Primordial non-Gaussian signatures in CMB polarization

Pravabati Chingangbam

Indian Institute of Astrophysics Bangalore

Collaborators: Vidhya Ganesan, K. P. Yogendran, Changbom Park

6th KIAS Meeting on Cosmology and Structure Formation, 3-7 November 2014

Outline of talk

- Briefly about CMB Polarization
- Primordial non-Gaussianity and PDF of CMB polarization fields.
- Geometry and topology of CMB polarization field

CMB polarization

In the rest frame of a free electron

Quadrupole anisotropy of incoming photons

+

Thomson scattering off the electron

\downarrow

Linearly polarised scattered light

CMB polarization

Quadrupole anisotropy from density fluctuations

- Velocity gradients in the plasma due to photon pressure and gravitational attraction.
- Implies electron sees incident quadrupole anisotropy of incident radiation in its rest frame.

Quadrupole anisotropy from gravitational waves

• Presence of gravitational waves gives rise to quadrupole anisotropy.

http://quiet.uchicago.edu/capmap/A.htm

Polarization fields

Stokes parameters to E and B modes:

$$(Q,U) \quad \longleftrightarrow \quad (E,B)$$

Total polarization Intensity:

$$I \equiv \sqrt{Q^2 + U^2}$$
$$\tilde{I} \equiv I - \langle I \rangle$$

Density fluctuations produce only E modes.

Gravitational waves produce both E and B modes.

Primordial non-Gaussianity

• From primordial gravitational potential:

$$\Phi(\mathbf{x}) = \Phi^G(\mathbf{x}) + f_{\mathrm{NL}} \left((\Phi^G(\mathbf{x}))^2 - \langle (\Phi^G)^2 \rangle \right)$$

• to CMB fields

$$\Phi \longrightarrow \Delta T, E$$

$$a_{\ell m}^{i} = \int dr \, r^{2} \, \Phi_{\ell m}^{\rm G}(r) \, \Delta_{\ell}^{i}(r) + \int dr \, r^{2} \, \Phi_{\ell m}^{\rm NG}(r) \, \Delta_{\ell}^{i}(r)$$

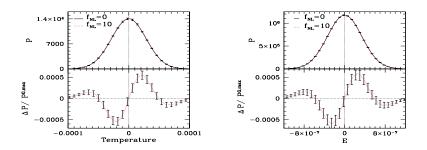
• Statistical nature of Φ is inherited by ΔT , E, I.

Used simulations of polarization with non-Gaussian initial conditions. Elsner & Wandelt 2009.

PDF for non-Gaussian fields: E mode

Consider generic random field y with local type non-Gaussian expression. Then

$$P(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-y^2/2\sigma^2} \left(1 - f_{\rm NL}\sigma \,\frac{y(y^2 - 2\sigma^2)}{\sigma^3}\right)$$



PDF for non-Gaussian fields: Polarization Intensity

If y and z Gaussian, then PDF of $r \equiv \sqrt{y^2 + z^2}$ is given by

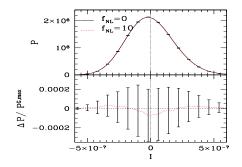
For local type non-Gaussian y and z the PDF is

$$\mathbf{P}(r) = \frac{r}{\sigma^2} e^{-\frac{r^2}{2\sigma^2}} \left(1 + \frac{f_{\rm NL}^2 \sigma^2}{16\sigma^{10}} (5r^6 \sigma^4 - 54r^4 \sigma^6 + 96r^2 \sigma^8) \right).$$

Lowest order non-Gaussian correction is $(f_{\rm NL}\sigma)^2$. Hence small deviation and larger statistical fluctuations.

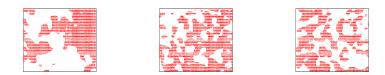
PDF for non-Gaussian fields: Polarization Intensity

Gaussian smoothing of ${\cal I}$ makes its PDF shape look close to Gaussian.



Excursion sets – geometry and topology

$$\nu_t = 0$$



Intensity

Minkowski Functionals

- $V_0 =$ Area fraction
- $V_1 = \text{contour length}$
- $V_2 = \text{genus}$

Betti numbers

• $\beta_0 = \text{no of connected}$ regions

•
$$\beta_1 = \text{no of holes}$$

For Gaussian field

Tomita (1986)

Minkowski Functionals

 $V_{0} = \frac{1}{2} \operatorname{erfc} (\nu_{t} / \sqrt{2}) \qquad V_{1} = A_{1} e^{-\nu_{t}^{2}/2} \qquad V_{2} = A_{2} \nu e^{-\nu_{t}^{2}/2}$

Amplitudes A_1 , A_2 encode the cosmological information.

Betti numbers

Analytic expressions not known.

Quantifying non-Gaussian deviations

- Any deviation from the known Gaussian shapes of the Minkowski Functionals and Betti numbers is a sign of non-Gaussian deviation.
- Quantify non-Gaussian deviations as

•

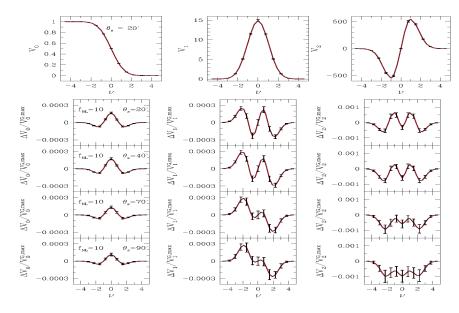
 $\Delta V_k \equiv V_k^{\rm NG} - V_k^{\rm G}$

• Different physical origins lead to distinct shapes of ΔV_k . Hence can be distinguished from each other.

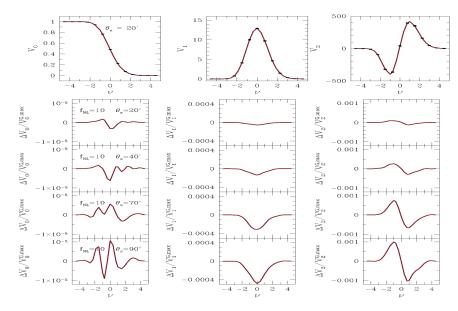
Extensively used to search for non-Gaussian deviations in temperature fluctuations.

Not yet used for non-Gaussian deviations in polarization data.

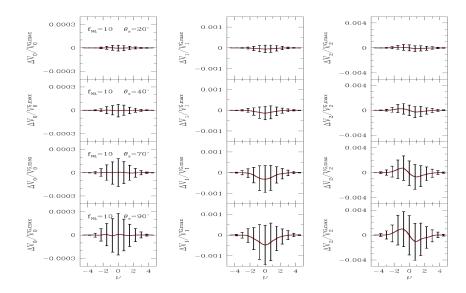
Minkowski functionals - E mode



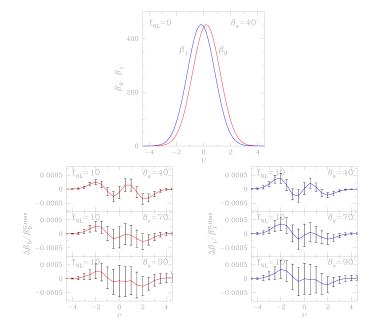
Minkowski functionals - Polarization intensity



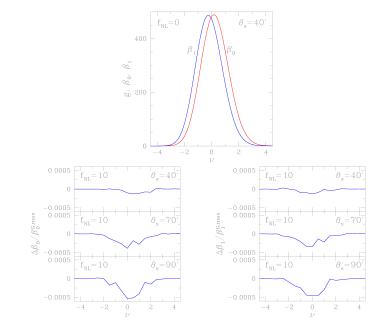
Minkowski functionals - Polarization intensity



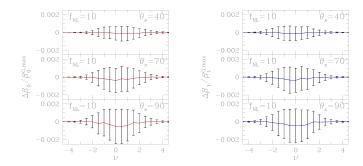
Betti numbers - E mode



Betti numbers - Polarization intensity



Betti numbers - Polarization intensity



Statistical sensitivity of T, E and \tilde{I}

$$A = \Delta \nu \sum_{i=1}^{M} \left(|\Delta O(i)| / O^{\mathrm{G,max}} \right) / \sigma_s(i)$$

Field	θ_s	A for V_1	A for V_2	A for β_0	A for β_1
$\Delta T/T$	40'	27.3	22.8	3.8	3.8
	70'	21.3	14.5	2.3	2.3
	90'	18.4	26.0	1.8	1.8
E	40'	34.8	26.0	5.6	5.5
	70'	19.4	19.0	2.9	2.8
	90'	14.0	17.0	1.8	1.8
Ĩ	40'	1.2	1.2	0.3	0.3
	70'	1.8	1.6	0.5	0.5
	90'	1.7	1.5	0.4	0.5

Summary

- Analyzed statistical properties of CMB polarization for local type primordial non-Gaussianity.
- PDF for polarization intensity has non-Gaussian corrections at order $(f_{\rm NL}\sigma)^2$.
- Calculated non-Gaussian deviations for Minkowski Functional and Betti numbers for E mode and Intensity.
- The statistical significance of non-Gaussian deviations of E mode is comparable to temperature fluctuations. Hence equally useful in constraining non-Gaussianity.
- Intensity has smaller deviations and larger statistical fluctuations. Hence not as useful.