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Periodically driven systems

Quantum systems subjected to periodic driving field (e.g. laser)

𝑖ℏ
𝑑

𝑑𝑡
𝜓 𝑡 = 𝐻 𝑡 |𝜓 𝑡 〉

𝐻 𝑡 = 𝐻(𝑡 + 𝑇)

Even if the instantaneous Hamiltonian is simple, 

periodically driven systems can show rich phenomena.

𝜔 =
2𝜋

𝑇



Periodically driven systems

Quantum systems subjected to periodic driving field (e.g. laser)

Rich phenomena

• dynamical localization

• coherent destruction of tunneling

• dynamical phase transitions

• nontrivial topological phase

Floquet engineering:

To realize interesting properties of matter 

by applying periodic driving

Dunlap and Kenkre, PRB (1986)

Grossmann, et al. PRL (1991)

Prosen and Ilievski, PRL (2011)

Lindner, et. al. Nature Phys. (2011)



Thermalization in isolated quantum 
systems

𝑖ℏ
𝑑

𝑑𝑡
𝜓 𝑡 = 𝐻 𝜓 𝑡

Unitary time evolution

There is no relaxation to equilibrium in the strong sense

𝜓 𝑡 〈𝜓(𝑡)| ≠ 𝜌eq ≡
𝑒−𝛽𝐻

𝑍

However, the system can show thermalization in the weak sense.

𝜓 𝑡 𝑂 𝜓 𝑡 ≈ Tr𝑂𝜌eq

𝑂: any local observable

|𝜓 𝑡 〉

𝜌eq 𝛽 varies according to the initial state



Thermalization in isolated 
periodically driven quantum systems

Floquet theory:

𝑂: any local observable

𝜓 𝑡 =  

𝛼

𝐶𝛼𝑒
−

𝑖
ℏ 𝛼𝑡|𝑢𝛼 𝑡 〉

Stroboscopic observation: 𝜓 𝑚𝑇 =  

𝛼

𝐶𝛼𝑒
−

𝑖
ℏ 𝛼𝑚𝑇|𝑢𝛼 0 〉

𝑢𝛼 𝑡 = |𝑢𝛼 𝑡 + 𝑇 〉

𝒯𝑒−
𝑖
ℏ  0

𝑇
𝐻 𝑡 𝑑𝑡 ≡ 𝑒−𝑖𝐻𝐹𝑇 𝜀𝛼 ∈ −

𝜔

2
,
𝜔

2
Floquet energy

|𝑢𝛼 𝑡 〉 Floquet state

〈𝜓(𝑚𝑇)|𝑂 𝜓 𝑚𝑇 ≈ Tr𝑂𝜌∞

long-time asymptotic state 𝑚 ≫ 1

𝜌∞ =
 1

𝐷

𝐻𝐹 𝑢𝛼 0 = 𝜀𝛼|𝑢𝛼(0)〉

Floquet Hamiltonian

𝐷: dimension of the Hilbert space

There is no conservation of energy:



Eigenstate thermalization hypothesis

Thermalization in the weak sense is possible when 

each energy eigenstate looks thermal!

𝜙𝛼 𝑂 𝜙𝛼 ≈ Tr𝑂𝜌eq“Eigenstate Thermalization Hypothesis” (ETH)

Each energy eigenstate is indistinguishable from the 

(micro)canonical ensemble

“Floquet ETH”

Each Floquet eigenstate is indistinguishable from the state of 

infinite temperature (i.e. completely random state)

〈𝑢𝛼(𝑡)|𝑂 𝑢𝛼 𝑡 ≈ Tr 𝑂
 1

𝐷

D’Alessio and Rigol, PRX (2014)

Lazarides, Das, and Moessner, PRE (2014)

Ponte, Chandran, Papic, and Abanin, Ann. Phys. (2015)

extension to periodically driven systems



Heating up to infinite temperature

Kim, Ikeda, Huse, PRE (2014)

𝐻 𝑡 =
𝐻𝑧 for 0 ≤ 𝑡 ≤

𝑇

2

𝐻𝑥 for
𝑇

2
≤ 𝑡 ≤ 𝑇 𝐻𝑥 = 𝐵𝑥  

𝑖=1

𝑁

𝜎𝑖
𝑥

𝐻𝑧 =  

𝑖=1

𝑁

−𝐽𝜎𝑖
𝑧𝜎𝑖+1

𝑧 + 𝐵𝑧𝜎𝑖
𝑧

Mori, Kuwahara, Saito, arXiv:1509.03968v2

𝑁 = 24, 𝐽, 𝐵𝑧 , 𝐵𝑥 = (1, 0.9045, 0.8090)



Transient dynamics

The state of infinite temperature is featureless

No interesting phenomenon…

However, in the 

intermediate timescale, the 

driven system can exhibit 

interesting properties 

( Floquet engineering)

Quasi-stationary state

Timescale of intermediate 

region becomes longer as 

the frequency increases.



Motivation of the study

• What we observe in experiment is transient dynamics.

(NOT the long-time limit!)

• It is important to understand how the intermediate state 

is described.

• Only from the numerical simulations, We cannot get a 

decisive conclusion on the long-time behavior of a 

macroscopic driven system.

We want to understand the behavior of driven quantum 

systems in the intermediate timescale in a mathematically 

rigorous way!



Setup

System on an arbitrary 𝑑-dimensional lattice

𝐻 𝑡 =  

𝑋: 𝑋 ≤𝑘

ℎ𝑋(𝑡)

Bounded single-site energy

(“𝑔-extensive”)

𝑋 = {𝑖1, 𝑖2, … , 𝑖 𝑋 }

 

𝑋∋𝑖

ℎ𝑋(𝑡) ≤ 𝑔 for ∀ 𝑖

𝑖 = 1,2,… ,𝑁: index of site

Example: the most general spin-1/2 Hamiltonian with 𝑘 = 2

𝐻 𝑡 =  

𝑖=1

𝑁

𝐵𝑖(𝑡) ⋅  𝜎𝑖 +  

𝑖<𝑗

𝑁

 

𝛼,𝛾=𝑥,𝑦,𝑧

𝐽𝑖𝑗
𝛼,𝛾

(𝑡)𝜎𝑖
𝛼𝜎𝑗

𝛾

Remark: We don’t assume the range of interactions

𝐽𝑖𝑗
𝛼,𝛾

=
𝛿𝛼,𝛾

𝑁
: all-to-all Heisenberg interactions with a bounded energy per spin

Up to 𝑘-site interactions

(“𝑘-local Hamiltonian”)



Undriven part and driving part

𝐻 𝑡 = 𝐻0 + 𝑉(𝑡)

𝐻0 ≡
1

𝑇
 
0

𝑇

𝐻 𝑡 𝑑𝑡

undriven part driving part

𝑉(𝑡): acting on 𝑁𝑉 sites

a system thermally isolated 

from environment (𝑁 sites)

𝑵𝑽 sites

driving field 𝑉(𝑡)

𝑁𝑉 ≪ 𝑁

local driving

𝑁𝑉 = 𝒪(𝑁)

global driving



Method: 
truncation of Magnus expansion

We focus on the high-frequency regime

Magnus expansion: formal expansion of the Floquet

Hamiltonian in the power series of the period 𝑇

𝐻𝐹 =  

𝑚=0

∞

𝑇𝑚Ω𝑚

BUT it is known that the Magnus 

expansion is generally divergent.

The use of the Magnus 

expansion is not justified.

When does it work?

Ω0 =
1

𝑇
 
0

𝑇

𝐻 𝑡 𝑑𝑡 = 𝐻0

Ω1 =
1

2𝑖𝑇2
 
0

𝑇

𝑑𝑡1  
0

𝑡1

𝑑𝑡2[𝐻 𝑡1 , 𝐻 𝑡2 ]

Truncation of Magnus expansion

𝐻𝐹
(𝑛)

=  

𝑚=0

𝑛

𝑇𝑚Ω𝑚



General form of Magnus expansion

𝐻𝐹 =  

𝑚=0

∞

𝑇𝑚Ω𝑚

Ω𝑛 =  

𝜎

−1 𝑛−𝜃 𝜎 𝜃 𝜎 ! 𝑛 − 𝜃 𝜎 !

𝑖𝑛 𝑛 + 1 2𝑛! 𝑇𝑛+1
 
0

𝑇

𝑑𝑡𝑛+1 … 
0

𝑡2

𝑑𝑡1

× 𝐻 𝑡𝜎 𝑛+1 , 𝐻 𝑡𝜎 𝑛 , … , 𝐻 𝑡𝜎 2 , 𝐻 𝑡𝜎 1 …



Inequalities for local operators

𝐴: 𝑘𝐴−local and 𝑔𝐴−extensive, 𝐵: 𝑘𝐵−local

𝐴, 𝐵 ≤ 2𝑔𝐴𝑘𝐵 𝐵

[𝐴𝑛, [𝐴𝑛−1, … , 𝐴1, 𝐵 … ]] ≤ 2  

𝑖=1

𝑛

𝑔𝐴𝑖
𝐾𝑖 𝐵

𝐾𝑖 = 𝑘𝐵 +  

𝑗=1

𝑖−1

𝑘𝐴𝑖

Compare with the familiar inequality: 𝐴, 𝐵 ≤ 2 𝐴 ⋅ 𝐵

In many-body problem, 𝐴 ∝ 𝑁, but 𝑔𝐴𝑘𝐵 = 𝒪(1)!



Application of the inequality to the 
Magnus expansion

Ω𝑛 =  

𝜎

−1 𝑛−𝜃 𝜎 𝜃 𝜎 ! 𝑛 − 𝜃 𝜎 !

𝑖𝑛 𝑛 + 1 2𝑛! 𝑇𝑛+1
 
0

𝑇

𝑑𝑡𝑛+1 … 
0

𝑡2

𝑑𝑡_1

× 𝐻 𝑡𝜎 𝑛+1 , 𝐻 𝑡𝜎 𝑛 , … , 𝐻 𝑡𝜎 2 , 𝐻 𝑡𝜎 1 …

Ω𝑛 ≤ 2𝑔𝑁𝑉

2𝑔𝑘 𝑛𝑛!

𝑛 + 1 2

𝑇𝑛 Ω𝑛

𝑛
𝑛0

Convergent regime Divergence

𝐻𝐹
𝑛

=  

𝑚=1

𝑛

Ω𝑚𝑇𝑚

𝑛0 ∼
1

2𝑔𝑘𝑇
∼

ℏ𝜔

𝑔𝑘



Spin system interacting via up to 𝑘-body potential (𝑘-local)

𝐻 𝑡 = − 

𝑖=1

𝑁

𝐵𝑖 𝑡 ⋅  𝑆𝑖 +  

𝛼,𝛾=𝑥,𝑦,𝑧

 

𝑖,𝑗

𝐽𝑖𝑗
𝛼𝛾

𝑡 𝑆𝑖
𝛼𝑆𝑗

𝛾
+  

𝛼,𝛾,𝛿

 

𝑖,𝑗,𝑘

𝐽𝑖𝑗𝑘
𝛼𝛾𝛿

𝜎𝑖
𝛼𝜎𝑗

𝛾
𝜎𝑘

𝛿 + ⋯

Intuitive picture behind analysis

Quantum 

system

Periodic driving

frequency 𝜔
 Energy absorption and emission are quantized into 

ℏ𝜔 (energy quantum)

 Single-spin energy is bounded by 𝑔
 In order to absorb the single energy quantum, 

𝑁∗ ∼
ℏ𝜔

𝑔
≫ 1 spins must flip cooperatively.

General form of the Magnus coefficient 𝐻𝐹
(𝑛)

=  

𝑚=0

𝑛

𝑇𝑚Ω𝑚

Ω𝑛 =  

𝜎

−1 𝑛−𝜃 𝜎 𝜃 𝜎 ! 𝑛 − 𝜃 𝜎 !

𝑖𝑛 𝑛 + 1 2𝑛! 𝑇𝑛+1
 
0

𝑇

𝑑𝑡𝑛+1 … 
0

𝑡2

𝑑𝑡1

× 𝐻 𝑡𝜎 𝑛+1 , 𝐻 𝑡𝜎 𝑛 , … , 𝐻 𝑡𝜎 2 , 𝐻 𝑡𝜎 1 …

𝑛 + 1 k-spin simaltaneous flips

Energy absorption is taken into account in the Magnus 

expansion when 𝑛 + 1 𝑘 ≥ 𝑁∗, namely, 𝑛 ≳  ℏ𝜔 𝑔𝑘 ∼ 𝑛0.



Intuitive picture behind analysis

We can eliminate the effect of heating most efficiently by 

truncating the Magnus expansion at 𝑛0-th order.

The divergence of the Magnus expansion has a clear physical 

meaning: it stems from the heating effect!

Energy absorption is taken into account in the Magnus 

expansion when 𝑛 + 1 𝑘 ≥ 𝑁∗, namely, 𝑛 ≳  ℏ𝜔 𝑔𝑘 ∼ 𝑛0.

In order to analyze the timescale of heating, this 𝑛0 plays an 

important role.



Rigorous Theorem

The truncated Floquet Hamiltonian at 𝑛0-th order is an 

almost-conserved quantity in exponentially long timescale. 

1

𝑁
𝐻𝐹

𝑛0 𝑡 − 𝐻𝐹
𝑛0 (0) ≤

𝑁𝑉

𝑁
16𝑔2𝑘2−𝑛0𝑡 ∼ 𝑒−𝒪  (𝜔 𝑔)𝑡

𝑛0 ≈
1

8𝑔𝑘𝑇
= 𝒪(𝜔/𝑔)

The 𝑛-th order truncated Floquet Hamiltonian is very close to 

the 𝑛0-th order one as long as 𝑛 < 𝑛0:

1

𝑁
𝐻𝐹

(𝑛)
− 𝐻𝐹

𝑛0 = 𝒪(𝑇𝑛+1)𝑇𝑛 Ω𝑛

𝑛
𝑛0

Mori, Kuwahara, Saito, arXiv:1509.03968

(Hereafter we put ℏ = 1)

Heisenberg picture

1

𝑁
𝐻𝐹

𝑛
𝑡 − 𝐻𝐹

𝑛
(0) ≤

𝑁𝑉

𝑁
16𝑔2𝑘2−𝑛0𝑡 + 𝒪 𝑇𝑛+1



Exponentially slow heating

𝐻0 ≡
1

𝑇
 
0

𝑇

𝐻 𝑡 𝑑𝑡

〈𝜓(𝑡)|𝐻0|𝜓 𝑡 〉 ≈ 〈𝜓(0)|𝐻0|𝜓 0 〉

up to an exponentially long timescale 𝜏ℎ = 𝑒𝒪 𝜔/𝑔

Heating can occur, but is extremely slow in high-frequency regime

𝑛 = 0 𝐻𝐹
0

= 𝐻0

1

𝑁
𝐻0 𝑡 − 𝐻0(0) ≤

𝑁𝑉

𝑁
16𝑔2𝑘2−𝑛0𝑡 + 𝒪 𝑇



Quasi-stationary states

Because the energy is almost conserved up to 𝜏ℎ, the system 

first reaches a quasi-stationary state with a finite temperature!

What is numerically and 

experimentally observed is 

this quasi-stationary state!

This kind of Floquet prethermalization

occurs for general driven spin systems!

𝜌𝑄𝑆𝑆 =
𝑒−𝛽𝐻𝐹

𝑛0

𝑍𝑛0

≈
𝑒−𝛽𝐻0

𝑍0



Remark: open quantum systems

open quantum system

system of interest

thermal bath

reduced density matrix

In the van Hove limit

 Floquet Lindblad master equation

system-bath interaction

heating rate dissipation

(in the van Hove limit)

𝑁 → ∞ with 𝑁𝑉 fixed𝑁 − 𝑁𝑉

𝑁𝑉 𝜌𝑆(𝑡)

𝜌𝐵 =
𝑒−𝛽𝐻𝐵

Tr 𝑒−𝛽𝐻𝐵

𝜆

𝜌𝑆 𝑡 →
𝑒−𝛽𝐻𝐹

𝑛

𝑍
𝑡 < 𝑒𝒪  𝜔 𝑔 𝜌𝑆𝑆 = lim

𝑡→∞
lim
𝑁→∞

𝜌𝑆(𝑡)

𝜆 → 0, 𝑡 → ∞ with 𝜆2𝑡 = 𝜏 held fixed

𝜌𝑆𝑆 ≠
𝑒−𝛽𝐻𝐹

𝑛

𝑍

exp[−𝒪 𝜔 ] ≫ 𝜆2

Shirai, Mori, Miyashita, Phys. Rev. E (2015)



Summary

• Periodically driven quantum systems from a 

general point of view.

• Heating is extremely slow in high-frequency 

regime.

• Quasi-stationary states appear, which are 

characterized by the truncated Floquet

Hamiltonian.

 the use of the truncation of Magnus expansion 

is justified!

Mori, Kuwahara, Saito, arXiv:1509.03968v2

Kuwahara, Mori, Saito, arXiv:1508.05797v2


