Neural Islands: An analytical model of the late stage of reionization

Xuelei Chen National Astronomical Observatory, Chinese Academy of Sciences

6th KIAS workshop on Cosmology and Structure Formation 2014.11.03

Based on Yidong Xu, Bin Yue, Meng Su, Zuhui Fan, Xuelei Chen: ApJ 781, 97 (2014)

Epoch of Reionization

Current Observational Probes CMB polarization $\rightarrow z \sim 11$; Gunn-Peterson tests \rightarrow complete at $z \sim 6$; Deep Field high-z galaxies

Upcoming & Future: 21cm experiments EDGES, 21CMA, LOFAR< PAPER, LWA, MWA, LOFAR, HERA, SKA high-z galaxy observations: JWST, ...

Theoretical Understanding

(From Mesinger & Furlanetto 2007 ApJ, 669, 663)

- formation of first stars
- feedback
- formation of first galaxies and blackholes
- subsequent galaxy formation
- radiative transfer

Tools of Investigation:

- Numerical Simulations
- Analytical Model bubble model (Furlanetto et al 2004)
- Semi-Numerical Model

Basis of Analytical Model

The reionization field follows the density field on large scales

(From Battaglia et al. 2013 ApJ, 776, 81)

Modeling sturecture growth and halo formation: Excursion Set Theory

(Bond et al. 1991, Lacey & Cole 1993)

The linearly extrapolated density contrast field δ (x, R), S= σ^2 (R) k-space top-hat window function

- Each trajectory of $\delta(S)$ executes a random walk, halo identified when up crossing a preset barrier
- To solve the *cloud-in-cloud* problem, first upcrossing distribution

$$\Pi(\delta, S + \Delta S) = \int d(\Delta \delta) \ \Psi(\Delta \delta; \Delta S) \Pi(\delta - \Delta \delta, S).$$
$$\Psi(\Delta \delta; \Delta S) \ d(\Delta \delta) = \frac{1}{\sqrt{2\pi\Delta S}} \exp\left(-\frac{(\Delta \delta)^2}{2(\Delta S)^2}\right) \ d(\Delta \delta)$$
$$\frac{\partial \Pi}{\partial S} = \frac{1}{2} \frac{\partial^2 \Pi}{\partial \delta^2}$$
$$\Pi(\delta, S) = \frac{1}{\sqrt{2\pi\Delta S}} \left[\exp\left(-\frac{(\Delta \delta)^2}{2\Delta S}\right) - \exp\left(-\frac{[2(\delta_c - \delta_0) - \Delta \delta]^2}{2\Delta S}\right)\right]$$

The Excursion Set Approach for ionized bubbles - The bubble model of reionization (Furlanetto et al. 2004)

* Relate the ionization field to the initial density field

* Ask whether an isolated region of mass M can be fully self-ionized.

 $f_{\text{coll}} \ge f_x \equiv \zeta^{-1} \longrightarrow \delta_m \ge \delta_x(m, z) \equiv \delta_c(z) - \sqrt{2}K(\zeta)[\sigma_{\min}^2 - \sigma^2(m)]^{1/2}$ First-up-Bubble size Linear-fit barrier 15 crossing distribution distribution 6.) (analytical) 😤 rip/up 0.4 10 š \geq \overline{Q}^{-1} 5 0.2 0 0.1 10 10² 10 1 20 30 R (Mpc) $\sigma^2(m)$

However, after percolation of bubbles...

Late Stage of EoR is interesting, and it may be easier for the upcoming instruments to probe the signal at the late reionization stages.

But: The isolated and spherical assumption for the ionized bubbles breaks down

- \rightarrow the neutral islands are more isolated
- 2. The existence of an ionizing background
 - \rightarrow the shape of barriers could be changed

The island model

Note: By islands we mean large, uncollapsed regions, the minihalos and galaxies are smaller neutral regions

early

late

The Island Model

- * Negative island barrier ("inside-out" reionization)
- * Island mass scales are identified by *first-down-crossings* through the island barrier (but not the "never-up-crossing" distribution).
- * With the inclusion of an ionizing background, the condition of keeping from being ionized:

$$\xi f_{\rm coll}(\delta_{\rm M}; M, z) + \frac{\Omega_m}{\Omega_b} \frac{N_{\rm back} m_{\rm H}}{M X_{\rm H} (1 + \bar{n}_{\rm rec})} < 1,$$

→ The island barrier:

$$\delta_{\mathrm{M}} < \delta_{\mathrm{I}}(M, z) \equiv \delta_{c}(z) - \sqrt{2[S_{\mathrm{max}} - S(M)]} \operatorname{erfc}^{-1} \left[K(M, z) \right],$$

$$K(M, z) = \xi^{-1} \left[1 - N_{\text{back}} (1 + \bar{n}_{\text{rec}})^{-1} \frac{m_{\text{H}}}{M(\Omega_b / \Omega_m) X_{\text{H}}} \right]$$

the integral number of background ionizing photons consumed by an island during the time interval between the setup of an ionizing background and the redshift under consideration.

The Island Model

* Define the "background onset time" as the time at which the barrier curve passes through the origin point on the δ – S plane

 $\delta_{\rm I}(S=0; z=z_{\rm back}) = \delta_c(z_{\rm back}) - \sqrt{2 S_{\rm max}(z_{\rm back})} \, {\rm erfc}^{-1}(\xi^{-1}) = 0.$

* We take $\{f_{esc}, f_{\star}, N_{\gamma/H}, \bar{n}_{rec}\} = \{0.2, 0.1, 4000, 1\}$ as the fiducial set of parameters, so that $\xi = 40$ and $z_{back} = 8.6$.

*Solving for the first-down-crossing distribution (Zhang & Hui 2006): (the "island-in-island" problem is naturally solved)

$$f_{\mathrm{I}}(S_{\mathrm{I}}) = -g_{1}(S_{\mathrm{I}}) - \int_{0}^{S_{\mathrm{I}}} \mathrm{d}S' f_{\mathrm{I}}(S') \left[g_{2}(S_{\mathrm{I}},S')\right],$$
$$g_{1}(S_{\mathrm{I}}) = \left[\frac{\delta_{\mathrm{I}}(S_{\mathrm{I}})}{S_{\mathrm{I}}} - 2\frac{\mathrm{d}\delta_{\mathrm{I}}}{\mathrm{d}S_{\mathrm{I}}}\right] P_{0}[\delta_{\mathrm{I}}(S_{\mathrm{I}}), S_{\mathrm{I}}], \quad P_{0}(\delta, S) = \frac{1}{\sqrt{2\pi S}} \exp\left(-\frac{\delta^{2}}{2S}\right)$$
$$g_{2}(S_{\mathrm{I}}, S') = \left[2\frac{\mathrm{d}\delta_{\mathrm{I}}}{\mathrm{d}S_{\mathrm{I}}} - \frac{\delta_{\mathrm{I}}(S_{\mathrm{I}}) - \delta_{\mathrm{I}}(S')}{S_{\mathrm{I}} - S'}\right] P_{0}[\delta_{\mathrm{I}}(S_{\mathrm{I}}) - \delta_{\mathrm{I}}(S'), S_{\mathrm{I}} - S'],$$

*The mass function of islands:

$$\frac{\mathrm{d}n}{\mathrm{d}\ln M_{\mathrm{I}}}(M_{\mathrm{I}}, z) = \bar{\rho}_{\mathrm{m},0} f_{\mathrm{I}}(S_{\mathrm{I}}, z) \left| \frac{\mathrm{d}S_{\mathrm{I}}}{\mathrm{d}M_{\mathrm{I}}} \right|$$

*The volume fraction of neutral regions:

$$\mathbf{Q}_{\mathrm{V}}^{\mathrm{I}} = \int \mathrm{d}M_{\mathrm{I}} \, \frac{\mathrm{d}n}{\mathrm{d}M_{\mathrm{I}}} \, V(M_{\mathrm{I}}).$$

A toy model - island-V

- The ionizing photons permeated through the neutral islands with a uniform density (e.g. all X-rays)
 - Extremely large mean free path
 - Neglecting the absorption by dense clumps
- The averaged number density of the background ionizing photons

$$n_{\gamma} = \bar{n}_{\rm H} f_{\rm coll}(z) f_{\star} N_{\gamma/{\rm H}} f_{\rm esc} - (1 - Q_{\rm V}^{\rm I}) \bar{n}_{\rm H} (1 + \bar{n}_{\rm rec}),$$

A toy model - island-V

A toy model - island-V

A toy model - island-V model

Mass function of islands

Size distribution of islands

Complication: bubbles in island

Modeling the bubbles-in-island effect

*Solving for a two-barrier problem: 1 - The first down-crossing distribution of random walks w.r.t. *island barrier*:

 $f_{\rm I}(S_{\rm I},z)$

2 - The conditional first up-crossing distribution w.r.t. *bubble barrier*: $f_{\rm B}[S_{\rm B}, \delta_{\rm B}|S_{\rm I}, \delta_{\rm I}]$

* The effective bubble barrier:

$$\delta_{\mathrm{B}}' = \delta_{\mathrm{B}}(S + S_{\mathrm{I}}) - \delta_{\mathrm{I}}(S_{\mathrm{I}}) \qquad \qquad S = S_{\mathrm{B}} - S_{\mathrm{I}}.$$

The bubbles-in-island effect

*The bubbles-in-island fraction:

 $q_{\rm B}(S_{\rm I}, \delta_{\rm I}; z) = \int_{S_{\rm I}}^{S_{\rm max}(\xi \cdot M_{\rm min})} \left[1 + \delta_{\rm I} D(z)\right] f_{\rm B}[S_{\rm B}, \delta_{\rm B}|S_{\rm I}, \delta_{\rm I}] \, \mathrm{d}S_{\rm B}.$

*The neutral island mass function:

$$\frac{\mathrm{d}n}{\mathrm{d}M}(M,z) = \frac{\mathrm{d}n}{\mathrm{d}M_{\mathrm{I}}} \frac{\mathrm{d}M_{\mathrm{I}}}{\mathrm{d}M} = \frac{\bar{\rho}_{\mathrm{m},0}}{M_{\mathrm{I}}} f_{\mathrm{I}}(S_{\mathrm{I}},z) \left| \frac{\mathrm{d}S_{\mathrm{I}}}{\mathrm{d}M_{\mathrm{I}}} \right| \frac{\mathrm{d}M_{\mathrm{I}}}{\mathrm{d}M}.$$
$$M = M_{\mathrm{I}}(S_{\mathrm{I}}) \left[1 - q_{\mathrm{B}}(S_{\mathrm{I}},\delta_{\mathrm{I}};z) \right]$$

The ionizing background

* Considering the effect of *Lyman limit systems* on the mean free path of ionizing photons, the comoving number density of background ionizing photons is

$$n_{\gamma}(z) = \int_{z} \bar{n}_{\mathrm{H}} \left| \frac{\mathrm{d}f_{\mathrm{coll}}(z')}{\mathrm{d}z'} \right| f_{\star} N_{\gamma/\mathrm{H}} f_{\mathrm{esc}} \exp\left[-\frac{l(z,z')}{\lambda_{\mathrm{mfp}}(z)} \right] \mathrm{d}z',$$

* With the MHR00 model for the volume-weighted density distribution of the IGM (Miralda-Escude et al. 2000),

$$P_{\rm V}(\Delta) \, d\Delta = A_0 \, \exp\left[-\frac{(\Delta^{-2/3} - C_0)^2}{2 \, (2\delta_0/3)^2}\right] \, \Delta^{-\beta} \, d\Delta$$

the mean free path of ionizing photons can be written as

$$\lambda_{
m mfp} = rac{\lambda_0}{[1 - F_{
m V}(\Delta_{
m crit})]^{2/3}}$$

The ionizing background

* The critical relative density for a clump to self-shield

$$\Delta_{\rm crit} = 36 \, \Gamma_{-12}^{2/3} \, T_4^{2/15} \, \left(\frac{\mu}{0.61}\right)^{1/3} \, \left(\frac{f_e}{1.08}\right)^{-2/3} \, \left(\frac{1+z}{8}\right)^{-3}$$

* The HI photoionization rate Γ_{HI} is related to the total number density of ionizing photons n_v by

$$\Gamma_{\rm HI} = \int \frac{\mathrm{d}n_{\gamma}}{\mathrm{d}\nu} \,(1+z)^3 \,c \,\sigma_{\nu} \,\mathrm{d}\nu,$$

* Scaling the hydrogen photoionization rate to be $\Gamma_{HI} = 10^{-12.8} \text{ s}^{-1}$ at redshift 6, as suggested by recent measurements from the Ly- α forest (Wyithe & Bolton 2011; Calverley et al. 2011)

The ionizing background

Consistent with our definition of the "background onset time"

The island-vS model (nearly realistic)

*We assume that the photons consumed by an island at any instant is proportional to its surface area, then

$$N_{\text{back}} = \int F(z) \Sigma_{\text{I}}(t) \, \mathrm{d}t, \qquad F(z) = n_{\gamma}(z) \left(1+z\right)^3 c/4$$

*For a spherical island,

$$n_{\rm H}(R)(1+\bar{n}_{\rm rec}) 4\pi R^2 (-{\rm d}R) = F(z) \frac{4\pi R^2}{(1+z)^2} \,{\rm d}t,$$
$$\Delta R \equiv R_i - R_f = \int_z^{z_{\rm back}} \frac{F(z)}{\bar{n}_{\rm H}(1+\bar{n}_{\rm rec})} \,\frac{{\rm d}z}{H(z)(1+z)^3}$$

* The total number of background ionizing photons consumed is

$$N_{\text{back}} = \frac{4\pi}{3} \left(R_i^3 - R_f^3 \right) \bar{n}_{\text{H}} (1 + \bar{n}_{\text{rec}}),$$

The island-vS model

- the island barrier and first down-crossing distribution

The island-vS model

- the host island (including bubbles) mass function

The shrinking hosts

$$\frac{M_f}{M_i} = (1 - \frac{\Delta R}{R_i})^3$$

The island-vS model - the bubbles-in-island

The island-vS model - the mass function and size distribution

The problem of large bubbles-in-island fraction

- *Host islands → overestimate the neutral fraction
- *Neutral island \rightarrow atoll or smaller islands?
- * Difficult to visually identify the host islands
- *Break down of bubble model inside islands
- * Percolation of islands

percolation problem

percolation threshold p_c

*The bubble model regime:

 $M [M_{\odot}]$

The percolation criterion:

- * Limit ourselves to the valid (not percolated) case
- * Find bona fide neutral islands
- *The additional barrier is obtained by solving

 $q_B(S_I, \delta_I; z) < p_c$

* p_c = 0.16 for Gaussian random fields

Results

- the size distribution with p_c cutoff

Summary

An analytical model of neutral islands during the late EoR based on the excursion set theory, to help understand reionization process

- * An island barrier on the density contrast for the islands to remain neutral, with the inclusion of an ionizing background.
- * An island was identified when the random walk first-down-crosses the island barrier.
- * We took into account the effect of bubbles-in-island by computing the conditional first up-crossing distribution.
- * An semi-empirical way to determine the intensity of the ionizing background self-consistently.
- * A percolation criterion was applied to find bona fide neutral islands
- * The size distribution of neutral islands shows a peak indicating a characteristic scale of the islands, and it does not change much with redshift.

THANK YOU!

512 Mpc, 1024³