Entanglement formation under random interactions

Christoph Wick, Jaegon Um, and Haye Hinrichsen

University of Würzburg, Germany and KIAS, Quantum Universe Center, Korea

KIAS Workshop on Quantum Information and Thermodynamics

Busan, Korea, November 28, 2015

Outline:

Introduction

(a) Quenched random interactions

(b) Time-dependent random interactions

Random interactions

Case (a):

Introduction

(a) Quenched random interactions

(b) Time-dependent random interactions

Conclusions

Case (b):

System with a **time-dependent** random Hamiltonian.

The two cases:

We draw the SU(4) manifold as if it was a Bloch sphere.

SU(4) representation

- Lie algebra of 15 generators $\lambda_1, \ldots, \lambda_{15}$.
- 15 Euler-like angles $\vec{\alpha} = \{\alpha_1, \dots, \alpha_{15}\}$
- Group elements of SU(4):

$$U_{\vec{\alpha}} = e^{i\lambda_3\alpha_1} e^{i\lambda_2\alpha_2} e^{i\lambda_3\alpha_3} e^{i\lambda_5\alpha_4} e^{i\lambda_3\alpha_5} e^{i\lambda_{10}\alpha_6} e^{i\lambda_{3}\alpha_7} e^{i\lambda_{2}\alpha_8} \\ \times e^{i\lambda_3\alpha_9} e^{i\lambda_5\alpha_{10}} e^{i\lambda_3\alpha_{11}} e^{i\lambda_{2}\alpha_{12}} e^{i\lambda_{3}\alpha_{13}} e^{i\lambda_{8}\alpha_{14}} e^{i\lambda_{15}\alpha_{15}}$$

Well-defined integration ranges for the α_i without overlaps.

T. Tilma, M. Byrd, and E. C. G. Sudarshan, J. Phys. A 2002.

Integration over SU(4)

Average over a probability density on the unit sphere in \mathbb{R}^3 :

$$\left\langle f \right\rangle_{p} = \frac{1}{A} \int f p \, \mathrm{d}A = \frac{1}{4\pi} \int_{0}^{\pi} \int_{0}^{2\pi} f(\theta, \phi) p(\theta, \phi) \underbrace{\sin \theta}_{\mu(\theta, \phi)} \, \mathrm{d}\theta \, \mathrm{d}\phi$$

Average over a probability density on the SU(4) group manifold:

$$\begin{cases} f \\ \rho \end{array} = \frac{1}{V_{SU(4)}} \int f \rho \, \mathrm{d} V_{SU(4)} \\ = \frac{1}{V_{SU(4)}} \int \cdots \int f(\vec{\alpha}) \, \rho(\vec{\alpha}) \, \mu(\vec{\alpha}) \, \mathrm{d}\alpha_1 \cdots \mathrm{d}\alpha_{15} \end{cases}$$

$$\begin{split} \mu(\vec{\alpha}) &= \sin(2\alpha_2)\sin(\alpha_4)\sin^5(\alpha_6)\sin(2\alpha_8)\sin^3(\alpha_{10})\sin(2\alpha_{12})\cos^3(\alpha_4)\cos(\alpha_6)\cos(\alpha_{10}) \, . \\ V_{SU(4)} &= \frac{\sqrt{2}\,\pi^9}{3} & \text{M. S. Marinov, J. Phys. A 14 (1981).} \end{split}$$

SU(4) representation

Initial state: Quantum state:

$$\rho(\mathbf{0}) = |\mathbf{1}1\rangle\langle\mathbf{1}1|$$

$$\rho(\vec{\alpha}) = U_{\vec{\alpha}}\,\rho(\mathbf{0})\,U_{\vec{\alpha}}^{\dagger}$$

$$\begin{array}{rcl} \rho_{11}(\alpha) & = & \cos^2(\alpha_2)\cos^2(\alpha_4)\sin^2(\alpha_6) \\ \rho_{12}(\alpha) & = & -\frac{1}{2}e^{2i\alpha_1}\cos^2(\alpha_4)\sin(2\alpha_2)\sin^2(\alpha_6) \\ \rho_{13}(\alpha) & = & -\frac{1}{2}e^{i(\alpha_1+\alpha_3)}\cos(\alpha_2)\sin(2\alpha_4)\sin^2(\alpha_6) \\ \rho_{14}(\alpha) & = & e^{i(\alpha_1+\alpha_3+\alpha_5)}\cos(\alpha_2)\cos(\alpha_4)\cos(\alpha_6)\sin(\alpha_6) \\ \rho_{22}(\alpha) & = & \cos^2(\alpha_4)\sin^2(\alpha_2)\sin^2(\alpha_6) \\ \rho_{23}(\alpha) & = & e^{-i(\alpha_1-\alpha_3)}\cos(\alpha_4)\sin(\alpha_2)\sin(\alpha_4)\sin^2(\alpha_6) \\ \rho_{24}(\alpha) & = & -e^{-i(\alpha_1-\alpha_3-\alpha_5)}\cos(\alpha_4)\cos(\alpha_6)\sin(\alpha_2)\sin(\alpha_6) \\ \rho_{33}(\alpha) & = & \sin^2(\alpha_4)\sin^2(\alpha_6) \\ \rho_{34}(\alpha) & = & -e^{i\alpha_5}\cos(\alpha_6)\sin(\alpha_4)\sin(\alpha_6) \\ \rho_{44}(\alpha) & = & \cos^2(\alpha_6) \end{array}$$

 $\rho(\vec{\alpha})$ depends only on six angles $\alpha_1, \ldots, \alpha_6$ out of 15.

Strategy:

Quenched random interactions

Choose a fixed random Hamiltonian

$$H = \sum_{i=1}^{4} E_i |\phi_i\rangle \langle \phi_i| \quad \Rightarrow \quad U(t) = e^{-iHt} = \sum_{i=1}^{4} e^{-iE_it} |\phi_i\rangle \langle \phi_i|,$$

from a Gaussian Unitary Ensemble (GUE).

Compute:

- Entanglement of the average: $H\left[Tr_1\left[\langle \rho(t) \rangle_{GUE}\right]\right]$
- Average of the entanglement: $\langle H[Tr_1[\rho(t)]] \rangle_{\text{GUE}}$

In the GUE, the eigenvalue and eigenvector statistics are independent:

$$\left\langle \ldots \right\rangle_{\text{gue}} = \left\langle \left\langle \ldots \right\rangle_{\vec{\alpha}} \right\rangle_{E} = \left\langle \left\langle \ldots \right\rangle_{E} \right\rangle_{\vec{\alpha}}$$

(i) Energy eigenvalue statistics:

$$\langle f \rangle_E = \int \mathrm{d}E_1 \cdots \int \mathrm{d}E_4 \, e^{-A\sum_i E_i^2} \prod_{n>m} (E_n - E_m)^2 f(E_1, \dots, E_4)$$

(ii) Eigenvector statistics: uniform under SU(4) (Haar measure)

$$\left\langle f \right\rangle_{\alpha} = \frac{1}{V_{SU(4)}} \int \cdots \int f(\vec{\alpha}) \underbrace{p(\vec{\alpha})}_{=1} \mu(\vec{\alpha}) \, \mathrm{d}\alpha_1 \cdots \mathrm{d}\alpha_{15}$$

(a) Entanglement of the average

Compute the average density matrix

$$\left\langle \rho(t) \right\rangle_{\text{GUE}} = \sum_{j,k=1}^{4} \underbrace{\left\langle e^{-i\left(E_{j}-E_{k}\right)t} \right\rangle_{E}}_{R_{jk}} \underbrace{\left\langle |\phi_{j}\rangle\langle\phi_{j}|\,\rho(0)\,|\phi_{k}\rangle\langle\phi_{k}| \right\rangle_{\alpha}}_{\mathbf{T}_{jk}}$$

$$R_{jk} = f(\tau) + \left(1-f(\tau)\right)\delta_{jk} = \begin{cases} 1 & \text{for } j=k\\ f(\tau) & \text{for } j\neq k \end{cases}$$

$$f(\tau) = \frac{1}{72} e^{-\tau^{2}} \left(-2\tau^{10}+25\tau^{8}-128\tau^{6}+276\tau^{4}-288\tau^{2}+72\right)$$
where $\tau := t/\sqrt{2A}$ is the scaled time.

Entanglement of the average

Compute the average density matrix

$$\left\langle \rho(t) \right\rangle_{\text{GUE}} = \sum_{j,k=1}^{4} \underbrace{\left\langle e^{-i\left(E_{j}-E_{k}\right)t} \right\rangle_{E}}_{R_{jk}} \underbrace{\left\langle |\phi_{j}\rangle\langle\phi_{j}|\,\rho(0)\,|\phi_{k}\rangle\langle\phi_{k}| \right\rangle_{\alpha}}_{\mathbf{T}_{jk}}$$

$$\left\langle \rho(t) \right\rangle_{\text{GUE}} = f(\tau) \underbrace{\sum_{j,k=1}^{4} \mathbf{T}_{jk}}_{=\rho(0)} + \left(1-f(\tau)\right) \underbrace{\sum_{j=1}^{4} \mathbf{T}_{jj}}_{=\frac{1}{5}(1+\rho(0))}$$

Entanglement of the average

$$\left\langle
ho(t)
ight
angle_{ ext{gue}} \ = \ rac{1-f(au)}{5} \mathbf{1} + rac{1+4f(au)}{5}
ho(0)$$

τ

Average of the entanglement

- The von-Neumann entanglement is too difficult to compute.
- Use the so-called linear entropy instead:

$$\left\langle L(t) \right\rangle_{_{\mathrm{GUE}}} = 1 - \left\langle \mathrm{Tr}[\rho_1^2(t)] \right\rangle_{_{\mathrm{GUE}}}$$

$$\left\langle L(t)
ight
angle_{ ext{gue}} \ = \ 1 - \sum_{\mu, eta, \gamma, \delta = 1}^2 \left\langle \left\langle \mu eta |
ho(t) | \gamma eta
ight
angle \left\langle \gamma \delta |
ho(t) | \mu \delta
ight
angle
ight
angle_{ ext{gue}}$$

Average of the entanglement

Technically similar:

$$\left\langle L(t) \right\rangle_{\text{GUE}} = 1 - \sum_{\mu,\beta,\gamma,\delta=1}^{2} \sum_{j,k,l,m=1}^{4} \underbrace{\left\langle e^{-i(E_j - E_k + E_l - E_m)\tau\sqrt{2A}} \right\rangle_E}_{R_{ijkl}(\tau)} \\ \times \underbrace{\left\langle c_j^{\mu\beta^*} c_j^{11} c_k^{11^*} c_k^{\gamma\beta} c_l^{\gamma\beta^*} c_l^{11} c_m^{11^*} c_m^{\delta\mu} \right\rangle_{\alpha}}_{\mathbf{T}_{jklm}^{\mu\beta\gamma\delta}} .$$

$$\left\langle L(\tau) \right\rangle_{\text{GUE}} = -\frac{1}{840} e^{-\tau^2} \left(-2\tau^{10} + 25\tau^8 - 128\tau^6 + 276\tau^4 - 288\tau^2 + 72 \right) -\frac{1}{630} e^{-2\tau^2} \left(32\tau^8 - 128\tau^6 + 168\tau^4 - 72\tau^2 + 9 \right) -\frac{1}{420} e^{-3\tau^2} \left(-54\tau^{10} + 387\tau^8 - 832\tau^6 + 828\tau^4 - 288\tau^2 + 24 \right) -\frac{1}{315} e^{-4\tau^2} \left(-256\tau^{10} + 800\tau^8 - 1024\tau^6 + 552\tau^4 - 144\tau^2 + 9 \right) + \frac{13}{70}$$

Average of the entanglement

Average of the entanglement

Why does the mean entanglement memorize the initial state?

- Unitary transformations $U(t) = e^{iHt}$ are recurrent.
- Trajectories keep on intersecting at the "north pole".
- \Rightarrow Non-uniform density on the SU(4) manifold.

Time-dependent random interactions

The generalized Euler angles $\vec{\alpha} = \alpha_1, \dots, \alpha_{15}$ change randomly in time.

Random walk \Rightarrow Probability distribution $p(\vec{\alpha}, t)$

Diffusion equation on the SU(4) manifold:

$$\frac{\partial \boldsymbol{p}(\vec{\alpha},t)}{\partial t} - \boldsymbol{D} \Delta_{\alpha} \boldsymbol{p}(\vec{\alpha},t) = \boldsymbol{0}$$

Time-dependent random interactions

Limit $t \to \infty$: Stationary state with a homogeneous distribution (Haar measure).

Known result:

Let $|\psi\rangle$ be a random state in $\mathcal{H} = \mathbb{C}^n \otimes \mathbb{C}^m$.

$$\Rightarrow \left\langle E_{|\psi\rangle} \right\rangle_{GUE} = \left(\left(\sum_{k=n+1}^{mn} \frac{1}{k} \right) - \frac{m-1}{2n} \right)$$
$$\Rightarrow \left\langle E_{|\psi\rangle} \right\rangle_{GUE} = \frac{1}{3} \quad \text{for two qubits.}$$

Page, PRL 71,1291 (1993); Foong and Kanno, PRL 72,1148 (1994); Sen, PRL 77,1 (1996).

Diffusion equation on curved space:

$$\frac{\partial \boldsymbol{p}(\vec{\alpha},t)}{\partial t} - \boldsymbol{D} \Delta_{\alpha} \boldsymbol{p}(\vec{\alpha},t) = \boldsymbol{0}$$

Laplace-Beltrami operator:

$$\Delta_{\alpha} f = \frac{1}{\sqrt{|g|}} \frac{\partial}{\partial \alpha_i} \left(\sqrt{|g|} g^{ij} \frac{\partial}{\partial \alpha_j} f \right)$$

SU(4) metric tensor:

$$ds^{2} = \sum_{i,j=1}^{15} g_{ij} d\alpha_{i} d\alpha_{j}$$

= Tr [dUdU[†]] = Tr [U(d\vec{a})U[†](d\vec{a})]

Time-dependent random interactions

see Mathematica notebook (paper supplement)

Consider a function f on the SU(4) manifold:

$$\left\langle f(t) \right\rangle = \left. \sum_{n=0}^{\infty} \frac{t^n}{n!} \frac{\partial^n}{\partial \tilde{t}^n} \left\langle f(\tilde{t}) \right\rangle \right|_{t=0}$$

Then the diffusion equation implies that

$$\left.\frac{\partial^n}{\partial t^n}\langle f(t)\rangle\right|_{t=0} = D^n \Delta^n_\alpha f(\vec{\alpha})\right|_{\alpha=\alpha_0}$$

 \Rightarrow All we need to know is $\Delta_{\alpha}^{n} f(\alpha)$

First surprise:

$$ho(ec{lpha}) \ = \ U_{ec{lpha}} \,
ho(0) \, U_{ec{lpha}}^{\dagger}$$

is some kind of eigenvector of the Laplace-Beltrami operator:

 $\Delta_{\alpha}\rho(\vec{\alpha}) = 2 \cdot \mathbf{1} - 8 \rho(\vec{\alpha})$ $\Rightarrow \text{ All derivatives } \Delta_{\alpha}^{n}\rho(\vec{\alpha}) \text{ are known!}$ $\left\langle \rho(t) \right\rangle = \frac{1}{4} \cdot \mathbf{1} + \left(\rho(\vec{\alpha}_{0}) - \frac{1}{4} \cdot \mathbf{1}\right) e^{-8Dt}$

Entanglement of the average vanishes.

Second surprise:

The linear entropy
$$L(\vec{\alpha}) = 1 - \text{Tr}[\rho_1(\vec{\alpha})^2]$$

is also an eigenvector of the Laplace-Beltrami operator:

$$\triangle_{\alpha} L(\vec{\alpha}) = 4 \cdot 1 - 20 L(\vec{\alpha})$$

$$\left\langle L(t)\right\rangle = \frac{1}{5} + \left(L(\vec{\alpha}_0) - \frac{1}{5}\right)e^{-20Dt}.$$

Non-entangled initial state: $\langle L(t) \rangle = \frac{1}{5} - \frac{1}{5}e^{-20Dt}$. Full entangled initial state: $\langle L(t) \rangle = \frac{1}{5} + \frac{3}{10}e^{-20Dt}$.

Von-Neumann entanglement entropy is too difficult and can only be calculated to first order in τ :

Conclusions

- Random interactions may lead to a buildup of entanglement.
- Two cases:
 - (a) Quenched (time-independent) randomness
 - (b) Fluctuating (time-dependent) randomness
- Two types of averages
 - Entanglement of the average (more physical)
 - Average of the entanglement (less physical)
- By-product: Metric and Laplacian of SU(4)

• Result: (a)
$$\sim e^{- au^2}$$
, (b) $\sim e^{- au}$

arxiv/1508.01652, to appear in J. Phys. A

Thank you!