Wonmin Son, sonzm@physics.org, Sogang Univ.

Consistent theory
 for generalized causal nonlocality

Generalization of Born's rule

KIAS meeting, Seaclaud, Pusan, 2015

Contents

* Bell's inequality
* Axioms in quantum mechanics
* Proof of Born's rule
* Theory beyond quantum mechanics
* Non-linear Schrodinger equation

Challenging history in QM

* Completeness of quantum mechanics has been argued from the vary beginning of history of quantum mechanics (EPR-Bohr, 1935).
* Mathematical criteria to determine the completeness of quantum mechanics had been proposed
(Bell's inequality, 1964).
* Experimental verification of Bell's theorem had been made through quantum optical setup (parametric down conversion, 1981).
* Recent claim of loophole free Bell test. (2015?)

Basic setup for Bell test

* Standard Bell-CHSH (two measurements- two outcomes)

$$
\begin{aligned}
C H S H & =\left\langle\hat{A}_{1} \hat{B}_{1}\right\rangle+\left\langle\hat{A}_{1} \hat{B}_{2}\right\rangle+\left\langle\hat{A}_{2} \hat{B}_{1}\right\rangle-\left\langle\hat{A}_{2} \hat{B}_{2}\right\rangle \\
& =\left\langle\hat{A}_{1} \otimes\left(\hat{B}_{1}+\hat{B}_{2}\right)+\hat{A}_{2} \otimes\left(\hat{B}_{1}-\hat{B}_{2}\right)\right\rangle \\
E(A B) & +E\left(A^{\prime} B\right)+E\left(A B^{\prime}\right)-E\left(A^{\prime} B^{\prime}\right)<2
\end{aligned}
$$

Quantum violation and beyond

$$
E(A B)+E\left(A^{\prime} B\right)+E\left(A B^{\prime}\right)-E\left(A^{\prime} B^{\prime}\right)<2 \sqrt{2}
$$

* Generalization of Bell theorem to an arbitrary quantum system is a main challenge in modern QM.
* Question about the foundational origin of the Cirelson's bound is to be asked by a group of people as like Aharanov, Shimony, Popescu, Rohrlich.
* Information theoretic importance of a quantum state can be characterized by the criteria. (van Dam, PhDthesis and so on)
* Key words: entanglement, quantum steering, communication complexity, nonlocal box, information causality...

Axioms in quantum mechanics

* Axioms in QM
* State-Hilbert space (complex vector space)
* Measurement- Observable (Hermitian operator)
* Dynamics- Schrodinger equation
* Symmetry- Identical particles
- Probability- Born's rule

BORN RULE, (Not principle)

* Similarly to the axioms in special relativity (physics is conserved w.r.t. RoF; speed of light is constant in RoF), QM can be derived from
* Non-locality?
* No signaling?

Contradictable

Conjecture leading to PR box (1991)

Non-locality+No-signaling

Cirelson Bound

$$
2 \sqrt{2}
$$

The conjecture was not correct
pf) Non-local box leading to the CHSH correlation 4 still satisfies the no-signalling theorem.

The first question(s)!

* What kind of the theory allows us to achieve the correlation for the nonlocal box, (or Classical correlation, Quantum correlation)?
* Is it possible to obtain a dynamical equation for such kind of super-correlated (super-quantum) systems?

Arguable derivation of Born's Rule

$$
P(x)=|\psi(x)|^{2}=|\langle x \mid \psi\rangle|^{2}
$$

* Gleason's theorem (Probability of composite events)
* Wallace's statement
* Deutsch's Decision theory based upon the maximum likelihood approach. (Proc. R. Soc. Lond. A, 1999)
* Zureck's Environment Induced (envariant) approach (Principle of indifference, Baysian) Phys. Rev. A 71, 052105 (2005);idem, Phys. Rev. Lett. 106, 250402 (2011)

Theory for the correlation with arbitrary bound of CHSH function (Recent research results)

$$
P(x)=|\psi(x)|^{p}, \text { where } 1 \leq p
$$

* Theory without Born's rule produces new correlation function leading to non-local box.
* Such a generalization gives arbitrary violation of CHSH while it satisfies No-signaling postulate.
* Generalized trigonometric function is given as the solution of the p-norm probabilities whose dynamics can be described by non-linear Schrodinger type equation.
*Recently the result was test by experimental group in Canada

Generalized Sine Function

The 3 rd assumption : $\left(\frac{d \sin _{p} \theta}{d \theta}\right)^{2}+\left(\frac{d \cos _{p} \theta}{d \theta}\right)^{2}=C$.
From $\sin _{p}^{p} \theta+\cos _{p}^{p} \theta=1$, we have
$\frac{d \cos _{p} \theta}{d \theta}=-\sin _{p}^{p-1} \theta\left(1-\sin _{p}^{p} \theta\right)^{\frac{1}{p}-1} \frac{d \sin _{p} \theta}{d \theta}$.
Then, the assumption becomes

$$
\left(\frac{d \sin _{p} \theta}{d \theta}\right)^{2}+\left[-\sin _{p}^{p-1} \theta\left(1-\sin _{p}^{p} \theta\right)^{\frac{1}{p}-1} \frac{d \sin _{p} \theta}{d \theta}\right]^{2}=C
$$

Thus, $\left(\frac{d \sin _{p} \theta}{d \theta}\right)\left[1+\sin _{p}^{2(p-1)} \theta\left(1-\sin _{p}^{p} \theta\right)^{2\left(\frac{1}{p}-1\right)}\right]^{\frac{1}{2}}=C^{\frac{1}{2}}$
or by substituting $x=\sin _{p}^{p} \theta$,

$$
\frac{1}{p} \frac{d x}{d \theta}\left[x^{2\left(\frac{1}{p}-1\right)}+(1-x)^{2\left(\frac{1}{\bar{p}}-1\right)}\right]^{\frac{1}{2}}=C^{\frac{1}{2}}
$$

Therefore, $\theta=\sin _{p}^{-1} x^{1 / p}=\frac{c^{\frac{1}{2}}}{p} \int_{0}^{x} d x\left[x^{2\left(\frac{1}{p}-1\right)}+(1-x)^{2\left(\frac{1}{p}-1\right)}\right]^{\frac{1}{2}}$.
It can be rewritten as

$$
\sin _{p}^{-1} x=C^{\frac{1}{2}} \int_{0}^{x} d x\left[1+\left(x\left(1-x^{p}\right)^{-\frac{1}{p}}\right)^{2(p-1)}\right]^{\frac{1}{2}}
$$

Correlation from the generalized trigonometric function

 W. Son, ArXiv:1401.1012
Generalized Sine Function

From this sine function with normalization by a period, $E(\theta)=1-2 \sin _{p}^{p} \theta$ is shown as

Remarks

* A theory to make the non-local box can be generated if one allows to release the constraints made by Born's rule
* The wave function for the super-quantum correlation have been derived.
* Non-linear dynamic equation can be derived from the solution.
* The factor can be measured in an experimentally testable way.
* Thanks for your attention!

