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====== [1] Outline

Quantum chaos: RMT and ETH.
Equilibration (getting a quasi steady-state).
Ergodization (isolated subsystem), fluctuations.
Thermalization (coupled subsystems), the GGE.

Weak quantum chaos; Memory of initial state?
Classical evolution: KAM, Chirikov, standard map.
Arnold-web, Arnold diffusion, stochastic pump model.

Prototype model: BHH (quantum) DNLS (classical)
Stat-Mech description: Fokker-Plank.
Thermalization of long DNLS chains.

Quantum Localization; breaktime concept; Anderson criterion.
Examples: Dynamical localization; Quantum metastability.
Disorder and MBL - quantum phase transition at finite temperature?

====== [2] Quantum Chaos, RMT, and ETH

RMT conjecture [Wigner, Bohigas]: Originally refers to strongly interacting many-body systems (nuclear physics
context). Then same framework has been extended to chaotic systems (few degrees of freedoms, e.g. billiards).

Periodic orbits theory: The smoothed density of states can be calculated from phase-space volume. The fluctuations
can be obtained from the “Gutzwiller trace formula”, which is a sum over (unstable) periodic orbits.

Berry’s conjecture: The Wigner function of a chaotic eigenstate can be approximated as a microcanonical distribution.
It is implied that an eigenfunction of a chaotic billiard looks like a random superposition of plane waves. Related:
Shnirelman’s theorem.

Scar theory [Heller]: Inspired by the Gutzwiller trace formula, also the eigenstates can expanded as a sum of a
microcanonical background plus periodic-orbit corrections (“scars”).

Eigenstate thermalization hypothesis (ETH): Synonym for Berry’s conjecture in the many body context. Speculated
to hold under more flexible circumstances, where the “quantum chaos” assumptions do not hold.

The canonical Stat-Mech picture [Landau]: If the system (called “universe”) is in (say) microcanonical state, then any
weakly coupled subsystem is in a thermal (canonical) state. Accordingly ‘reduced” probability functions are universal.
For example one obtains the canonical distribution for the momentum distribution of a particle in a dilute gas.

Srednicki, Chaos and quantum thermalization [PRE 1994]
Rigo, Dunjko, Olshanii, Further discussion of ETH [Nature 2008]

• Regarding dilute hard sphere gas (formally like a Sinai billiard system).

• Energy eigenstate that satisfies ETH predicts a thermal distribution for the single particle momentum.

• For the (marginal) single-particle momentum-distribution scar corrections are not important.

• Starting from a non-stationary state, non-thermal features fade away at least as fast as 1/t.

http://journals.aps.org/pre/abstract/10.1103/PhysRevE.50.888
http://www.nature.com/nature/journal/v452/n7189/full/nature06838.html
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====== [3] The probability matrix

d [classical context] = number of possible outcomes (classical probability theory)
d [quantum context] = Hilbert space dimension (quantum measurement theory).

In order to specify a classical statistical state we need d−1 probabilities.

〈A〉 =
∑
r

prAr (1)

In order to specify a quantum state we need d2−1 probabilities. From these probabilities we can contrast the
“probability matrix”. For example: for spin 1/2 these might be the probabilities to be polarized in the x,y,z directions.
By the basic postulate of quantum mechanics any expectation value can be deduced as follows:

〈A〉 =
∑
j

ρjiAij = trace[ρA] (2)

Cohen, Lecture notes in Quantum Mechanics [arXiv 2013] [PDF 2015]

Measure for purity - the number of states that participate in the mixture:

d[ρ] ≡ 1

trace[ρ2]
(3)

Measure for the difference between two states:

D[ρ1, ρ2] ≡ 1

2
trace

[ ∣∣ρ1 − ρ2
∣∣ ] (4)

Meaning of this measure is that for any A∣∣∣ 〈A〉1 − 〈A〉2 ∣∣∣ ≤ (
max[A]−min[A]

)
D[ρ1, ρ2] (5)

Trace distance [Wikipedia]

====== [4] The quasi steady state

If we start with some initial state, and propagate it for a long time, then generically (for an ergodic system) we get a
quasi steady-state.

Classical - no fluctuations in the expectation value 〈A〉t
Quantum - residual fluctuations due to finite d
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We denote that initial state as ρ. The evolved state is

ρ(t) =
∑
n,m

e−i(En−Em)t |En〉 ρn,m 〈Em| (6)

http://arxiv.org/abs/quant-ph/0605180
http://physics.bgu.ac.il/~dcohen/ARCHIVE/qmc.pdf
https://en.wikipedia.org/wiki/Trace_distance
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The quasi steady-state is

ρ̄ =
∑
n

|En〉 ρn,n 〈En| ≡
∑
n

|En〉 pn 〈En| (7)

The number of states that participate in the evolution is

d [ρ̄] =

[∑
n

p2
n

]−1

(8)

Typical scenario is that we start with state |x0〉 of basis |xj〉 and look on the spreading.
In such scenario pn = P (n|x0) where

P (En|x) = |〈En|x〉|2 “LDOS” (9)

For the steady state profile we get a convolution

P∞(x|x0) =
∑
n

P (En|x) P (En|x0) (10)

Sometimes we want to work in the Heisenberg picture.
Accordingly we can define the time averaged observable Ā.
Note the following trivial identities:

〈A〉t =
∑
n,m

e−i(En−Em)t ρn,mAm,n (11)

〈A〉t = trace[ρ̄A] = trace[ρĀ] = trace[ρ̄Ā] =
∑
n

pnAn,n (12)

By inspection we see that non-stationary features decay as 1/t. The argument is as follows: Consider a state that
occupies an energy shell of width ∆E that contains NE energy levels. The time dependent phase-factors randomize
all the systematic interferences except of those that originate from the strip |En−Em| < ~/t. Accordingly the number
of terms that contribute to the non-thermal feature is

Nc =

[
~

∆Et

]
N2
E (13)

====== [5] Fluctuations of dynamical variables

Fluctuations of the expectation value 〈A〉t is not the same as ”fluctuations” in the sense of statistical mechanics.
The latter are the Fourier transform of the correlation function.

C(τ) = 〈A(t+ τ)A(t)〉 (14)

C̃(ω) = FT [C(τ)] (15)

Quantum spectral decomposition:

C̃(ω) =
∑
n

pn
∑
m

|Anm|2 2πδ(ω − (En−Em)) (16)

From here follows the Feinglod-Peres relation:

|Anm|2 ≈ 1

2π%
C̃cl(En−Em) (17)

Generically observables are represented by banded matrices.
The GOE/GUE ensembles assume zero correlation time ; infinite bandwidth. We deduce the following practical
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estimates

τcl = classical correlation time that characterizes C(τ) (18)

∆b =
2π

τcl
= bandwidth that characterizes C̃(ω) (19)

∆0 =
1

ρ
= mean level spacing (20)

Var [A] =
〈
A2
〉
− 〈A〉2 = C(0) (21)

|Anm|2 ≈
[

∆0

∆b

]
Var [A] ≡ 1

b
Var [A] (22)

Example: motion is 2D chaotic well, Cohen, Kottos [PRE 2001]
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====== [6] Fluctuations of expectation values

Consider a system with mean level spacing ∆0, and bandwidth ∆b = b∆0. We prepare the system in some state ψ.
We now look on the temporal fluctuations of the expectation value

〈A〉t =
∑
n,m

ei(En−Em)t 〈n|ψ〉∗ 〈m|ψ〉 An,m (23)

〈A〉t =
∑
n

pnAn,n (24)

〈A〉2t =
∑
n,m

pnpm|An,m|2 (25)

VarT [〈A〉t] = 〈A〉2t −
[
〈A〉t

]2
[temporal variance] (26)

Using the Feinglod-Peres relation we get

VarT [〈A〉t] =
1

max(b[A], d[ρ])
Var [A] (27)

where d[ρ] is the number of eigenstates that participate, and b[A] is the bandwidth of the matrix.
Note: The case b > d is trivial because the ps sum to unity,

http://physics.bgu.ac.il/~dcohen/ARCHIVE/lds_PRE.pdf
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hence the result equals to the semiclassical estimate of the near-diagonal |Anm|2.
In the case b < d the fraction of in-band terms is (bd)/(d2).
To provide a visualization of the double sum.
Note: As expected the temporal variance diminishes in the classical limit.

====== [7] Equilibration of local observables

Here we consider fluctuations of the expectation values 〈A〉t of local observables.

dS = Hilbert space dimension of the subsystem
dB = Hilbert space dimension of the environment (”bath”)
d = dS dB

ρ = arbitrary probability matrix, dimension d× d
ρS = reduced probability matrix, dimension dS × dS

dΩ = subspace dimension (e.g. all pure-states that have a given energy)
Ω = the maximally mixed state in the Ω subspace

dΩ < dS d[ΩB ] (28)

(visualization of this inequality in ”S-B” space)

Ensemble average over all states of the Ω subspace:

〈A〉Ω = trace [ΩA] (29)

(below subscript Ω is omitted).

Stat-Mech ensemble theorem, Popescu, Short, Winter [Nature Phys 2006]

〈D [ρS ,ΩS ]〉 ≤ 1

2

(
dS

d[ΩB ]

)1/2

≤ 1

2

dS√
dΩ

(30)

This holds irrespective of whether ΩS is canonical.
A more tight bound depends on entanglement.

Note: The traditional reasoning concerns microcanonical-like ensembles, and assumes weak coupling.
Here these assumptions are not taken.

Dynamical equilibration theorem, Linden, Popescu, Short, Winter [PRE 2009]
Here the role of Ω is played by ρ̄, and the role of the ensemble is played by time.

D [ρS(t), ρ̄S ] ≤ 1

2

(
dS
d[ρ̄B ]

)1/2

≤ 1

2

dS√
d[ρ̄]

(31)

A secondary theorem is

〈d[ρ̄]〉 ≥ 1

2
dΩ (32)

Hence typically

D [ρS(t), ρ̄S ] ≤ dS√
2dΩ

(33)

Non-thermalization theorem, Gogolin, Muller, Eisert [PRL 2011]

Assume that the system is prepared in a factorized state ρ = ρS ⊗ ρB , we get some stead state ρ̄S . The question is
whether we have memory for the initial condition: whether we can resolve steady states that originate from different

http://www.rsphysse.anu.edu.au/~tas110/Teaching/Lectures/L5/Material/Popescu06.pdf
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.79.061103
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.040401
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preparation. For this purpose a difference measure ∆ is defined:

∆ = D
[
ρ1
S , ρ

2
S

]
−
∑
1,2

D [ρS(t), ρ̄S ] (34)

> D
[
ρ1
S , ρ

2
S

]
−
∑
1,2

D [ρS , ρ̄S ] −
∑
1,2

D [ρS(t), ρ̄S ] (35)

The theorem implies that the difference ∆ might be positive, because the first term might be large (preparing very
different initial states), while the other terms are typically small. Thus it is implied that the respective steady states
can be resolved, so there is a memory of the initial state.

Alert: One may argue that the above notion of non-thermalization is misleading. The preparations do not have the
same energy distribution. In a classical context thermalization is trivially not expected in such circumstances.

Bottom line:
If the ensemble is large, the fluctuations of the expectation values are small.
The approach to the classical limit is like 1/

√
dΩ.

Thanks to the “goodness” of the equilibration we might have ”non-thermalization”.
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====== [8] Classical non-ergodic systems

• Implications of having a mixed phase space?

• Implications of having constants of motion?

• Do we have memory of the initial condition?

In order to visualize system with mixed-phase space or with constant of motion, consider a billiard system that is
composed of several disconnected boxes. Say that the observable A of interest is the position of the particle. Clearly
we have the following classical sum rule

Var[A] = Var[Ā] + VarT [At] (36)

Clearly in such non-ergodic system we have “memory of the initial box”.
So in general we associate ”memory with having “constants of motion”.
One way to formalize this observation is provided by the “Mazur bound”.

Mazur, Non-ergodicity of phase functions in certain systems [Physica 1969]

We want to find a non-zero lower bound for Var[Ā].
Without loss of generality we assume 〈A〉 = 0, hence Var[Ā] =

〈
Ā2
〉

If we have a constant of motion C, say the energy,
we can write the CauchySchwarz inequality |

〈
C Ā

〉
|2 <

〈
C2
〉 〈

Ā2
〉
.

It is convenient to shift and noramlize the constant of motion such that 〈C〉 = 0 and
〈
C2
〉

= 1.

We get
〈
Ā2
〉
>
∣∣〈C Ā〉∣∣2. This is equivalent to

〈
Ā2
〉
> |〈C A〉|2.

Note: for a mono-energetic preparation of an ergodic system Mazur bound is zero.
If we have several constants of motion we can assume without loss of generality 〈CiCj〉 = δi,j .
Then we get

Var[Ā] >
∑
j

|〈Cj A〉|2 (37)

An interesting application: Mierzejewski, Prelovsek, Prosen, Breakdown of the GGE for current-generating
quenches [PRL 2014]

Ring with spinless fermions with control over the flux φ.
In the absence of flux ρ = e−βH , and 〈J〉 = 0.
With flux after full thermalization ρ = e−β(H−φJ), and 〈J〉 = β

〈
J2
〉
φ.

After quench to zero flux ρ = e−β(H−φJ̄), and 〈J〉 = β
〈
J̄2
〉
φ 6= 0.

The issue was to figure out the Mazur bound on
〈
J̄2
〉
.

Main message: existence of quasi-local conserved quantities.

Relaxation and Prethermalization, experimental work with one-dimensional Bose gas, Gring, Kuhnert, Langen,
Kitagawa, Rauer, Schreitl, Mazets, Adu Smith, Demler, Schmiedmayer [Science 2013]. Fast splitting leads to
pre-thermalized state that is characterized by an effective temperature Teff = (1/2)gN/L.

Generalized Gibbs ensemble: Consider Hamiltonian H with short-range interactions that commutes with constant of
motion Q. Assumed that Q =

∑
Qsubsystems. Then for each subsystem we expect

ρS ∝ e−βHS−λQS (38)

If Q is the number operator N then it is written as

ρS ∝ e−β(HS−µNS) (39)

Note: a somewhat trivial generalized quantum definition of GGE is as follows: all states ρ that lead to the same
steady ρ̄. Note that all the projectors |En〉 〈En| are constants of motion.

http://www.sciencedirect.com/science/article/pii/0031891469901852
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.020602
http://www.sciencemag.org/content/337/6100/1318
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====== [9] Weak quantum chaos

The matrix representation of quantized Hamiltonian is by a banded matrix that looks like a random matrix:

Htotal = H + λV = diag{En}+ λ BandedMatrix{Vnm} (40)

The bandprofile is given by the Feingold-Peres relation. The parametric evolution of the eigenstates as a function of
λ involves generically a crossover from a perturbative to a non-perturbative regime. In the RMT work of Wigner the
LDOS goes from Lorentzian to SemiCircle. For quantized hamiltonians the theory is more complicated.

Cohen, Heller, Unification of perturbation theory, RMT and semiclassical considerations in the study of
parametrically-dependent eigenstates [PRL 2000]. Cohen, Kottos, Parametric dependent Hamiltonians, wavefunc-
tions, random-matrix-theory, and quantal-classical correspondence [PRE 2001]. See also works with Barnett [PRE
2001] and with Mendez-Bermudez [PRE 2005] [PRE 2006].

Weak quantum chaos for weakly chaotic billiards:
Stotland, Cohen, Davidson [EPL 2009]
Stotland, Pecora, Cohen [EPL 2010] [PRE 2011]
Here H is integrable, and the perturbation is small.

R
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Lx

[not a Gaussian matrix...]
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Major point to notice: Even in extreme quantum circumstances the alegebraic average corresponds to the classical
calculation (we call it “restricted QCC”), but the median and higher moments are ~ dependent (absence of “detailed
QCC” for weak quantum chaos).

Weak quantum chaos for weakly disordered lattice:
Stotland, Budoyo, Peer, Kottos, Cohen [EPL 2008]
Stotland, Kottos Cohen [PRB 2010]

http://physics.bgu.ac.il/~dcohen/ARCHIVE/wls_PRL.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/lds_PRE.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/prm_PRE.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/prm_PRE.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/rng_PRE.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/blm_PRE.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/kbw_EPL.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/cqb_EPL.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/cqc_PRE.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/bld_JPA.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/kbd_ARC.pdf
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Equilibration in a weakly disordered lattice:
Olshanii, Jacobs, Rigol, Dunjko, Kennard, Yurovsky [Nature Comm 2013] [PRL 2007]

Equipartition is not achieved - memory of the initial conditions.

Unperturbed states |kx, ky〉
Perturbed eigenstates |En〉
Initial preparation |k0〉, accordingly pn = | 〈n|k0〉 |2
Inverse participation number of the preparation η =

∑
n p

2
n

〈A〉t = η 〈A〉0 + (1− η) 〈A〉E (41)

Derivation:

〈A〉t =
∑
n

pnAn,n =
∑
n,k′,k′

pn 〈k′|n〉
∗ 〈k′′|n〉Ak′,k′′ (42)

=
∑
k

[∑
n

| 〈n|k0〉 |2 | 〈n|k〉 |2
]
Ak,k +

∑
n

∑
k 6=k′

neglected terms (43)

≈ η 〈A〉k0,k0 +
∑
k( 6=k0)

overlaps(k0|k) Ak,k (44)

Note: The sum of the overlaps if k0 is excluded is (1 − η), else it would be unity. Regarding the second term:
the distribution of contributing ks within the energy shell is sparse and statistically unbiased; Hence we get the
microcanonical average.

http://www.nature.com/ncomms/journal/v3/n1/full/ncomms1653.html
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.050405
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====== [10] Classical dynamics - overview

f = number of degrees of freedom

f = 1
One degree of freedom is integrable (oscillator).
Action-angle canonical coordinates can be chosen (ϕ, J).
Motion is characterized by a frequency ω(E).
Possibility to have several regions in phase-space separated by speratrix.
The pendulum is a prototype f = 1 system.

f = 2
System with two degrees of freedom has in general mixed phase-space.
Regions of resonances for rational frequencies.
Stochastic layer are formed along the speratrix.
These regions are separated by KAM tori. Once destroyed they become cantori.
Chirikov criterion of resonance-overlap - formation of chaotic sea.
The kicked rotor (standard map) is a prototype f = 2 system.

f > 2
Energy surface is 2f − 1 dimensional.
KAM tori are f dimensional. Note: [(2f − 1)− (f)] > 1.
The KAM are not able to separate the energy surface into territories.
If close to intergrable - Arnold web is formed; Arnold diffusion.
The stochastic-pump model is a prototype f = 3 model for Arnold diffusion.

It follows that any f > 2 system is ergodic, provided the energy shell is a connected domain.
But the equilibration process might be very slow.

====== [11] Classical dynamics - the standard map

The standard map is:

pn+1 = pn +K sin(θn) (45)

θn+1 = θn + pn+1 (46)

It can be generated by the Hamiltonian of a kicked rotor:

H(p, θ, t) =
1

2
p2 + K cos(θ)

∞∑
n=−∞

δ(t− n) (47)

≡ 1

2
p2 + K cos(x) f(Ωt) [Ω = 2π] (48)

It can be regarded as a prototype f = 2 system:

H(p, θ; q, ϕ) =
1

2
p2 +K cos(θ)f(ϕ) + Ωq (49)

The two interacting frequencies are Ω = 2π and ω(E) =
√

2E.
The strength of the coupling is K. The critical value for getting global chaotic sea is

Kc ≈ 0.971635... (50)

The following figure shows how phase-space look like for different values of K.
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For K � 1 we get diffusion because the following is like random walk

pN − p0 = K sin(θ1) +K sin(θ2) + · · ·+K sin(θN ) (51)

Digression: This is a prototype model for dynamical localization.

====== [12] Arnold diffusion - Coupled standard map

Two coupled standard maps are like d = 3 system.
Study of Arnold diffusion, Wood, Lichtenberg, Lieberman [PRA 1990]

In+1 = In +K sin(θn) + µ sin(θn + φn) (52)

θn+1 = θn + In+1 (53)

Jn+1 = Jn +K sin(φn) + µ sin(θn + φn) (54)

φn+1 = φn + Jn+1 (55)

The following figure demonstrates the idea of Arnold diffusion. Left upper: phase space of an isolated standard map.
Right: Plot of a not-too-long trajectory starting at regular-stochastic region. Left bottom: Plot of θ = φ = π section
of a very long trajectory starting at a chaotic spot.

http://journals.aps.org/pra/abstract/10.1103/PhysRevA.42.5885
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====== [13] Arnold diffusion - stochastic pump model

Chirikov [PhysRep 1979]
Lichtenberg and Lieberman, Regular and chaotic dynamics [book]

The minimal model for Arnold diffusion involves f = 3 freedoms:

• Driving source ”D” that has frequency Ω.

• Pendulum ωS that is driven into stochastic motion.

• Oscillator ωR that is driven by the pendulum.

• The coupling between ”D” and ”S” is K.

• The coupling between ”S” and ”R” is µ.

The Hamiltonian is

H(θ,n;φ, p; t) =
[
ωRn

]
+ µ cos(θ − φ) +

[
1

2
p2 − ω2

S cos(φ)

]
− K cos(φ− Ωt) (56)

http://www.sciencedirect.com/science/article/pii/0370157379900231/pdf?md5=87ef55668683a29aa5b1deecaa25c981&pid=1-s2.0-0370157379900231-main.pdf
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The width wS of the stochastic layer of the pendulum ”S” is determined by the Melnikov-Arnold integral, involving
the frequency Ω, leading to

wS = 8π K
Ω

ω2
S

exp

[
−π

2

Ω

ωS

]
(57)

The induced diffusion in ”R” is determined by the power spectrum of eiφ, which is again the Melnikov-Arnold integral,
but evaluated at the pertinent frequency ωR, leading to

Dn = (4π)2 µ2

Ω

(
ωR
ωS

)2

exp

[
−π

2

ωR
ωS

]
(58)

Note that K does not appear in the final expressions!

Quantization of the Stochastic Pump Model of Arnold Diffusion
Leitner, Wolynes [PRL 1997]

Manifestation of Arnold Diffusion in Quantum Systems
Demikhovskii, Izrailev, Malyshev [PRL 2002] [PRE 2002]

The more abstract point of view of Arnold diffusion is as follows:

• The ”pendulum” is the outcome of guiding resonance involving fS freedoms

• The ”driving” is the outcome of layer resonance involving fD freedoms

• The effective coupling is κfD reflecting high order of perturbation theory.

• The effective pendulum frequency is proportional to κfS

• The detuning of the layer resonance is ∆D ∝ e−fD

• The effective driving frequency is ∆D

• The detuning of the guiding resonance is ∆S ∝ e−fS

Accordingly

wS ∼ κfD exp

[
−e−fD

κfS

]
(59)

Later we discuss the work of Basko regarding the thermalization of DNLS chain. There we have the estimate
∆S ≈ W e−fS , where W is the disorder. The minimum occupation that is required to be on the guiding resonance is
∆S/U . Accordingly the ”chaotic fraction” is multiplied by a Boltzmann factor

w = wS exp

[
−βµ W

U
e−fS

]
= κfD exp

[
−e−fD

κfS
− e−fS

ρ

]
(60)

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.79.55
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.88.154101
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.66.036211
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====== [14] Prototype model for thermalization

A Bose-Hubbard system with M sites and N bosons:

H =

M∑
j=1

[
U

2
a†ja
†
jajaj +Wja

†
jaj −

Kj

2

(
a†j+1aj + a†jaj+1

)]
(61)

Parameters: U (interaction), W (disorder), K (hopping), M (sites), N (particles)

In a semi-classical framework:

aj =
√
nj eiϕj , [ϕj ,ni] = iδij (62)

z = (ϕ1, · · · ,ϕM , n1, · · · ,nM ) (63)

This is like M coupled oscillators with H = H(z)

H(z) =

M∑
j=1

[
U

2
n2
j +Wjnj −K

√
nj+1nj cos (ϕj+1−ϕj)

]
(64)

Without hopping each ”oscillator” has its own frequency:

ωj = Wj + Unj , Wj ∈
[
−W

2
,
W

2

]
(65)

The dynamics is generated by the Hamilton equation:

ż = J∂H , J =

(
0 I
−I 0

)
(66)

Discrete non-linear Schrodinger equation (DNLS)

Classically there is a single dimensionless parameter:

u =
NU

K
(67)

Rescaling coordinates:

ñ = n/N (68)

[ϕj , ñi] = i~δij (69)

~ =
1

N
(70)

Thermodynamics limit: M →∞, keeping N/M ∼ const.
Semiclassical limit: Given M , take N →∞, such that N/M � 1.
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====== [15] The fluctuation-diffusion-dissipation relation

Ott [PRL 1979] - diffusion picture for adiabatic driving
Wilkinson [JPA 1988] - dissipation picture based on this diffusion picture
Jarzynski [PRE 1995] - adding FPE perspective
Cohen [PRL 1999] [Annals 2000] - adding FDT perspective + addressing the quantum case
Bunin, D’Alessio, Kafri, Polkovnikov [Nature Phys 2011] - adding NFT based derivation

System
Driving

(ω)

W

S

Consider a driven system H+ f(t)V . The driving source induces diffusion in energy. Fermi golden rule implies

Dε =

∫ ∞
0

dω

2π
ω2 C̃ε(ω) S̃(ω) (71)

The Fokker-Planck description of the diffusion in energy requires to take the correct ”measure”, hence the appearance
of the density of states g(ε), namely,

∂ρ

∂t
=

∂

∂ε

(
g(ε)D(ε)

∂

∂ε

(
1

g(ε)
ρ

))
= − ∂

∂ε

(
A(ε)ρ− ∂

∂ε
[D(ε)ρ]

)
(72)

Defining β(ε) as the logarithmic derivative of g(ε), the expression for the “drift velocity” takes the form

A(ε) = ∂εDε + β(ε)Dε (73)

The implied expression for the rate of energy absorption is

JE = Ẇ =
d

dt

∫
ε %(ε) dε =

∫
A(ε)%(ε) dε = 〈A〉 (74)

This can be regarded as rate of doing ”work” on the system (Ẇ ), or as the flow of energy (JE) from the driving
source to the system.

====== [16] Thermalization of two subsystems

MEQ version: Hurowitz, Cohen [EPL 2011]
FPE version: Tikhonenkov, Vardi, Anglin, Cohen [PRL 2013]
NFT version: Bunin, Kafri [JPA 2013]

subsystem 1 subsystem 2

A

http://physics.bgu.ac.il/~dcohen/ARCHIVE/crs_PRL.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/frc.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/kbb_EPL.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/trm_PRL.pdf
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This is a variation on the fluctuation-diffusion-dissipation relation.
The diffusion is along constant energy lines: ε1 + ε2 = E .

Dε =

∫ ∞
0

dω

2π
ω2 S̃(1)(ω) S̃(2)(ω) (75)

A Fokker-Planck description is implied.
The proper Liouville measure is: g(ε) = g1(ε)g2(E − ε).

Rate of energy transfer:

A(ε) = ∂εDε + (β1 − β2)Dε (76)

If one would assume a canonincal preparation of the two subsystems:

JE = 〈A(ε)〉 =

(
1

T1
− 1

T2

)
〈Dε〉 (77)

What we have here is a Fick-type law that related a current to the gradient of a thermodynamic potential. If the two
subsystems can exchange both particles and energies the relation between (JN , JE) and the gradient in (µ, β) will
involve a 2× 2 transport matrix of transport coefficients.

====== [17] Thermalization of long DNLS chains

Basko, Weak chaos in the disordered nonlinear Schrodinger chain: Destruction of Anderson localization by Arnold
diffusion [Annals Phys 2011]

Assumes weakly coupled sites:

κ ≡ K

W
� 1 (78)

Recall that each site has frequency ωj = Wj+Unj . We assume that in the dynamical range of interest the non-linearity
is small, and nothing is trapped in a local minimum.

ρ ≡ Un

W
� 1 (79)

Technical remark: In the detailed derivation each segment is characterized by local X = (βµ,−β) that can be
translated via a grand-canonical ansats to local Y = (N(x), E(x)). The objective is to derive macroscopic transport
description that is based on a continuity equation ∂tY = −∂xJ with currents J = −σ∂xX. Here we simplify the
discussion referring only to the occupation which is described by the scaled density ρ(x).

The basic idea of the calculation is as follows:
The chain is composed of segments;
Each location is characterized by a chaotic fraction w.
In the stochastic-pump-model formula for w use κ := κpρ with 1

3 ≤ p ≤ 3.

Prob
[
w < e−λ

]
≈ exp [−S(λ)] (80)

where

S(λ) = cρλp exp

 λ

C ln2
(

1
κpρ

)
 (81)

The local diffusion coefficient D ∼ wD0 is dominated by w.
The coarse grained diffusion coefficient is implied by a resistor network picture:

D ∼
[〈

1

w

〉]−1

=

[∫ ∞
0

dλ exp [λ− S(λ)]

]−1

(82)

Leading to the estimate

D(ρ) ∼ exp

[
−C ln2

(
1

κpρ

)
ln

(
1

ρ

)]
(83)

http://www.sciencedirect.com/science/article/pii/S0003491611000339
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This estimate has been based on finding the optimal λ that characterizes the bottlenecks for diffusion. This can be
translated into a characteristic length scale for distance between bottlenecks

L∗ = exp

[
C ln2

(
1

κpρ

)]
(84)

On scales larger than that we can write J = −D(ρ)∂xρ. Introducing into the continuity equation ∂tρ = −∂xJ , one
obtain a non-linear diffusion equation for the occupation density.

We note that the idea of using a resistor-network calculation in the context of weak-chaos has first appeared, to the
best of our knowledge, in Cohen, Kottos, Schanz [JPA 2006], Bandopadhyay, Etzioni, Cohen [EPL 2006] and
has been termed semi-linear response by Wilkinson, Mehlig, Cohen [EPL 2006]. It has been connected to variable
range hopping by Cohen [PRB 2007] with further applications by the BGU group (Stotland et al) in [JPA 2008]
[EPL 2009] [PRB 2010] [EPL 2010] [PRE 2011]

http://physics.bgu.ac.il/~dcohen/ARCHIVE/kbr_JPA.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/bls_ARC.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/slr_EPL.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/kbv_PRB.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/bld_JPA.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/kbw_EPL.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/kbd_ARC.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/cqb_EPL.pdf
http://physics.bgu.ac.il/~dcohen/ARCHIVE/cqc_ARC.pdf
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====== [18] Quantum Localization

Let us start with a simple example for dynamical localization in a minimal Bose-Hubbard model. The FPE description
makes sense if at least one sub-system is chaotic.

Minimal model for a chaotic sub-system: BHH trimer.

Minimal model for thermalization: BHH trimer + monomer

Khripkov, Vardi, Cohen [NJP 2015]

2 31

0 = monomer

The trimer spectrum is characterized by the Brody parameter.
Different initial conditions are indicated.
The couplings induces FGR transitions within the energy shell.
The diffusion coefficient D(x) can be calculated using a “resistor network” formalism.
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Now we follow the evolution as a function of time.
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http://physics.bgu.ac.il/~dcohen/ARCHIVE/tmn_NJP.pdf
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It can be described by an FPE.

∂

∂t
ρ(x) =

∂

∂x

[
g(x)D(x)

∂

∂x

( 1

g(x)
ρ(x)

)]
(85)

But we see that that for some initial conditions we get localization.
For small x preparation the localization is related to phase-space structures,
while for large x it is Anderson-type localization in a chaotic sea.
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Another example for manifestation of dynamical localization in the BHH context concerns a ring geometry. It is re-
sponsible for what we call quantum metastability: Arwas, Vardi, Cohen, Superfluidity and Chaos in low dimensional
circuits [Scientific Reports (2015)]

====== [19] Quantum Localization - breaktime concept

The semiclassical perspective on “weak localization” is known as ”scar theory”. The breaktime concept has first
appeared in the context of ”strong” 1D dynamical localization in the kicked-rotor problem, and later generalized in
various ways.

Chirikov, Izrailev, Shepelyansky [SovSciRevC 1981], Shepelyansky [PhysicaD 1987]
Heller, Quantum localization and the rate of exploration of phase space [PRA 1987]
Dittrich, Spectral statistics for 1D disordered systems [Phys Rep 1996]
Cohen, Periodic Orbits Breaktime and Localization [JPA 1998]

If we have a simple chaotic system (ballistic exploration of its volume) then recurrence start at the Heisenberg time

tH =
2π~
∆0

∝ Ω∞
~f−1

(86)

where ∆0 is the mean level spacing, and Ω∞ is the total volume. But if we have a more complex phase space then the
exploration of the volume can be (say) as in a random walk process, described by a function Ω(t). Then we define an
associated time-dependent Heisenberg time, and write the QCC condition as

t � Ω(t)

Ω∞
tH (87)

In a diffusive systems the classical exploration grows asymptotically like t1/2 in 1D, like t/ ln(t) in 2D, and like t, with
small corrections for higher dimensions. We deduce that in 1D and 2D we always have a breaktime, while in 3D there
might be a mobility edge.

The well known semi-classical result for localization in 1D is easily recovered. Setting Ω(t) =
√
Dt and tH = 2L/v we

get the following result

t∗ =
4D

v2
, ξ =

2D

v
= 2` (88)

http://physics.bgu.ac.il/~dcohen/ARCHIVE/sfc_SRP.pdf
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.35.1360
http://www.sciencedirect.com/science/article/pii/0370157395000739
http://iopscience.iop.org/0305-4470/31/1/025
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Alert: this strict 1D version s a somewhat misleading because an explicit ~ dependence is absent. The puzzle is
solved by noting that in strict 1D the diffusion cannot be of classical origin. If we go to (say) an f = 2 quasi-1D
billiard system with classical diffusion, the expression for the Heisenberg time is multiplied by an ~-dependent factor
(so called “number of channels”) and we deduce the ξ ∝ Dcl/~. Hence the formula acquires an explicit ~ dependence
as expected.

====== [20] The Anderson criterion for localization

Anderson, Absence of Diffusion in Certain Random Lattices [Phys Rev 1958]

Calculating the Green function for a particle in a disordered lattice. By definition the connective constant µ determines
the number nµ of self-avoiding paths that start at the origin, where n → ∞ is the path length. The Green function
is schematically

G ∼
∑
n

µn
(

K

E − ε

)n
(89)

where the ε ∈ [−W/2,+W/2] are random on-site energies, and K is the hopping amplitude. The condition for
convergence (implying localization) is

µ

〈
K

E − ε

〉
ε

< 1 (90)

In the band center it leads to the Anderson criterion

µ
K

W
ln

(
W

K

)
< 1 (91)

Or one may say roughly that there is localization if µK < W , which is the condition for not mixing the orbitals by
the hopping.

====== [21] The MBL condition

Basko, Aleiner, Altshuler [Annals Phys 2006] [arXiv]
Gornyi, Mirlin, Polyakov [PRL 2005]

The discussion of MBL has originally appeared in the electronic context (fermions). The role of the disorder W
is played by the mismatch of energies that are coupled by the two-body interaction term. Assuming that coupled
orbitals reside at the same localization volume∣∣∣εα + εβ − εγ − εδ

∣∣∣ ∼ ∆ξ (92)

It is argued that the effective connective constant is µ ∼ T/∆ξ. The strength of the interaction (relative to ∆ξ) is
denoted λ. Hence the Anderson criterion takes the following form

T

∆ξ
λ| lnλ| < 1 (93)

The implications of MBL on the properties of the sample are important for both numerical and experimental studies.
Clearly is does not affect the density of states, hence it is not a thermodynamic phase-transition. But we expect an
abrupt change in the conductivity (see schematic plot), and it should be reflected in the sensitivity to twist boundary
conditions. It also should affect the level statistic and the ω ∼ 0 response characteristics (see later section). Another
measure is the segment-size dependence of the entanglement entropy (see later section).

http://journals.aps.org/pr/abstract/10.1103/PhysRev.109.1492
http://www.sciencedirect.com/science/article/pii/S0003491605002630
http://arxiv.org/abs/cond-mat/0602510
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.206603
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The false argument against the survival of Anderson localization is as follows: Once inter-particle interaction is
introduced, each particle experiences a bath that consists of all the other particles; hence decoherence destroys
the Anderson localization; leading to hopping conductivity. The answer to this fallacy is that the local bath has a
discrete spectrum; averaging the spectrum over disorder realization is apparently correct for the purpose of calculating
dephasing rate, but wrong as far as breaktime is concerned.

====== [22] MBL - spectral measures

Considering spinless electrons in 1D disordered lattice, with repulsive interaction for occupation of neighboring sites.

Bar-Lev, GuyCohen, Reichman [PRL 2015]

Infinite temperature analysis. Calculating ”Brody” vs (W,U) for increasing values of N . Identification of regions
where Brody goes from Wigner to Poisson.

Wc of the ergodic-nonergodic transition becomes smaller if U is very small/large. (regions of ”less chaos”).

Also calculating density-density correlation function. The ”spreading” exponent α can be deduced from the band
profile C(ω) at the vicinity of ω = 0. The system is always sub-diffusive, and the drop of α across the transition is
gradual.

====== [23] MBL - entanglement measure

Considering spinless electrons in 1D disordered lattice, with repulsive interaction for occupation of neighboring sites.

Berkovits, Entanglement entropy in a one-dimensional disordered interacting system [PRL 2012]

Calculating entanglement entropy as a function of the segment length. Saturation reflects the finite localization length
of the sample.

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.100601
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.176803
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S(LA;L, ξ) = prefactor× ln

[
L

π
SIN

(
π

(
1

L2
+

1

ξ2

)1/2

LA

)]
+ const (94)

The purpose was to test the theoretical prediction for the localization length:

ξ(W,U) = [ξ(W )]
G(U)

, G(U) < 1 (95)
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====== [24] Many body localization - Bose gas

Aleiner, Altshuler, Shlyapnikov, a finite-temperature phase transition for disordered weakly interacting bosons
in one dimension [Nature Phys 2010]

The two challenging statements are:

• existence of a phase transition in one dimension;

• persistence of quantum phase-transition at finite temperature.

We consider bosons in 1D with disordered potential. It is possible to characterize the disorder by a parameter W , as
if we were dealing with an Anderson lattice model. At zero temperature (T = 0) there is quantum phase transition
form superfluid to insulator at w = 1, where

w ≡ W

gρ
, ρ = density, g = GP interaction parameter (96)

The temperature above which the gas becomes non-degenerate is

Td =
ρ2

m
, γ[Lieb-Liniger] =

gρ

Td
=

mg

ρ
(97)

We assume weak interactions (γ � 1). The border of the MBL phase-transition in the (W,T ) phase diagram is
determined from the Anderson criterion. Namely, the insulating phase is µU < ∆ξ. Let us find the explicit expression
for this border at the T > Td region.
The density of one-particle states at that temperature is ν =

√
m/T .

The localization length at that temperature is ξ = T/(mW 3)1/2.
The parameters that appear in the Anderson condition are

U =
g

ξ
, ∆ξ =

1

νξ
, µ = ρξ (98)

leading to the condition

T <
W 3

(gρ)2
(99)

Note that large density ρ implies fluid. If we start with a large density cloud of particles, the spreading will go on
until ρ reach the value for which the above condition no longer satisfied.

http://www.nature.com/nphys/journal/v6/n11/abs/nphys1758.html
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====== [25] DNLS spreading problem

If we start with a very peaked preparation, then there is a remnants non-decaying piece (energetic stability?). Below
we ignore this possibility and assume a wide flat region plus tails such that

ρ =
1

tα/2
(100)〈

x2
〉

= tα (101)

It has been argued that beyond some critical value of the interaction, Anderson localization is destroyed, and there is
sub-diffusion with α = 2/5. The sub-diffusion is implied by regarding the nonlinear term as a source for white-noise,
with intensity that decreases with time due to the spreading.

Pikovsky, Shepelyansky, Destruction of Anderson Localization by Nonlinearity [PRL 2008]

Later it has been argued by Flach et al that α = 1/3.
Flach, Krimer, Skokos [PRL 2009]
Skokos, Krimer, Komineas, Flach [PRE 2009]

Using perturbation theory it has been argued that at least up to some stage〈
x2
〉
∼ ln(t) for t < u−order (102)

See Wang,Zhang [JStatPhys 2009] and Fishman, The nonlinear Schrdinger equation with a random potential [Nonlin-
earity 2011] (review)

The work of Basko provides a coarse-grained description of the transport that holds as long as the spreading width
does not exceed a mesoscopic scale L∗. From this description one deduce slower than power-law spreading, namely,

width[x] ∼ exp
[
C (ln t)1/3

]
(103)

See also discussion of weak disorder “homogeneous chaos” limit in Basko [PRE 2014], where D(ρ) ∝ ρ2 implies an
intermediate stage of sub-diffusion with α = 1/2.

If we take MBL into account, the distribution should flatten asymptotically at a density that corresponds to the
fluid-insulator transition.

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.094101
http://dx.doi.org/10.1103/PhysRevLett.102.024101
http://dx.doi.org/10.1103/PhysRevE.79.056211
http://link.springer.com/article/10.1007%2Fs10955-008-9649-1
http://physics.technion.ac.il/~fishman/publications/Nonlinearity_25_R53.pdf
http://physics.technion.ac.il/~fishman/publications/Nonlinearity_25_R53.pdf
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.022921
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