Information Balance in Quantum Measurement determines Optimal Quantum Teleportation

Seung-Woo Lee

QUC research professor, Quantum Universe Center, Korea Institute for Advanced Study (KIAS)
In general,

Information Gain
by measurement

Information Sharing
by communication

(Key Idea of this work will be…)

Measurement plays an important role in Quantum Communications
Information

“The amount of uncertainty before we learn (measure)”
quantifying the resource needed to store information

Random variable X with probability distribution p_1, \ldots, p_n

Shannon Entropy

$H(X) \equiv H(p_1, \ldots, p_n) \equiv - \sum_x p_x \log p_x$

Qubit

classical state ρ

von Neumann Entropy

$S(\rho) \equiv - \text{tr}(\rho \log \rho)$
Information gain by Measurement

“How much information has gained by measurement?”

Mutual Information

\[H(X:Y) = H(X) + H(Y) - H(X,Y) \]
Information gain by Measurement

“How much information has gained by measurement?”

\[H(X:Y) = H(X) + H(Y) - H(X,Y) \]

F. Buscemi et al. PRL (2008); T. Sagawa et al. PRL (2008)
Information gain by Measurement

“How much information has gained by measurement?”

(C-C)

Mutual Information

\[H(X:Y) \equiv H(X) + H(Y) - H(X,Y) \]

(Q-C)

QC Mutual Information

\[|\psi\rangle \]

F. Buscemi et al. PRL (2008); T. Sagawa et al. PRL (2008)
Quantum Measurement

“Quantum measurement lies at the heart of fundamental quantum physics.”

Quantum measurement process = quantum system to be measured + measurement apparatus (probe)

General quantum measurement can be described by a set of operators

\[
\{ \hat{A}_r | r = 1, \ldots, N \}
\]
satisfying the completeness relation (probability sum = 1)

\[
\sum_{r=1}^{N} \hat{A}_r^\dagger \hat{A}_r = \mathbb{I}
\]

The probability that the outcome is \(r \)

\[
p(r, |\psi\rangle) = \langle \psi | \hat{A}_r^\dagger \hat{A}_r |\psi\rangle
\]

The post measurement state

\[
|\psi_r\rangle = \frac{\hat{A}_r |\psi\rangle}{\sqrt{p(r, |\psi\rangle)}}
\]

Each operator can be written by singular-value decomposition

\[
\hat{A}_r = \hat{V}_r \hat{D}_r \hat{U}_r
\]

\(\hat{U}_r, \hat{V}_r \) unitary operator \(\hat{D}_r = \sum_{i=0}^{d-1} \lambda_i^r |v_i^r\rangle \langle v_i^r| \) is a diagonal matrix,

Singular values \(\lambda_0^r \geq \lambda_1^r \geq \ldots \geq \lambda_{d-1}^r \geq 0 \)
Information Gain and Disturbance

“The relation between information gain and disturbance by measurement?”

The amount of information gain and disturbance?

- closeness of the states
 by fidelity (or distance)

\[F(\rho, \sigma) = \text{Tr} \left[\sqrt{\sqrt{\rho} \sigma \sqrt{\rho}} \right] \]

for pure state

\[F(\rho, \sigma) = \sqrt{\langle \phi | \psi \rangle \langle \psi | \phi \rangle} = |\langle \phi | \psi \rangle| \]
Information Gain and Disturbance

“The relation between information gain and disturbance by measurement?”

Information Gain

by averaging the estimation fidelity $|\langle \psi | \tilde{\psi}_r \rangle|^2$

by using the optimal estimation strategy:

we guess that the state is the singular basis of measurement operators with maximal value

$$G_{max} = \frac{1}{d(d+1)} \left(d + \sum_{r=1}^{N} \lambda_r^* \lambda_r \right)$$

$$1/d \leq G_{max} \leq 2/(d + 1)$$

Disturbance

by averaging the operation fidelity $|\langle \psi | \psi_r \rangle|^2$

$$F = \frac{1}{d(d+1)} \left[d + \sum_{r=1}^{N} \left(\sum_{i=0}^{d-1} \lambda_i^r \right)^2 \right]$$
Information Gain and Disturbance

“The relation between information gain and disturbance by measurement?”

Information Gain

Trade-off between info-gain and disturbance

“`The more information is obtained from measurement, the more its state is disturbed.”`

“We gain information by measurement”

+ “Measurement disturbs a quantum state”

\[F = \frac{1}{d(d+1)} \left[d + \sum_{r=1}^{N} \left(\sum_{i=0}^{d-1} \lambda_i^r \right)^2 \right] \]
Reversing Quantum Measurement

“Can we reverse (undo) the Quantum Measurement?”

- input state
- estimation
- measurement outcome
- reversal

|ψ⟩ → |ψ_r⟩ → |ψ⟩
Reversing Quantum Measurement

“Can we reverse (undo) the Quantum Measurement?”

Common belief

Quantum measurement is irreversible? :
true for ideal (projection) measurements

In fact,

It is possible to reverse (undo) the quantum weak measurement!! :
non-zero success probability to retrieve the arbitrary input state after the measurement
Reversing Quantum Measurement

“Can we reverse (undo) the Quantum Measurement?”

Non-ideal measurement process (weak measurement)

Partial collapse

\[a|0\rangle + b|1\rangle \]

\[1/2 \leq \eta \leq 1 \]

\[(a\sqrt{\eta}|0\rangle + b\sqrt{1-\eta}|1\rangle)|0\rangle + (a\sqrt{1-\eta}|0\rangle + b\sqrt{\eta}|1\rangle)|1\rangle \]
Reversing Quantum Measurement

“Can we reverse (undo) the Quantum Measurement?”

Measurement outcome r

Measurement

estimated state

estimated state

Measurement and Reversal condition

$\hat{R}(r) \hat{A}_r |\psi\rangle = \eta_r |\psi\rangle$

Reversal

selective process

$\vec{B}_1 = \hat{R}(r)$

Measurement and Reversal condition

Measurement and Reversal condition

Reversal

input state

post measurement state

input state
Reversing Quantum Measurement

“Can we reverse (undo) the Quantum Measurement?”

Input state $|\psi\rangle$ → Measurement $|\psi_r\rangle$ → Post measurement state $|\psi_r\rangle$ → Reversal $|\psi\rangle$

Estimated state $|\tilde{\psi}_r\rangle$

Measurement outcome r

Reversibility

We define the reversibility as the maximal total reversal probability over all the measurement outcomes, r

$$P_{rev} = \max \sum_{r=1}^{N} P_{rev}(r) = \sum_{r=1}^{N} \left(\chi^{r}_{d-1}\right)^2,$$

given as a function of measurement sets (independent on the input state)
Result 1
Trade-off relation between info gain and reversibility

After reversing quantum measurement, where is the already obtained information?

Quantitative bound of information gain and reversibility of quantum measurement

For qubit

\[6G_{max} + P_{rev} = 4 \]
Result 1: Trade-off relation between info gain and reversibility

After reversing quantum measurement, where is the already obtained information?

\[\hat{A}_1 = \sqrt{s}|1\rangle\langle 1| \]
\[\hat{B}_1 = \sqrt{1-s}|0\rangle\langle 0| + |1\rangle\langle 1| \]

Trade-off between info-gain and reversibility

“The more information is obtained from quantum measurement, the less possible it is to undo the measurement.”

Information balance (no-cloning of quantum information)

\[\{ \hat{A}_k \} \quad k = 2 \quad \{ \hat{B}_i \} \quad i = 1 \]

Quantitative bound of information gain and reversibility of quantum measurement

\[d(d + 1)G_{max} + (d - 1)P_{rev} \leq 2d \]

For qubit

\[6G_{max} + P_{rev} = 4 \]
There exist fundamental bounds in quantum measurements!!

MRM (maximal reversible measurement), MDM (minimal disturbance measurement)

Experimental proof of for qutrit systems

collaboration with Prof. Y.-H. Kim’s group in POSTECH

We can find the optimal measurement sets

with Maximal Reversibility and Minimal Disturbance
Quantum Teleportation

“A quantum task to transfer an arbitrary quantum state to remote place”

Teleportation Protocol

1. **Entanglement** is distributed between the sender and receiver
2. **Measurement** is performed on the input and a part of the quantum channel
3. **Measurement result** is shared through the classical channel
4. **Reversing operation** is performed on the out part of the quantum channel

<table>
<thead>
<tr>
<th>mode a</th>
<th>mode b</th>
<th>mode c</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknown state $</td>
<td>\psi\rangle$</td>
<td>entangled quantum channel $</td>
</tr>
<tr>
<td>joint measurements $\hat{A}_r =</td>
<td>W_r\rangle\langle W_r</td>
<td>$ (projection)</td>
</tr>
<tr>
<td>Reversing operation $\hat{R}(r)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quantum Teleportation

• After sender’s joint measurement (for an outcome r)

\[\text{Tr}_{a,b} \left[\hat{A}_{r,ab} |\psi\rangle_a \langle \psi| \otimes |\Psi\rangle_{bc} \langle \Psi| \hat{A}^\dagger_{r,ab} \right] \]

\[=_{ab} \langle W_r | \cdot |\psi\rangle_a \langle \psi| \otimes |\Psi\rangle_{bc} \langle \Psi| \cdot |W_r\rangle_{ab} \]

\[= \hat{M}_{r,a\rightarrow c} |\psi\rangle_a \langle \psi| \hat{M}^\dagger_{r,a\rightarrow c}, \]

where

\[\hat{M}_{r,a\rightarrow c} \equiv ab \langle W_r | \Psi\rangle_{bc} \]

effective overall measurement

• Reversing operation

\[\hat{R}^{(r)} \hat{M}_{r,a\rightarrow c} |\psi\rangle_a = \eta_r |\psi\rangle_c \]

• Overall teleportation process

\[\text{Tr}_{a,b} \left[\hat{R}^{(r)} \hat{A}_{r,ab} |\psi\rangle_a \langle \psi| \otimes |\Psi\rangle_{bc} \langle \Psi| \hat{A}^\dagger_{r,ab} \hat{R}^{(r)}\dagger \right] \]

\[= \hat{R}^{(r)} \hat{M}_{r,a\rightarrow c} |\psi\rangle_a \langle \psi| \hat{M}^\dagger_{r,a\rightarrow c} \hat{R}^{(r)}\dagger = |\eta_r|^2 |\psi\rangle_c \langle \psi|. \]

“Quantum teleportation can be regarded as a quantum measurement and reversal process”

In general, **effective measurement operator** can be defined as

\[\hat{M}_r \equiv \text{senders} \langle W_r | \Psi\rangle \text{channel} \]

\[\sum_r \hat{M}^\dagger_r \hat{M}_r = 1_{\text{senders}} \]

\[|W_r\rangle : \text{local joint measurement basis} \]

\[|\Psi\rangle : \text{entangled quantum channel} \]

with its optimal **reversing operation** \(\hat{R}^{(r)} \)
Result III

Information balance determines optimal quantum teleportation

Non-ideal quantum channel or measurement → Information gain by the sender → Maximal success prob. of teleportation = Reversibility

No info gain

All info transferred

Info gain

Partial info transferred

|ψ⟩

Sender

M

maximal entanglement

|ψ⟩

Receiver

Success prob. = 1

|ψ⟩

Sender

M

non-maximal entanglement

|ψ⟩

Receiver

Success prob. < 1

Conditions for optimal quantum communications

✓ minimize the information gain by the (effective nonlocal) measurement

✓ maximize the reversibility of the measurement

• quantum channel
\[|\Psi\rangle_{bc} = \cos \frac{\theta}{2}|0\rangle_b|0\rangle_c + \sin \frac{\theta}{2}|1\rangle_b|1\rangle_c \quad \text{where} \quad 0 \leq \theta \leq \frac{\pi}{2} \]
\[\theta = 0 : \text{product state} \quad \theta = \frac{\pi}{2} : \text{maximal entanglement} \]

• joint measurement
\[|W_1\rangle = \cos \frac{\phi}{2}|0\rangle_a|0\rangle_b + \sin \frac{\phi}{2}|1\rangle_a|1\rangle_b \]
\[|W_2\rangle = \sin \frac{\phi}{2}|0\rangle_a|0\rangle_b - \cos \frac{\phi}{2}|1\rangle_a|1\rangle_b \]
\[|W_3\rangle = \cos \frac{\phi}{2}|0\rangle_a|1\rangle_b + \sin \frac{\phi}{2}|1\rangle_a|0\rangle_b \]
\[|W_4\rangle = \sin \frac{\phi}{2}|0\rangle_a|1\rangle_b - \cos \frac{\phi}{2}|1\rangle_a|0\rangle_b, \]
\[\phi = \frac{\pi}{2} : \text{Bell basis} \]

• effective measurement
\[\hat{M}_1 = ab\langle W_1||\Psi\rangle_{bc} = \cos \frac{\theta}{2} \cos \frac{\phi}{2} |0\rangle_c a\langle 0| + \sin \frac{\theta}{2} \sin \frac{\phi}{2} |1\rangle_c a\langle 1| \]
\[\hat{M}_2 = ab\langle W_2||\Psi\rangle_{bc} = \cos \frac{\theta}{2} \sin \frac{\phi}{2} |0\rangle_c a\langle 0| - \sin \frac{\theta}{2} \cos \frac{\phi}{2} |1\rangle_c a\langle 1| \]
\[\hat{M}_3 = ab\langle W_3||\Psi\rangle_{bc} = \cos \frac{\theta}{2} \cos \frac{\phi}{2} |0\rangle_c a\langle 1| + \sin \frac{\theta}{2} \sin \frac{\phi}{2} |1\rangle_c a\langle 0| \]
\[\hat{M}_4 = ab\langle W_4||\Psi\rangle_{bc} = \cos \frac{\theta}{2} \sin \frac{\phi}{2} |0\rangle_c a\langle 1| - \sin \frac{\theta}{2} \cos \frac{\phi}{2} |1\rangle_c a\langle 0| \]

• optimal reversing operators
\[\hat{R}^{(1)} = \tan \frac{\theta}{2} \tan \frac{\phi}{2} |0\rangle\langle 0| + |1\rangle\langle 1|, \]
\[\hat{R}^{(2)} = \begin{cases} \hat{\sigma}_x \left(\cot \frac{\theta}{2} \tan \frac{\phi}{2} |0\rangle\langle 0| + |1\rangle\langle 1| \right) i\hat{\sigma}_y, & \text{if } \theta \geq \phi, \\ \hat{\sigma}_x \left(|0\rangle\langle 0| + \tan \frac{\theta}{2} \cot \frac{\phi}{2} |1\rangle\langle 1| \right) i\hat{\sigma}_y, & \text{if } \theta < \phi \end{cases} \]
\[\hat{R}^{(3)} = \hat{\sigma}_x \left(\tan \frac{\theta}{2} \tan \frac{\phi}{2} |0\rangle\langle 0| + |1\rangle\langle 1| \right) \]
\[\hat{R}^{(4)} = \begin{cases} \left(\cot \frac{\theta}{2} \tan \frac{\phi}{2} |0\rangle\langle 0| + |1\rangle\langle 1| \right) i\hat{\sigma}_y, & \text{if } \theta \geq \phi, \\ |0\rangle\langle 0| + \tan \frac{\theta}{2} \cot \frac{\phi}{2} |1\rangle\langle 1| \right) i\hat{\sigma}_y, & \text{if } \theta < \phi. \end{cases} \]
(Example)

- quantum channel
 \[|\Psi\rangle_{bc} = \cos \frac{\theta}{2} |0\rangle_b |0\rangle_c + \sin \frac{\theta}{2} |1\rangle_b |1\rangle_c \]
 where \(0 \leq \theta \leq \frac{\pi}{2} \)
 \(\theta = 0 \) : product state \(\theta = \frac{\pi}{2} \) : maximal entanglement

- joint measurement
 \[|W_1\rangle = \cos \frac{\phi}{2} |0\rangle_a |0\rangle_b + \sin \frac{\phi}{2} |1\rangle_a |1\rangle_b \]
 \(\phi = \frac{\pi}{2} \) : Bell basis

Reversibility = the highest success probability of the teleportation

\[
P_{\text{rev}} = 2 \sin^2 \left(\frac{\min[\theta, \phi]}{2} \right) = 1 - \cos(\min[\theta, \phi]).
\]

(standard teleportation)

\[
P_{\text{rev}} = 1 \quad \text{when} \quad \theta = \phi = \frac{\pi}{2}
\]

higher than the ones by previously known protocols

- effective measurement

- optimal reversing operators

\[
\hat{R}^{(1)} = \tan \frac{\theta}{2} \tan \frac{\phi}{2} |0\rangle \langle 0| + |1\rangle \langle 1|,
\]

\[
\hat{R}^{(2)} = \begin{cases}
\hat{\sigma}_x \left(\cot \frac{\theta}{2} \tan \frac{\phi}{2} |0\rangle \langle 0| + |1\rangle \langle 1| \right) i\hat{\sigma}_y, & \text{if } \theta \geq \phi, \\
\hat{\sigma}_x \left(|0\rangle \langle 0| + \tan \frac{\theta}{2} \cot \frac{\phi}{2} |1\rangle \langle 1| \right) i\hat{\sigma}_y, & \text{if } \theta < \phi
\end{cases}
\]

\[
\hat{R}^{(3)} = \hat{\sigma}_x \left(\tan \frac{\theta}{2} \tan \frac{\phi}{2} |0\rangle \langle 0| + |1\rangle \langle 1| \right)
\]

\[
\hat{R}^{(4)} = \begin{cases}
\left(\cot \frac{\theta}{2} \tan \frac{\phi}{2} |0\rangle \langle 0| + |1\rangle \langle 1| \right) i\hat{\sigma}_y, & \text{if } \theta \geq \phi, \\
\left(|0\rangle \langle 0| + \tan \frac{\theta}{2} \cot \frac{\phi}{2} |1\rangle \langle 1| \right) i\hat{\sigma}_y, & \text{if } \theta < \phi.
\end{cases}
\]
Multiparty Quantum Teleportation

Entanglement is shared between senders, intermediators and receivers

Measurements are performed by senders and intermediators

Effective measurement

$$\hat{M}_{r'} = \text{inter} \langle Y_l | \text{send} \langle W_r | \Psi \rangle \text{ch} \sum_{r'} \hat{M}_{r'}^{\dagger} \hat{M}_{r'} = 1_{\text{send+inter}}$$

$|Y_l\rangle$: measurement basis by intermediator

Reversing operations are performed on the receivers' parties

Measurement results are sent from senders and intermediators to receivers through classical channels
Multiparty Quantum Teleportation

Entanglement is shared between senders, intermediators and receivers!

Measurements are performed by senders and intermediators.

Effective measurement

\[
\hat{M}_{r'} = \text{inter} \langle Y_l | \text{send} \langle W_r | \Psi \rangle_{\text{ch}} \\
\sum_{r'} \hat{M}_{r'}^{\dagger} \hat{M}_{r'} = \mathbb{1}_{\text{send+inter}}
\]

\[|Y_l\rangle: \text{measurement basis by intermediator}\]

Reversing operations are performed on the receivers’ parties.

Measurement results are sent from senders and intermediators to receivers through classical channels.
Multiparty Quantum Teleportation

Entanglement is shared between senders, intermediators and receivers.

Measurements are performed by senders and intermediators.

Effective measurement:

\[\hat{M}_{r'} = \text{inter} \langle Y_l | \text{send} \langle W_r | \Psi \rangle \text{ch} \]
\[\sum_{r'} \hat{M}_{r'}^\dagger \hat{M}_{r'} = \mathbb{1}_{\text{send+inter}} \]

\[|Y_l\rangle : \text{measurement basis by intermediator} \]

Reversing operations are performed on the receivers’ parties.

Measurement results are sent from senders and intermediators to receivers through classical channels.
Multiparty Quantum Teleportation

1. Entanglement is shared between senders, intermediators and receivers.

2. Measurements are performed by senders and intermediators.

3. Reversing operations are performed on the receivers’ parties.

4. Measurement results are sent from senders and intermediators to receivers through classical channels.

Effective measurement:

\[
\hat{M}_{r'} = \text{inter} \langle Y_l | \text{send} \langle W_r | \Psi \rangle \text{ch} \\
\sum_{r'} \hat{M}_{r'}^{\dagger} \hat{M}_{r'} = \mathbb{1}_{\text{send+inter}}
\]

\(|Y_l\rangle\): measurement basis by intermediator.
Quantum communications in arbitrary quantum network

Total information balance!

Conclusions

Information balance determines optimal protocols of any quantum communications!
Quantum communications in arbitrary quantum network

Total information balance!

Conclusions

Information balance determines optimal protocols of any quantum communications!
Applications and possible further studies

Impossibility of weak measurement and reversal attack to QKD

QKD (Quantum Key Distribution)

Intercept - Weak measurement - Reversal attack?

Quantitative and fundamental proof of its impossibility based on the Information balance in quantum measurement

A global information balance in quantum measurements

Quantitative Bound for Information gain + disturbance + reversibility

Decoherence Suppression

by Weak measurement and Reversal

by Zeno effects with weak measurements

G. A. Paz-Silva et al., PRL 108 080501 (2012)

The laws of thermodynamics for quantum state transfers?

and so on…
Impossibility of weak measurement and reversal attack to QKD

QKD (Quantum Key Distribution)

Interceptor - Weak measurement - Reversal attack?

Quantitative and fundamental proof of its impossibility based on the Information balance in quantum measurement

A global information balance in quantum measurements

Decoherence Suppression

by Weak measurement and Reversal

by Zeno effects with weak measurements

G. A. Paz-Silva et al., PRL 108 080501 (2012)

The laws of thermodynamics for quantum state transfers?

Thank you!