Non-Equilibrium Fluctuations in Expansion/Compression Processes of a Single-Particle Gas

Hyuk Kyu Pak

Department of Physics, UNIST

IBS Center for Soft and Living Matter

November 28, 2015, Busan

Nonequilibrium Thermodynamics in Quantum and Classical Physics

Ulsan National Institute of Science and Technology

IBS Center for Soft and Living Matter

Hyuk Kyu Pak

What happens at soft matter interfaces? How to explain non-equilibrium phenomena?

- Electrical Properties at Solid-Liquid Interfaces
- Non-Equilibrium Fluctuations in Very Small Systems
- Colloid and Nano Particles at Interfaces
- Hydrodynamics in Small Systems
- Wetting and Electro-wetting

Electrical Properties at Solid-Liquid Interfaces

- Electric power generation by modulating the metal-water interface.
- Interfacial charge density between solid and liquid.
- The influence of pH solution on solid-liquid interfaces.

Non-Equilibrium Fluctuations in Very Small Systems

- Realization of a Brownian motor through feedback control.
- Optical tweezers studying micro-size systems
- The influence of pH solution on solid-liquid interfaces.

Colloid and Nano Particles at Interfaces

- Electrical phenomena across bio-membrane
- Hydrodynamics of colloid particles near interfaces
- Nano particle adsorption at the liquid-vapor

Soft Matter Physics Research Group

Contributors: Dr. Dong Yun Lee Dr. Govind Paneru

Prof. Chulan Kwon Myongji Univ.

Fluctuation theorem

- Most interesting processes in the nature occur far from equilibrium.
- The second law of thermodynamics predicts that the entropy of an isolated system should tend to increase until it reaches equilibrium.
 (Δs) > 0.
- In statistical mechanics, the second law is only a statistical one. There should always be some nonzero probability that the entropy of an isolated system might spontaneously *decrease* ($\Delta s < 0$); the fluctuation theorem precisely quantifies this probability.
- Fluctuation theorem deals with the relative probability that the entropy of a system far from equilibrium will increase or decrease over a given amount of time.

Discovery of Fluctuation Theorems (FT)

Evans, Cohen, Morris (1993) Evans & Searls (1994), Gallavotti & Cohen (1995) Gallavotti-Cohen Symmetry $\frac{P(\Delta S_t)}{P(-\Delta S_t)} = e^{\Delta S_t}$ Detailed FT $\int_{-\infty}^{\infty} P(\Delta S_t) d\Delta S_t = \int_{-\infty}^{\infty} e^{\Delta S_t} P(-\Delta S_t) d\Delta S_t = \int_{-\infty}^{\infty} e^{-\Delta S_t} P(\Delta S_t) d\Delta S_t = \frac{\langle e^{-\Delta S_t} \rangle = 1}{|\text{Integral FT}|}$

Using Jensen's inequality $\langle e^x \rangle \ge e^{\langle x \rangle} \longrightarrow e^0 = \langle e^{-\Delta S_t} \rangle \ge e^{\langle -\Delta S_t \rangle} \longrightarrow \langle \Delta S_t \rangle \ge 0$

Thermodynamic 2nd law is a corollary of G-C symmetry!!

Fluctuations depending on the size of the system

Macroscopic system

Microscopic system

Fluctuations in thermodynamic variables are **negligible**.

Page • 10

Fluctuations in thermodynamic variables are very visible.

Crooks Fluctuation Theorem (CFT, G. E. Crooks 1998)

 CFT has drawn a lot of attention because of its usefulness in experiment. This theorem makes it possible to experimentally measure the free energy difference of the system during a nonequilibrium process.

Why fluctuation theorem is important?

Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies

$$\frac{P_f(W)}{P_b(-W)} = \exp[\beta(W - \Delta F)]$$

Collin, Bustmante et. al. Nature(2005)

Consider a particle trapped in a 1D harmonic potential

$$V(x) = kx^2/2$$

where k is a trap strength of the potential.

- When the trap strength is either increasing or decreasing isothermally in time, the particle is driven from equilibrium.
- Since the size of the system is finite, one can test the fluctuation theorems in this system.
- We measure the work distribution and determine the free energy difference of the process by using Crooks fluctuation theorem.

DY Lee, C. Kwon & H. K. Pak PRL, 114, 060603 (2015)

Free Energy Difference of the System

• Harmonic oscillator (in 1D)
• Hamiltonian is given by

$$H(x, p) = \frac{p^2}{2m} + \frac{1}{2}kx^2$$
• Partition function is

$$Z = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp{-\beta H(x, p)} dx dp / h} = 1/\beta \hbar \omega, \quad \omega = \sqrt{k/m}$$

- Free energy difference between two equilibrium states
$$(k_i, k_f)$$
 at the same temperature is

forward

backward

$$\beta \Delta F = (-\ln Z_f) - (-\ln Z_i) = 1/2 \ln \frac{\kappa_f}{\kappa_i}$$

- Forward quasi-static process : $k_f > k_i \rightarrow \Delta F > 0$ ($\Delta S < 0$) Backward quasi-static process: $k_f < k_i \rightarrow \Delta F < 0$ ($\Delta S > 0$)
- During these processes: $U \equiv \langle E \rangle = k_B T$

1D Brownian Motion of Single Particle in Heat Bath

$$\begin{cases} \dot{x} = \frac{p}{m} \\ \dot{p} = -\nabla V(x,\lambda(t)) - \gamma \frac{p}{m} + z(t), & \langle z(t)z(t') \rangle = 2D\delta(t-t') \end{cases} \\ \dot{p} \cdot \frac{p}{m} = -\nabla V \cdot \frac{p}{m} + \left[-\gamma \frac{p}{m} + z(t) \right] \cdot \frac{p}{m}, & dV(x,\lambda(t)) = \nabla V \cdot dr + \frac{\partial V}{\partial t} dt \\ \frac{d}{dt} \left(\frac{p^2}{2m} \right) = -\frac{d}{dt} V(x) + \frac{\partial V}{\partial \lambda} \dot{\lambda} + \left[-\gamma \frac{p}{m} + z(t) \right] \frac{p}{m} \\ \frac{d}{dt} \left(\frac{p^2}{2m} + V \right) = \frac{\partial V}{\partial \lambda} \dot{\lambda} + \left[-\gamma \frac{p}{m} + z(t) \right] \frac{p}{m} \\ \frac{dE}{dt} = \dot{W} - \dot{Q}$$
 Thermodynamic 1st Law

1D Brownian Motion of Single Particle in Heat Bath

$$\frac{d}{dt}\left(\frac{p^2}{2m}+V\right) = \frac{\partial V}{\partial \lambda}\dot{\lambda} + \left[-\gamma\frac{p}{m}+z(t)\right]\frac{p}{m}$$

$$\frac{dE}{dt} = \dot{W} - \dot{Q}$$

Thermodynamic 1st Law

$$\dot{W} = \frac{\partial V}{\partial \lambda} \dot{\lambda} = \frac{\partial}{\partial k} \left(\frac{1}{2} k x^2 \right) \dot{k} = \frac{1}{2} x^2 \dot{k} \quad \longrightarrow \quad W = \int_0^\tau \dot{W} dt = \frac{1}{2} \int_{k_i}^{k_f} x^2 dk$$

In equilibrium,
$$\lambda = const$$
 \rightarrow $\dot{W}=0$, $\frac{dE}{dt} = -\dot{Q}$

In non-equilibrium steady state,

 $\dot{\rho}_{ss}(x,p) = 0, \langle E \rangle = const, \quad \frac{d}{dt} \langle E \rangle = 0$ $\langle \dot{W} \rangle = \langle \dot{Q} \rangle > 0$ Work done by external source converts to heat in Page 16 $\Delta S_{env} = \frac{\Delta Q}{T} > 0$ the heat bath.

Single Particle Gas under a Harmonic Potential → Quasi-static process (Equilibrium process)

Thermodynamic work:

$$W = -\int dt \dot{\lambda} \frac{\partial H}{\partial \lambda} = \frac{1}{2} \int dk x^2$$

Here, $\lambda = k$ (external parameter)

dk/dt→0 : (Quasi-static process)

$$\left\langle x^{2}\right\rangle^{eq} = \left\langle x^{2}\right\rangle_{f} = \left\langle x^{2}\right\rangle_{b} = k_{B}T/k$$

$$< dW_{f} > = < d(-W_{b}) > = \frac{1}{2}\left\langle x^{2}\right\rangle^{eq}\left|dk\right| = \frac{1}{2}\frac{k_{B}T}{k}\left|dk\right|$$

$$W = < W >_{f} = < -W_{b} > = \frac{1}{2\beta}\ln\frac{k_{f}}{k_{i}} = \Delta F$$

$$P_{f}(W) = P_{b}(-W) = \delta(W - \Delta F)$$

Single Particle Gas under a Harmonic Potential → Non-equilibrium process(dk/dt=finite)

Single Particle under a Harmonic Potential → Extreme limit of non-equilibrium process (dk/dt=infinite)

- The system remembers its previous state.
- Consider a sudden change limit

 $(dk/dt \rightarrow \infty)$

- The particle is still at initial position.
- Position distribution is given by the initial equilibrium Boltzmann distribution
 - Using Equi-partition theorem

$$W = 1/2 \int_{k_i}^{k_f} dk \, x^2 \, and \, \left\langle x^2 \right\rangle = k_B T / k_i$$
$$\rightarrow \left\langle W \right\rangle^{neq} = \frac{k_B T}{2} \frac{k_f - k_i}{k_i}$$
$$\Rightarrow \left\langle -W \right\rangle_b < \left\langle W \right\rangle^{eq} < \left\langle W \right\rangle_f$$

Using recent theoretical result,

$$P_{f,b}(W) = \theta(\mp W) \sqrt{\frac{|a|}{\pi}} (\mp \beta W)^{-1/2} e^{-|a|\beta W}$$

$$a = k_i / (k_f - k_i)$$

Page • 19

Experimental Setup – Optical Tweezers with time dept. trap strength

Measurements of Optical Trap Strength

Measurements of Optical Trap Strength

The optical trap strength is calibrated with three different methods

- Equi-partition theorem

$$\frac{1}{2}k\langle x^2\rangle = \frac{1}{2}k_BT$$

- Boltzmann distribution method

$$\rho(x)dx = Ce^{-\beta U(x)}dx, V(x) = \frac{1}{2}kx^{2}$$

- Oscillating optical tweezers method

$$m\frac{d^{2}x}{dt^{2}} + \gamma\frac{dx}{dt} + kx = A\cos(\omega t)$$
$$x = D(\omega)\cos(\omega - \delta), \ \delta = \tan^{-1}\left(\frac{\gamma\omega}{k}\right)$$

Passive Method of Measuring Optical Trap Strength

 $k_{ot} = 2.87 \, pN / \mu m$

Profile of 1D Harmonic Potential

 $k_{ot} = 2.87 \, pN / \mu m$

Measurements of Optical Trap Strength with Controlled Laser Power

Experimental Method

Using a PMMA particle of 2μm diameter in do-decane solvent

Linearly changing the trap strength in time

- From 2.87 to 0.94pN/µm (backward process)
- From 0.94 to 2.87pN/µm (forward process)
- Theoretical free energy difference :

$$\beta \Delta F = 1/2 \ln(k_f / k_i) = 0.558$$

- **Data sampling :10kS/s** (sampling in every 100 μ sec)⁶
- Repetition is over 40000 times
- Total number of steps : 360
- Rate of changing trap strength(pN/μm·s) : 0.268, 0.536, 2.68, 5.36

by changing the time difference between the neighboring steps

from 1msec to 20msec

Laser Power and Trap Strength in Time

 $\dot{k} = \pm 0.536 \, pN \,/\, \mu m \cdot s$

Characteristic equilibration time in this system

- In non-equilibrium process, the external parameters have to be changed before the system relaxes to the equilibrium state.
- Mean squared displacement: $\sigma_{xx} = \langle [x(t) \langle x(0) \rangle]^2 \rangle$
 - After the particle loses its initial information then σ_{xx} obeys the equi-partition theorem.
 - In our system, the characteristic equilibration time(τ) is about 20ms.

$$\rightarrow t \gg \tau, \ \sigma_{xx} = k_B T / k$$

(equi-partition theorem)

Work Probabilities for Four Different Protocols

$$---- : \text{forward}$$

$$\dot{k} = 0.268 \text{pN/}\mu\text{m} \cdot \text{s}$$

$$\dot{k} = 0.536 \text{pN/}\mu\text{m} \cdot \text{s}$$

$$\dot{k} = 2.68 \text{pN/}\mu\text{m} \cdot \text{s}$$

$$\dot{k} = 5.36 \text{pN/}\mu\text{m} \cdot \text{s}$$

$$\frac{P_f(W)}{P_b(-W)} = \exp[\beta(W - \Delta F)]$$

Mean Work Value and Expected Free Energy Difference

Page • 30

Verification of Crooks Fluctuation Theorem

• Fastest protocol,
$$\dot{k} = 5.36 \text{pN/}\mu\text{m}\cdot\text{s}$$

• Fast protocol,
$$\dot{k} = 2.68 \text{pN/}\mu\text{m}\cdot\text{s}$$

$$\frac{P_f(W)}{P_b(-W)} = \exp[\beta(W - \Delta F)]$$

