

Generating and Constraining Primordial Magnetic Fields

Takeshi Kobayashi (CITA)

based on arXiv:1403.5168, arXiv:1408.4141 (w/ Niayesh Afshordi)

The 6th KIAS Workshop on Cosmology and Structure Formation

OUR MAGNETIZED UNIVERSE

image : ESA and the Planck Collaboration

With intergalactic magnetic fields...

ZAR OBSERVATIONS With intergalactic magnetic fields... ${ m GeV}\,\gamma$ ${ m TeV}\,\gamma$ e^+ eextragalactic background light CMB

ZAR OBSERVATIONS With intergalactic magnetic fields... ${ m GeV}\,\gamma$ ${ m TeV}\,\gamma$ e^+ eextragalactic background light CMB ~ Mpc

ZAR OBSERVATIONS With intergalactic magnetic fields... $\operatorname{GeV}\gamma$ $\text{TeV}\gamma$ e^+ $B \gtrsim 10^{-15} { m G}~$ with correlation length $~\gtrsim { m Mpc}$ Can primordial magnetic fields be this large?

OUTLINE

Constraints on Primordial Magnetic Fields
 from Schwinger Effect
 arXiv:1408.4141 w/ N. Afshordi

• New Idea for Magnetic Field Generation: Post-Inflationary Magnetogenesis

arXiv:1403.5168

COSMOLOGICAL PRODUCTION OF MAXWELL FIELDS

$$\frac{\mathcal{L}}{\sqrt{-g}} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

conformal symmetry : $g_{\mu\nu} \rightarrow \Omega^2 g_{\mu\nu}$

COSMOLOGICAL PRODUCTION OF MAXWELL FIELDS

 $\frac{\mathcal{L}}{\sqrt{-g}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} I(\sigma)^2$

INFLATIONARY MAGNETOGENESIS Turner, Widrow '88 Ratra '92

conformal symmetry breaking during inflation

$$\frac{\mathcal{L}}{\sqrt{-g}} = -\frac{I(\sigma)^2}{4} F_{\mu\nu} F^{\mu\nu}$$

HOWEVER...

- magnetogenesis also generates electric fields
- large electric fields induce conductivity in the inflating universe via Schwinger effect
- large conductivity terminates magnetogenesis

HOWEVER...

- magnetogenesis also generates electric fields
- large electric fields induce conductivity in the inflating universe via Schwinger effect
- large conductivity terminates magnetogenesis

→ Magnetic field generation eventually saturates!

SCHWINGER EFFECT

Sauter '31 Heisenberg, Euler '36 Schwinger '51

creation of charged particle pairs under strong electric fields

SCHWINGER EFFECT

Sauter '31 Heisenberg, Euler '36 Schwinger '51

creation of charged particle pairs under strong electric fields

SCHWINGER EFFECT

Sauter '31 Heisenberg, Euler '36 Schwinger '51

creation of charged particle pairs under strong electric fields

In an inflating universe, there is further gravitational particle creation.

CONDUCTIVITY OF DE SITTER UNIVERSE FROM SCHWINGER EFFECT

Schwinger production of fields with charge e and mass m

CONDUCTIVITY OF DE SITTER UNIVERSE FROM SCHWINGER EFFECT

Schwinger production of fields with charge e and mass m

CONDUCTIVITY OF DE SITTER UNIVERSE FROM SCHWINGER EFFECT

Schwinger production of fields with charge e and mass m

$$|B_0| \lesssim 10^{-28} \text{G} \left(\frac{k}{a_0} \text{Mpc}\right) \left(\frac{H_{\text{inf}}}{M_p}\right)^{1/2} \left(\frac{\sqrt{4\pi\alpha}}{e}\right)^3 I_{\text{end}}^2 \exp\left\{W\left(10^{-3} \frac{e^2}{4\pi\alpha} \frac{1}{sI_{\text{end}}^2} \frac{m^2}{H_{\text{inf}}^2}\right)\right\}$$

$$|B_0| \lesssim 10^{-28} \text{G} \left(\frac{k}{a_0} \text{Mpc}\right) \left(\frac{H_{\text{inf}}}{M_p}\right)^{1/2} \left(\frac{\sqrt{4\pi\alpha}}{e}\right)^3 I_{\text{end}}^2 \exp\left\{W\left(10^{-3} \frac{e^2}{4\pi\alpha} \frac{1}{sI_{\text{end}}^2} \frac{m^2}{H_{\text{inf}}^2}\right)\right\}$$

$$|B_0| \lesssim 10^{-28} \text{G} \left(\frac{k}{a_0} \text{Mpc}\right) \left(\frac{H_{\text{inf}}}{M_p}\right)^{1/2} \left(\frac{\sqrt{4\pi\alpha}}{e}\right)^3 I_{\text{end}}^2 \exp\left\{W\left(10^{-3} \frac{e^2}{4\pi\alpha} \frac{1}{sI_{\text{end}}^2} \frac{m^2}{H_{\text{inf}}^2}\right)\right\}$$

$$|B_0| \lesssim 10^{-28} \text{G} \left(\frac{k}{a_0} \text{Mpc}\right) \left(\frac{H_{\text{inf}}}{M_p}\right)^{1/2} \left(\frac{\sqrt{4\pi\alpha}}{e}\right)^3 I_{\text{end}}^2 \exp\left\{W\left(10^{-3} \frac{e^2}{4\pi\alpha} \frac{1}{sI_{\text{end}}^2} \frac{m^2}{H_{\text{inf}}^2}\right)\right\}$$

Schwinger constraint on magnetic fields from the inflationary epoch: $B \lesssim 10^{-30} {
m G}$ on Mpc scales

unless...

- all charged fields have heavy mass ($\gg H_{inf}$)
- all charged fields have tiny charges
- charged fields do not exist in the action during inflation

Schwinger constraint on magnetic fields from the inflationary epoch: $B \lesssim 10^{-30} {
m G}$ on Mpc scales

unless...

- all charged fields have heavy mass ($\gg H_{inf}$)
- all charged fields have tiny charges
- charged fields do not exist in the action during inflation
- magnetogenesis after inflation

POST-INFLATIONARY MAGNETOGENESIS TK '14

• Magnetic fields can be generated up until reheating.

• Avoids electric backreaction, strong couplings, spoiling density pert.

• May also evade the Schwinger constraint.

SUMMARY

- Schwinger effect imposes $B < 10^{-30}$ G for inflationary I^2FF models in the presence of fields carrying elementary charge and $m \leq H_{inf}$.
- Post-inflationary magentogenesis may evade the Schwinger constraint.
- Further investigation of cosmological magnetic fields may provide new insights into the very early universe!