitz & J. M. R. Parrondo, New J. Phys. 15, 085028 (2013)

• F. W. J. Hekking & J. P. Pekola, Phys. Rev. Lett. 111, 093602 (2013) 



Two Projection Method

Main idea:

Consider a unitary system (without any heat bath)

Projection measurements of the energy in the initial 
and final steps

Work is just the energy difference if EEW inifin 

Stochastic due to thermal and quantum fluctuations



Simplest Setup (1)

Initial state: Canonical distribution )(

ini
iniini HF

e



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Projection measurement of the initial Hamiltonian

(without destroying the initial state)

ρini: initial density operator      Hini: initial Hamiltonian


i

ii

iEH iniini
Spectrum decomposition:

Outcome: (one of the eigenvalues of Hini )
iEini



Simplest Setup (2)

Unitary evolution with external driving
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
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Projection measurement of the final Hamiltonian


f

ff

fEH finfin
Spectrum decomposition:

)0(ini HH  )(fin HH 

(Hamiltonian is time-dependent)

†UU inifin  

Outcome: 
fEfin (one of the eigenvalues of Hfin )



Quantum Jarzynski Equality

Work: if EEW inifin  Just the energy conservation: 
no heat bath outside
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Free energy:



Quantum Jarzynski Equality: Proof
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