Plan of Lecture

- Part 0:

General introduction

- Part 1:

Fluctuation theorems

- Part 2:

Classical/quantum measurement and information

- Part 3:

Information thermodynamics

Part 2:

Classical/quantum measurement and information

- Shannon information
- Mutual information
- Quantum measurement
- Quantum mutual information
- QC-mutual information

Part 2:

Classical/quantum measurement and information

- Shannon information
- Mutual information
- Quantum measurement
- Quantum mutual information
- QC-mutual information

Shannon Information (1)

Information content with event $k: \ln \frac{1}{p_{k}}$
Average
Shannon information: $\quad H=\sum_{k} p_{k} \ln \frac{1}{p_{k}}$

Shannon Information (2)

N : the number of k 's

$$
H=-\sum_{k} p_{k} \ln p_{k}
$$

Ex. Binary system " 0 ": probability p " 1 ": probability $1-p$

$$
\begin{aligned}
H & =-p \ln p-(1-p) \ln (1-p) \\
0 & \leq H \leq \ln 2
\end{aligned}
$$

Characterizes the randomness of the system

Part 2:

Classical/quantum measurement and information

- Shannon information
- Mutual information
- Quantum measurement
- Quantum mutual information
- QC-mutual information

Mutual Information (1)

System S

Memory M

Measurement or communication
(with stochastic error, in general)
$p(s)$: distribution of the measured state of S
$p(m)$: distribution of the outcome in M $p(m \mid s)$: conditional probability characterizing the error $p(s, m)=p(m \mid S) p(s):$ joint distribution of S and M

Ex. Binary symmetric channel

Mutual Information (2)

$$
\begin{aligned}
& I(S: M) \equiv H(S)+H(M)-H(S M) \\
& \quad=\sum_{s m} p(s, m) \ln \frac{p(s, m)}{p(s) p(m)}
\end{aligned}
$$

$p(s)$: distribution of the measured state of S $p(m)$: distribution of the outcome in M
 $p(m \mid s)$: conditional probability characterizing the error $p(s, m)=p(m \mid s) p(s)$: joint distribution of S and M

$$
H(S)=-\sum_{s} p(s) \ln p(s) \quad H(M)=-\sum_{m} p(m) \ln p(m) \quad H(S M)=-\sum_{s m} p(s, m) \ln p(s, m)
$$

Mutual Information (3)

$$
I(S: M) \equiv H(S)+H(M)-H(S M)
$$

Correlation between S and M

$0 \leq I \leq H$ (M)

No information

No error

Ex. Binary symmetric channel

$$
I=\ln 2+\varepsilon \ln \varepsilon+(1-\varepsilon) \ln (1-\varepsilon)
$$

Mutual Information: Summary

Measurement with stochastic errors

$$
I(S: M) \equiv H(S)+H(M)-H(S M)
$$

$$
0 \leq I \leq H(M)
$$

No information
Error-free

Shannon information: Randomness of the system

Mutual information:
Correlation between the system and the memory

Part 2:

Classical/quantum measurement and information

- Shannon information
- Mutual information
- Quantum measurement
- Quantum mutual information
- QC-mutual information

Quantum State

Density operator: $\quad \rho=\sum_{i} q_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|$

Statistical mixture of state vector $\left|\varphi_{i}\right\rangle$ with probability q_{i}

Non-negativity: $\rho \geq 0$
Unity: $\operatorname{tr}[\rho]=\sum_{i} q_{i}=1$

Quantum Measurement

Projection measurement (error-free)

Observable $\quad A=\sum_{k} \alpha_{k} P_{k}$
Measurement outcome k
Projection operators $\left\{P_{k}\right\}$

$$
\sum_{k} P_{k}=I
$$

Probability $\quad p_{k}=\operatorname{tr}\left[\rho P_{k}\right]$

Indirect measurement (with error)

Measurement outcome k

POVM $\left\{E_{k}\right\}$ (positive operators)

$$
\sum_{k} E_{k}=I
$$

Probability $\quad p_{k}=\operatorname{tr}\left[\rho E_{k}\right]$

Projection Measurement

Projection measurement on density operator $\rho=\sum_{i} q_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|$
Observable $\quad A=\sum_{k} \alpha_{k} P_{k} \quad P_{k}$: projection operator
Probability of outcome k
Born's rule $\quad p_{k}=\sum_{i} q_{i}\left\langle\varphi_{i}\right| P_{k}\left|\varphi_{i}\right\rangle=\operatorname{tr}\left[P_{k} \rho\right]$
Post-measurement state with outcome k

$$
\text { Projection postulate } \frac{1}{p_{k}} P_{k} \rho P_{k}
$$

Schematic of Indirect Measurement

Projection measurement on the probe

$$
\left.P_{k}=\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right| \quad\left\{\psi_{k}\right\rangle\right\}: \text { orthonormal basis }
$$

Probability of Indirect Measurement

Probability of outcome k :

$$
\begin{aligned}
p_{k} & =\operatorname{tr}_{\mathrm{SP}}\left[P_{k} U \rho \otimes|\psi\rangle\langle\psi| U^{\dagger} P_{k}\right] \\
& =\operatorname{tr}_{\mathrm{S}}\left[\left\langle\psi_{k}\right| U \rho \otimes|\psi\rangle\langle\psi| U^{\dagger}\left|\psi_{k}\right\rangle\right] \\
& =\operatorname{tr}_{\mathrm{S}}\left[\left\langle\psi_{k}\right| U|\psi\rangle \rho\langle\psi| U^{\dagger}\left|\psi_{k}\right\rangle\right] \\
& =\operatorname{tr}_{\mathrm{S}}\left[M_{k} \rho M_{k}^{\dagger}\right] \\
& =\operatorname{tr}_{\mathrm{S}}\left[E_{k} \rho\right]
\end{aligned}
$$

$$
\sum_{k} p_{k}=1 \Longleftrightarrow \sum_{k} E_{k}=I_{d}
$$

POVM:

$$
E_{k}=M_{k}^{\dagger} M_{k}
$$

Kraus operator:

$$
M_{k} \equiv\left\langle\psi_{k}\right| U|\psi\rangle
$$

Back-action of Indirect Measurement

Post-measurement state with outcome k :

$$
\begin{aligned}
\rho_{k} & =\frac{1}{p_{k}} \operatorname{tr}_{\mathrm{P}}\left[P_{k} U \rho \otimes|\psi\rangle\langle\psi| U^{\dagger} P_{k}\right] \\
& =\frac{1}{p_{k}}\left\langle\psi_{k}\right| U \rho \otimes|\psi\rangle\langle\psi| U^{\dagger}\left|\psi_{k}\right\rangle \\
& =\frac{1}{p_{k}} M_{k} \rho M_{k}^{\dagger} \quad M_{k} \equiv\left\langle\psi_{k}\right| U|\psi\rangle
\end{aligned}
$$

Example 1: Projection Measurement

Two-level atom

Kraus operators: $\quad M_{0}=|0\rangle\langle 0| \quad M_{1}=|1\rangle / 1 \mid \quad$ (projection)
POVM: $\quad E_{0}=|0\rangle\langle 0| \quad E_{1}=|1\rangle\langle 1| \quad$ (projection)

$$
\rho=q_{0}|0\rangle\langle 0|+q_{1}|1\rangle\langle 1|+\alpha|0\rangle\langle 1|+\alpha^{*}|1\rangle\langle 0|
$$

$$
\begin{array}{lll}
p_{0}=q_{0} & p_{1}=q_{1} & \text { (error-free) } \\
\rho_{0}=|0\rangle\langle 0| & \rho_{1}=|1\rangle\langle 1| & \text { (projection) }
\end{array}
$$

Example 2: Measurement by Photon Emission

Two-level atom

Kraus operators: $\quad M_{0}=|0\rangle\langle 0| \quad M_{1}=|0\rangle\langle 1| \quad$ (not projection)
POVM: $\quad E_{0}=|0\rangle\langle 0| \quad E_{1}=|1\rangle\langle 1| \quad$ (projection)

$$
\rho=q_{0}|0\rangle\langle 0|+q_{1}|1\rangle\langle 1|+\alpha|0\rangle\langle 1|+\alpha^{*}|1\rangle\langle 0|
$$

$$
\begin{array}{lll}
p_{0}=q_{0} & p_{1}=q_{1} & \text { (error-free) } \\
\rho_{0}=|0\rangle\langle 0| & \rho_{1}=|0\rangle\langle 0| & \text { (not projection) }
\end{array}
$$

Example 3: Measurement with Error

Two-level atom

Kraus operators: $\quad M_{0}=\sqrt{1-\varepsilon}|0\rangle\langle 0|+\sqrt{\varepsilon}|1\rangle\langle 1| \quad M_{1}=\sqrt{\varepsilon}|0\rangle\langle 0|+\sqrt{1-\varepsilon}|1\rangle\langle 1|$
POVM: $\quad E_{0}=(1-\varepsilon)|0\rangle\langle 0|+\varepsilon|1\rangle\langle 1| \quad E_{1}=\varepsilon|0\rangle\langle 0|+(1-\varepsilon)|1\rangle(1 \mid$
ε : error rate

$$
\begin{gathered}
\rho=q_{0}|0\rangle\langle 0|+q_{1}|1\rangle\langle 1|+\alpha|0\rangle\langle 1|+\alpha^{*}|1\rangle\langle 0| \\
p_{0}=(1-\varepsilon) q_{0}+\varepsilon q_{1} \\
p_{1}=\varepsilon q_{0}+(1-\varepsilon) q_{1}
\end{gathered}
$$

Real Example: QND Measurement of Atomic Spin

Takano et al., Phys. Rev. Lett. 102, 033601 (2009)

Probe Beam J

QND = Quantum Non-Demolition

System = Atomic Nuclear Spins
Probe = Polarized photons

Correlation of two-time measurements

Quantum Measurement: Summary

Projection measurement (error-free)

Observable $\quad A=\sum_{k} \alpha_{k} P_{k}$
Measurement outcome k
Projection operators $\left\{P_{k}\right\}$

$$
\sum_{k} P_{k}=I
$$

Probability $\quad p_{k}=\operatorname{tr}\left[\rho P_{k}\right]$

Indirect measurement (with error)

Measurement outcome k

POVM $\left\{E_{k}\right\}$ (positive operators)

$$
\sum_{k} E_{k}=I
$$

Probability $\quad p_{k}=\operatorname{tr}\left[\rho E_{k}\right]$

Part 2:

Classical/quantum measurement and information

- Shannon information
- Mutual information
- Quantum measurement
- Quantum mutual information
- QC-mutual information

Quantum Entropy

Von Neumann entropy: $\quad S(\rho)=-\operatorname{tr}[\rho \ln \rho]$
ρ : density operator

$$
\rho=\sum_{i} q_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right| \quad S(\rho)=-\sum_{i} q_{i} \ln q_{i}
$$

with an orthonormal basis

Characterizes the randomness of the classical mixture in the density operator

Variety of Quantum Information

- Quantum mutual information
- Quantum discord
- Holevo's chi
- QC-mutual information (Groenewold information)

Bipartite Quantum System

$\rho_{\mathrm{A}}=\operatorname{tr}_{\mathrm{B}}\left[\rho_{\mathrm{AB}}\right] \quad \rho_{\mathrm{B}}=\operatorname{tr}_{\mathrm{A}}\left[\rho_{\mathrm{AB}}\right]$

Quantum Mutual Information (1)

$$
\begin{gathered}
I_{\mathrm{A}: \mathrm{B}}\left(\rho_{\mathrm{AB}}\right)=S\left(\rho_{\mathrm{A}}\right)+S\left(\rho_{\mathrm{B}}\right)-S\left(\rho_{\mathrm{AB}}\right) \\
I_{\mathrm{A}: \mathrm{B}}\left(\rho_{\mathrm{AB}}\right) \geq 0 \Longleftrightarrow \begin{array}{c}
S\left(\rho_{\mathrm{A}}\right)+S\left(\rho_{\mathrm{B}}\right) \geq S\left(\rho_{\mathrm{AB}}\right) \\
\text { (Subadditivity of von Neumann entropy) }
\end{array}
\end{gathered}
$$

Purely classical correlation \Rightarrow Classical mutual information

$$
\rho_{\mathrm{AB}}=\sum_{x y} q_{x y}\left|\varphi_{x}\right\rangle\left\langle\varphi_{x}\right| \otimes\left|\phi_{y}\right\rangle\left\langle\phi_{y}\right| \quad \text { with orthonormal bases }
$$

$$
I_{\mathrm{A}: \mathrm{B}}\left(\rho_{\mathrm{AB}}\right)=\sum_{x y} q_{x y} \ln \frac{q_{x y}}{q_{x} q_{y}}
$$

Quantum Mutual Information (2)

Example: $\mathbf{2}$ qubits

$$
\rho_{\mathrm{AB}}=|00\rangle\left\langle\left. 00\right|_{\text {(no correlation) }} \quad \quad I_{\mathrm{A}: \mathrm{B}}\left(\rho_{\mathrm{AB}}\right)=0\right.
$$

$\rho_{\mathrm{AB}}=\frac{1}{2}(|00\rangle\langle 00|+|11\rangle\langle 11|) \quad I_{\mathrm{A}: \mathrm{B}}\left(\rho_{\mathrm{AB}}\right)=\ln 2$ (classical correlation)
$\rho_{\mathrm{AB}}=\frac{1}{2}(|00\rangle\langle 00|+|11\rangle\langle 11|+|11\rangle\langle 00|+|00\rangle\langle 11|)$
(entanglement)

$$
I_{\mathrm{A}: \mathrm{B}}\left(\rho_{\mathrm{AB}}\right)=2 \ln 2
$$

Part 2:

Classical/quantum measurement and information

- Shannon information
- Mutual information
- Quantum measurement
- Quantum mutual information
- QC-mutual information

QC-mutual Information (1)

Information flow from Quantum system to Classical outcome by quantum measurement

$$
I_{\mathrm{QC}} \equiv S(\rho)-\sum_{y} p_{y} S\left(\rho_{y}\right)
$$

$\rho:$ measured density operator
$p(y)=\operatorname{tr}\left[\rho M_{y}^{\dagger} M_{y}\right]:$ probability of obtaining outcome k
$\rho_{y}=\frac{1}{p(y)} M_{y} \rho M_{y}^{\dagger}:$ post-measurement state with outcome k
Assumed a single Kraus operator for each outcome

> H. J. Groenewold, Int. J. Theor. Phys. 4, 327 (1971).
> M. Ozawa, J. Math. Phys. 27, 759 (1986).
> TS and M. Ueda, PRL 100, 080403 (2008).

QC-mutual Information (2)

Classical measurement, I_{QC} reduces to the classical mutual information

If the measured state is a pure state: $\quad I_{\mathrm{QC}}=0$

QC-mutual Information (3)

The QC-mutual information gives an upper bound of the accessible classical information x encoded in ρ
F. Buscemi, M. Hayashi, and M.Horodecki, PRL 100, 210504 (2008).
$\rho=\sum_{x} q(x) \rho_{x}:$ an arbitrary decomposition
ρ_{x} are not necessarily orthogonal

$$
\begin{aligned}
& \quad p(x, y)=\operatorname{tr}\left[M_{y}^{\dagger} M_{y} \rho_{x}\right] q(x) \quad p(y)=\operatorname{tr}\left[M_{y}^{\dagger} M_{y} \rho\right]=\sum_{x} p(x, y) \\
& I=\sum_{x y} p(x, y) \ln \frac{p(x, y)}{q(x) p(y)}
\end{aligned}
$$

Theorem:

