
Page  1

Non-Equilibrium Fluctuations in Expansion/Compression Processes of a Single-Particle Gas
Hyuk Kyu Pak 

Department of Physics, UNIST

IBS Center for Soft and Living Matter

November 28, 2015, Busan

Nonequilibrium Thermodynamics in Quantum and Classical Physics



Page  2

Ulsan National Institute of Science and Technology



Hyuk Kyu Pak

• Electrical Properties at Solid-Liquid Interfaces
• Non-Equilibrium Fluctuations in Very Small Systems
• Colloid and Nano Particles at Interfaces
• Hydrodynamics in Small Systems
• Wetting and Electro-wetting

What happens at soft matter interfaces?
How to explain non-equilibrium phenomena?
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Electrical Properties at Solid-Liquid Interfaces

• Electric power generation by modulating the metal-water interface.
• Interfacial charge density between solid and liquid.
• The influence of pH solution on solid-liquid interfaces.



Non-Equilibrium Fluctuations in Very Small Systems

• Realization of a Brownian motor through feedback control.
• Optical tweezers studying micro-size systems
• The influence of pH solution on solid-liquid interfaces.



Colloid and Nano Particles at Interfaces

n-alkane NP
solution

• Electrical phenomena across bio-membrane
• Hydrodynamics of colloid particles near interfaces
• Nano particle adsorption at the liquid-vapor
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Fluctuation theorem

 Most interesting processes in the nature occur far from equilibrium.
 The second law of thermodynamics predicts that the entropy of an 

isolated system should tend to increase until it reaches equilibrium. 

 In statistical mechanics, the second law is only a statistical one.
There should always be some nonzero probability that the entropy of 
an isolated system might spontaneously decrease ; the 
fluctuation theorem precisely quantifies this probability.

 Fluctuation theorem deals with the relative probability that the 
entropy of a system far from equilibrium will increase or decrease 
over a given amount of time.
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Discovery of Fluctuation Theorems (FT)
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Detailed FT

Integral FT

Thermodynamic 2nd law is a corollary of G-C symmetry!!

Evans, Cohen, Morris (1993)Evans & Searls (1994), Gallavotti & Cohen (1995)
Gallavotti-Cohen Symmetry



Macroscopic system
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Fluctuations in 
thermodynamic variables 
are negligible. 

Microscopic system

Fluctuations depending on the size of the system

Fluctuations in 
thermodynamic variables 
are very visible. 



Crooks Fluctuation Theorem (CFT, G. E. Crooks 1998)

 CFT has drawn a lot of attention because of its usefulness in 
experiment. This theorem makes it possible to experimentally 
measure the free energy difference of the system during a non-
equilibrium process. 

)](exp[)(
)( FWWP

WP
b
f  )( WPb  )(WPf

F

Page  11



Why fluctuation theorem is important?

Verification of the Crooks 
fluctuation theorem and 
recovery of RNA folding 
free  energies 

Collin, Bustmante et. al. Nature(2005)
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Idea

 Consider a particle trapped in a 1D harmonic potential 

where      is a trap strength of the potential. 

 When the trap strength is either increasing or decreasing 
isothermally in time, the particle is driven from equilibrium.

 Since the size of the system is finite, one can test the fluctuation 
theorems in this system.

 We measure the work distribution and determine the free energy 
difference of the process by using Crooks fluctuation theorem.
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Free Energy Difference of the System 

 Harmonic oscillator (in 1D) 
- Hamiltonian is given by

- Partition function is 

- Free energy difference between two equilibrium states             at the same 
temperature is  

- Forward quasi-static process :                           
Backward quasi-static process: 

- During these processes:  
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1D Brownian Motion of Single Particle in Heat Bath
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1D Brownian Motion of Single Particle in Heat Bath
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Single Particle Gas under a Harmonic Potential Quasi-static process (Equilibrium process)

Thermodynamic work:
Here,   (external parameter)

dk/dt→0 :
(Quasi-static process)
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Single Particle Gas under a Harmonic Potential Non-equilibrium process(dk/dt=finite)

Forward process
(dk/dt>0)
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Backward process
(dk/dt<0)
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Single Particle under a Harmonic Potential  Extreme limit of non-equilibrium process (dk/dt=infinite) 

 The system remembers its 
previous state. 

 Consider a sudden change limit
(dk/dt → )

- The particle is still at initial position.
- Position distribution is given by the initial 

equilibrium Boltzmann distribution
- Using Equi-partition theorem
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Using recent theoretical result,

Kwon, Noh, Park, PRE 88 (2013)Page  19



Experimental Setup – Optical Tweezers with time dept. trap strength

**2 PMMA particle in do-decane liquid
Temp. of the system is maintained at 27o o.
Particle position is measured with 1nm resolution.Page  20



Measurements of Optical Trap Strength
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Measurements of Optical Trap Strength

 The optical trap strength is calibrated with three different methods
- Equi-partition theorem 

- Boltzmann distribution method

- Oscillating optical tweezers method
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Passive Method of Measuring Optical Trap Strength 

Equi-partition theorem Boltzmann distribution
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Profile of 1D Harmonic Potential

μmpN=kot /2.87
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Measurements of Optical Trap Strengthwith Controlled Laser Power
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Experimental Method

 Using a PMMA particle of 2µm diameter in do-decane solvent
 Linearly changing the trap strength in time 

- From 2.87 to 0.94pN/µm (backward process) 
- From 0.94 to 2.87pN/µm (forward process)
- Theoretical free energy difference : 

 Data sampling :10kS/s  (sampling in every 100 sec)
 Repetition is over 40000 times
 Total number of steps : 360
 Rate of changing trap strength(pN/µm·s) : 0.268, 0.536, 2.68, 5.36

by changing the time difference between the neighboring steps 
from 1msec to 20msec

558.0)/ln(2/1  if kkF
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Laser Power and Trap Strength in Time 

forwardbackward
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Characteristic equilibration time in this system

 In non-equilibrium process, the external parameters have to be 
changed before the system relaxes to the equilibrium state. 

 Mean squared displacement: 
- After the particle loses its initial information then        obeys the equi-partition 

theorem.
- In our system, the characteristic equilibration time(   )  is about  20ms.
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Work Probabilities for Four Different Protocols
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5.36pN/µm·s

0.268pN/µm·s

0.536pN/µm·s

2.68pN/µm·s
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Mean Work Value and Expected Free Energy Difference
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Verification of Crooks Fluctuation Theorem

 Fastest protocol, 5.36pN/µm·s  Fast protocol, 2.68pN/µm·s
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Conclusion

 We experimentally demonstrated the CFT in an exactly solvable real 
system.

 We also showed that mean works obey 
in non-equilibrium processes.

 Useful to make a micrometer-sized stochastic heat engine. 
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