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Current Observational Probes	
 

CMB polarization → z ~ 11; 

Gunn-Peterson tests → complete at z ~ 6; 

Deep Field high-z galaxies 

Upcoming & Future:  

21cm experiments 

EDGES, 21CMA, LOFAR< PAPER, LWA, MWA, 

LOFAR, HERA, SKA 

high-z galaxy observations: JWST, ... 



Theoretical Understanding 

distribution functions (PDFs) produced thusly are shown by the
solid curves in Figure 6 for ionized regions (top panel ) and neutral
regions (bottompanel ). Curves correspond to (z; x̄H i)¼ (10; 0:89),
(9.25, 0.79), (8.50, 0.61), (8.00, 0.45), (7.50, 0.27), and (7.00, 0.10),
from left to right in the top panel, respectively (or from right to
left in the bottom panel ). All curves are normalized so that the
probability density integrates to unity.

It is useful to compare these distributions to the analytic bubble
mass function of Furlanetto et al. (2004c); although this analytic
approach is motivated by the same excursion-set barriers as our
seminumerical approach, it does not account for the full geom-
etry of sources.We compute the probability distribution from the

analytic model by assuming purely spherical bubbles and convolv-
ing with the volume-weighted distance to the sphere’s edge,

p(r) dr ¼ 2!r 2 dr

1" x̄H ið Þ

Z
dR nb(R) 1" r
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where nb(R) is the comoving number density of bubbles with
radii between R and Rþ dR (taken from Furlanetto et al. 2004c).
Several points are evident from Figures 5 and 6. As expected

(e.g., Furlanetto et al. 2004c, 2006a; McQuinn et al. 2007), there
is a well-defined bubble scale at each neutral fraction, despite
some scatter in the sizes. This scale also gets more pronounced

Fig. 5.—Slices through the 2003 ionization field at z ¼ 10, 9, 8.25, and 7.25 (left to right across rows). With the assumption of " ¼ 15:1, these redshifts correspond to
x̄H i ¼ 0:89, 0.74, 0.53, and 0.18, respectively. All slices are 100 Mpc on a side and 0.5 Mpc deep. The bottom left panel corresponds to the halo field in the top right
panel of Fig. 3, generated on a high-resolution 12003 grid. [See the electronic edition of the Journal for a color version of this figure.]
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(From Mesinger & Furlanetto 2007 ApJ, 669, 663) 

•  formation of first stars  

•  feedback 

•  formation of first galaxies and blackholes 

•  subsequent galaxy formation 

•  radiative transfer 

Tools of Investigation: 

•  Numerical Simulations 

•  Analytical Model  
bubble model (Furlanetto et al 2004) 

•  Semi-Numerical Model 



Basis of Analytical Model 
The reionization field follows the density field on large scales  

2 Battaglia et al.
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Fig. 1.— Slices from our high resolution RadHydro simulation for a model of reionization that occurs ”late” with a midpoint of z = 8
and is finished by z ≈ 6.9. The dimensions are 100 Mpc/h x 100 Mpc/h with a thickness of ∼100 kpc/h comoving. Left: The density
field, ρ(x)/ρ̄. Right: The reionization-redshift field, zRE(x). Large-scale, overdense regions near sources are generally ionized earlier than
large-scale, underdense regions far from sources.

ondary anisotropies to great precision, where contribu-
tions to kSZ power from EOR are the largest. The South
Pole Telescope (SPT11; Zahn et al. 2012) placed a model
dependent upper limit on the duration of reionization
from their multifrequency measurements of the high !
power spectrum, and future results from the Atacama
Cosmology Telescope (ACT12) are expected to place sim-
ilar constraints. The next generation high resolution
CMB experiments ACT with polarization (ACT-pol) and
South Pole Telescope with polarization (SPT-pol) will
precisely measurement the secondary anisotropies of the
CMB in both temperature and polarization, which will
provide tighter constraints on EoR.
For the EoR experiments listed above and future ones,

the amount of understanding gained on these first ioniz-
ing sources and the initial stages of galaxy evolution will
depend upon the accuracy of the theoretical models for
EoR. The main challenge in EoR theory is providing an
accurate model of the IGM, the sources and the sinks of
ionizing photons, while having the a large enough vol-
ume > 1(Gpc/h)3 to statistically sample the HI regions
and construct mock observations on the angular scales
required by the current and future EoR experiments.
There are two standard approaches to model EoR,

radiative transfer simulations with various imple-
mentations for hydrodynamics and gas physics (e.g.
Gnedin & Abel 2001; Ciardi et al. 2001; Maselli et al.
2003; Alvarez et al. 2006; Mellema et al. 2006;
Iliev et al. 2006; Trac & Cen 2007; McQuinn et al.
2007; Trac et al. 2008; Aubert & Teyssier 2008;
Altay et al. 2008; Croft & Altay 2008; Finlator et al.
2009; Petkova & Springel 2009) and semi-analytic
models (e.g. Furlanetto et al. 2004; Zahn et al. 2005,
2007; Mesinger & Furlanetto 2007; Geil & Wyithe

11 pole.uchicago.edu
12 www.princeton.edu/act

2008; Alvarez et al. 2009; Thomas et al. 2009;
Choudhury et al. 2009; Santos et al. 2010;
Mesinger et al. 2011). In these semi-analytic mod-
els a region is fully ionized if the simple relation,
ζFcoll ≥ 1 is satisfied. Here ζ is an efficiency parameter
and Fcoll is the collapse fraction, which is calculated
via the excursion set formalism (Bond et al. 1991), or
applied to three dimensional realization of a density field
(e.g. Zahn et al. 2005). Semi-analytic models capture
the generic properties of EoR, but in order to capture
the complex non-linear, and non-Gaussian nature of
EoR radiative transfer simulations are required.
The advantages of the current full hydrodynamic, high

resolution simulations with radiative transfer (imple-
mented either in post processing or during the sim-
ulation) is that they probe the relevant scales to re-
solve sources of ionizing photons and their sinks, then
trace these photons through an inhomogeneous IGM
(Trac & Gnedin 2011). However, full hydrodynamic sim-
ulations with radiative transfer on large enough scales
to capture a representative sample of ionizing sources
and with enough small scale resolution to also capture
all the physics of reionization are currently not possi-
ble due to the overwhelming computational demands of
such calculations. Thus, all of the simulations to date
have been restricted to smaller box-sizes. Recent work
by Zahn et al. (2011) ran several convergence tests be-
tween these two types of EoR models. For all the models
in their study, they found that the results from the mod-
els are within tens of percent of each other. Although in
these comparisons the parameters of semi-analytic mod-
els were adjusted to match the ionization fractions of the
simulations at the redshifts of interest.
In this paper, we present a substantially more accu-

rate semi-analytical model that is statistically informed
by simulations with radiative transfer and hydrodynam-
ics. The implementation of this model is fast, versatile

(From Battaglia et al. 2013 ApJ, 776, 81) 

density	
 reionization redshift	
 



  Each trajectory of δ(S) executes a random walk, 

halo identified when up crossing a preset barrier 

  To solve the cloud-in-cloud problem, first up-

crossing distribution  

Modeling sturecture growth and halo formation: 
Excursion Set Theory 

The Astrophysical Journal, 781:97 (15pp), 2014 February 1 Xu et al.

Figure 1. Two random walk trajectories in the excursion set theory. Here,
S = σ 2(M) denotes the variance of δM, which is the density fluctuation
smoothed on a mass scale M. All trajectories originate from (S, δ) = (0, 0).
The horizontal line represents a flat barrier, motivated by spherical collapse.
(A color version of this figure is available in the online journal.)

(Komatsu et al. 2011), but the results are not sensitive to these
parameters.

2. A BRIEF REVIEW OF THE EXCURSION SET THEORY
AND THE BUBBLE MODEL

2.1. The Excursion Set Model

Our island model is based on the excursion set theory. Here,
we give a brief review of the excursion set approach, especially
its application to the reionization process, i.e., the bubble model.
For a more comprehensive review of the excursion set theory
and its extensions and applications, we refer interested readers
to Zentner (2007) and references therein.

In what follows, we consider the density contrast field
evaluated at some early time but extrapolated to the present
day using linear perturbation theory. Considering a point x in
space, the density contrast δ(x) around it depends on the smooth
mass scale M under consideration. The variance of the density
fluctuations on a scale M, S = σ 2(M), monotonically decreases
with increasing M in our universe, so we can use S to represent
the scale M. Starting at M = ∞, i.e., S = 0, we move to
smaller and smaller scales surrounding the point of interest and
compute the smoothed density field as we go along. If we use a
k-space tophat window function to smooth the density field, at
each scale k a set of independent Fourier modes are added and
the trajectory of δ can be described by a random walk where
each step is independent, forming random trajectories on the
S–δ plane. Each of these trajectories starts from the origin of
the (S, δ) plane, with the variance of all trajectories given by
〈δ2(S)〉 = S. Two sample trajectories are shown in Figure 1.
Typically, the trajectories jitter more and deviate farther from
δ = 0 at larger S.

It is assumed that at redshift z and on scale M, regions with an
average density above a certain threshold value δc will collapse
into halos, while regions with an average density below the

threshold would remain uncollapsed. The galaxies form inside
sufficiently massive halos. In some models, δc is only a function
of redshift; more generally, it is a function of both redshift and
mass scale. The formation of a halo corresponds to the trajectory
up-crossing a barrier δc(M, z) in the S–δ plane. The excursion
set theory was developed to compute the probabilities for such
crossing and gives the mass distribution of the corresponding
halos.

An important issue that must be addressed is the “cloud-in-
cloud” problem. For a given central point, the critical threshold
could be exceeded multiple times, corresponding to possible
halos on different mass scales. In the excursion set theory, one
determines the largest smoothing scale M (smallest S) at which
a trajectory first up-crosses the halo barrier at δc and identify
it as the halo at that redshift, while smaller-scale crossings are
ignored. Physically, it is reasonable to think that the smaller-
scale upcrossing corresponds to a small halo that formed earlier
and merged into the larger halo.

The probability of the barrier crossing can be computed
by solving a diffusion equation with the appropriate boundary
conditions and the first crossing probability can be calculated
with an absorbing barrier. For a constant density barrier and
a starting point of (δ0, S0), the differential probability of first-
crossing of the barrier δc at S, known as the “first-crossing
distribution,” can be written as

f (S|δ0, S0)dS = δc − δ0√
2π (S − S0)3/2

exp
[
− (δc − δ0)2

2(S − S0)

]
dS

(1)

and around the whole universe, the mass function of the
virialized halos is obtained by setting S0 = 0 and δ0 = 0,
which is

dn

d ln M
= ρ̄m,0f (S)

∣∣∣∣
dS

dM

∣∣∣∣ . (2)

Besides the halo mass function, the excursion set theory can
also be used to model the halo formation and growth (Bond
et al. 1991; Lacey & Cole 1993) and halo clustering properties
(Mo & White 1996). Apart from the virialized halos, it could
be applied to various structures in the universe, such as the
voids in the galaxy distribution (Sheth & van de Weygaert 2004;
Paranjape et al. 2012a; Furlanetto & Piran 2006; D’Aloisio &
Furlanetto 2007) and the ionized bubbles during the early stages
of reionization (Furlanetto et al. 2004). It has also been extended
to the case of moving barriers (Sheth & Tormen 2002; Zhang &
Hui 2006). Strictly speaking, the probabilities given above are
calculated for uncorrelated steps, which is correct for the k-space
tophat filter but not for the real-space tophat filter. An excursion
set model with correlated steps has also been developed (Pan
et al. 2008; Paranjape et al. 2012b; Paranjape & Sheth 2012;
Musso & Sheth 2012; Farahi & Benson 2013; Musso & Sheth
2013), but below we will still use the uncorrelated model for its
simplicity.

2.2. The Bubble Model

In the excursion set model of ionized bubbles during reioniza-
tion, i.e., the “bubble model,” a region is considered ionized if it
could emit sufficient ionizing photons to ionize all of the hydro-
gen atoms in the region (Furlanetto et al. 2004). Assuming that
the number of the ionizing photons emitted is proportional to
the total collapse fraction of the region, the ionization condition
can be written as

fcoll ! ξ−1, (3)

3

(Bond et al. 1991, Lacey & Cole 

1993) 

The linearly extrapolated density 

contrast field δ (x, R),  S=σ2 (R) 

k-space top-hat window function 



and nrec the typical number of times a hydrogen atom has
recombined. These parameters all depend on the uncertain
source properties and can be functions of time; we will con-
sider several possible values for ! below.

Because the mass function is steep at high redshifts, the re-
sulting H ii regions are quite small (see the discussion of Fig. 4
below). This conflicts with even the most basic pictures from
simulations (Sokasian et al. 2003a; Ciardi et al. 2003). ‘‘Typi-
cal’’ ionized regions in simulations extend to several comoving
megaparsecs in radius even early in overlap, many times larger
than Strömgren spheres around individual galaxies. The reason
is simply that the Strömgren spheres of nearby protogalaxies
add, so that biased regions tend to host surprisingly large ion-
ized regions (Barkana & Loeb 2004). For example, Figure 6 of
Sokasian et al. (2003a) shows that H ii regions tend to grow
around the largest clusters of sources, in this case primarily
along filaments. In fact, the radius of the H ii regions quickly
exceeds the correlation length of galaxies, so it is difficult to see
how to construct a model for the bubbles based on ‘‘local’’
galaxy properties.

Therefore, in order to describe the neutral fraction field, xH,
we need to take into account large-scale fluctuations in the
density field. Here we describe a simple way to do so. We again
begin with the Ansatz of equation (1) and ask whether an iso-
lated region of mass m is fully ionized or not. Because it is
isolated, the region must contain enough mass in luminous
sources to ionize all of its hydrogen atoms; thus we can impose
a condition on the collapse fraction:

fcoll ! fx " !#1: ð2Þ

In the extended Press-Schechter model (Bond et al. 1991;
Lacey & Cole 1993), the collapse fraction is a deterministic
function of the mean linear overdensity "m of our region:

fcoll ¼ erfc
"c(z)# "mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½#2
min # #2(m)(

p
" #

; ð3Þ

where #2(m) is the variance of density fluctuations on the scale
m, #2

min ¼ #2(mmin), "c(z) is the critical density for collapse,
and mmin is the minimum mass of an ionizing source.7 Unless
otherwise specified, we will take mmin to be the mass corre-
sponding to a virial temperature of 104 K, at which atomic
hydrogen line cooling becomes efficient. Note that this ex-
pression assumes that the mass fluctuations are Gaussian on the
scale m; the formula thus begins to break down when we
consider mass scales close to the typical size of collapsed
objects. Armed with this result, we can rewrite condition (2) as
a constraint on the density:

"m ! "x(m; z) " "c(z)#
ffiffiffi
2

p
K(!)½#2

min # #2(m)(1=2; ð4Þ

where K(!) ¼ erf #1(1# !#1). We see that regions with suffi-
ciently large overdensities will be able to ‘‘self-ionize.’’

In order to compute the size distribution of ionized regions
wemust overcome two additional, but related, difficulties. First,
we apparently must settle on an appropriate smoothing scale m.
Second, we must take into account ionizing photons from

galaxies outside of the region under consideration. In other
words, an underdense voidm1 may be ionized by a neighboring
cluster of sources in an overdense region m2 provided that the
cluster has enough ‘‘extra’’ ionizing photons. But notice that
we can solve the latter problem by changing our smoothing
scale to m1 þ m2: then the net collapse fraction in this region
would be large enough to ‘‘self-ionize.’’

This suggests that we wish to assign a point in space to an
ionized region of mass m if and only if the scale m is the
largest scale for which condition (4) is fulfilled. If this pro-
cedure can be done self-consistently, we will not need to ar-
bitrarily choose a smoothing scale. Our problem is analogous
to constructing the halo mass function through the excursion
set formalism (Bond et al. 1991): starting at m ¼ 1, we move
to smaller scales surrounding the point of interest and compute
the smoothed density field as we go along. Once "m ¼ "x(m; z),
we have identified a region with enough sources to ionize
itself, and we assign these points to objects of the appropri-
ate mass. To obtain the mass function, we need to find the
distribution of first up-crossings above the curve described
by "x. (We are concerned only with the first-crossing distri-
bution because those trajectories that later wander below the
barrier correspond to regions ionized by sources in neighboring
volumes.) Again, we need not choose a smoothing scale; each
point is assigned to an object of mass m based on its own
behavior.

The solid lines in Figure 1 show the barrier "x(m; z) for
several redshifts as a function of #2(m). In each case the curves
end at #2(!mmin); this is the minimum size of an H ii region in
our formalism. The figure shows an important difference be-
tween our problem and the excursion set formalism applied to
the halo mass function. In the latter case, the barrier "c(z) is
independent of mass. Clearly this would not be a good approx-
imation in our case. Unfortunately, there is no general method
for constructing the first-crossing distribution above a barrier
of arbitrary shape (but see Sheth & Tormen [2002] for an

7 Note that in eq. (3) the growth of structure is encoded in the time evo-
lution of "c(z), with #2(m) constant in time. We adopt this convention in the
rest of the paper.

Fig. 1.—Density threshold "x(#2; z) at several different redshifts, assuming
! ¼ 40. The curves are for z ¼ 20, 16, and 12, from top to bottom. Within
each set, the solid curve is the true "x(m; z) and the dashed line is the fit
B(m; z).
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The Excursion Set Approach for ionized bubbles 
– The bubble model of reionization 

(Furlanetto et al. 2004) 

* Relate the ionization field to the initial density field 

* Ask whether an isolated region of mass M can be fully self-ionized. 
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would be large enough to ‘‘self-ionize.’’
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largest scale for which condition (4) is fulfilled. If this pro-
cedure can be done self-consistently, we will not need to ar-
bitrarily choose a smoothing scale. Our problem is analogous
to constructing the halo mass function through the excursion
set formalism (Bond et al. 1991): starting at m ¼ 1, we move
to smaller scales surrounding the point of interest and compute
the smoothed density field as we go along. Once "m ¼ "x(m; z),
we have identified a region with enough sources to ionize
itself, and we assign these points to objects of the appropri-
ate mass. To obtain the mass function, we need to find the
distribution of first up-crossings above the curve described
by "x. (We are concerned only with the first-crossing distri-
bution because those trajectories that later wander below the
barrier correspond to regions ionized by sources in neighboring
volumes.) Again, we need not choose a smoothing scale; each
point is assigned to an object of mass m based on its own
behavior.

The solid lines in Figure 1 show the barrier "x(m; z) for
several redshifts as a function of #2(m). In each case the curves
end at #2(!mmin); this is the minimum size of an H ii region in
our formalism. The figure shows an important difference be-
tween our problem and the excursion set formalism applied to
the halo mass function. In the latter case, the barrier "c(z) is
independent of mass. Clearly this would not be a good approx-
imation in our case. Unfortunately, there is no general method
for constructing the first-crossing distribution above a barrier
of arbitrary shape (but see Sheth & Tormen [2002] for an

7 Note that in eq. (3) the growth of structure is encoded in the time evo-
lution of "c(z), with #2(m) constant in time. We adopt this convention in the
rest of the paper.

Fig. 1.—Density threshold "x(#2; z) at several different redshifts, assuming
! ¼ 40. The curves are for z ¼ 20, 16, and 12, from top to bottom. Within
each set, the solid curve is the true "x(m; z) and the dashed line is the fit
B(m; z).
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approximate method). The most complicated case for which an
analytic solution is available is a linear barrier (Sheth 1998).
The dashed curves in Figure 1 show linear ‘‘fits’’ to the barrier
constructed in the following way. First note that, as m ! 1,

!x ! B0 ! !c(z)"
ffiffiffi
2

p
K(")#min: ð5Þ

Also, at any given #2, the slope is simply

@!x
@#2

¼ K(")ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(#2

min " #2)
p : ð6Þ

We define B1 to be this slope evaluated at #2 ¼ 0. The dashed
lines in Figure 1 are B(m; z) ¼ B0 þ B1#2(m), i.e., a linear
fit to the true barrier at m ¼ 1. We see that this is a reason-
able approximation to the true barrier shape for #2 that are not
too large. The fit departs from !x as the mass approaches the
size of H ii regions around individual galaxies. However,
equation (3)—upon which the entire approach is predicated—
also breaks down on small-mass scales. Thus we do not con-
sider it necessary to improve the fit. [ In any case, choosing the
slope of the barrier to fit #2("mmin) exactly does not signifi-
cantly change our results except at early times, when the bub-
bles are still quite rare.]

The advantage of a linear fit is that we can now write the
mass function analytically (Sheth 1998):

m
dn

dm
¼

ffiffiffiffi
2

$

r
%̄

m

d ln #

d lnm

""""

""""
B0

#(m)
exp " B2(m; z)

2#2(m)

# $
: ð7Þ

This is the comoving number density of H ii regions with
masses in the range (m;mþ dm). Figure 2 shows the resulting

size distributions at several redshifts for " ¼ 40. The dot-
dashed, short-dashed, long-dashed, dotted, and solid curves
correspond to z ¼ 18, 16, 14, 13, and 12, respectively. The
curves begin at the radius corresponding to an H ii region
around a galaxy of mass mmin. We have normalized each curve
by the fraction of space Q̄ filled by the bubbles,

Q̄ ¼
Z

dm
dn

dm
V (m); ð8Þ

where V(m) is the comoving volume of a bubble of mass m. We
show the evolution of Q̄ for several choices of " by the solid
lines in Figure 3; the curves in Figure 2 range from Q̄ ¼ 0:037
to Q̄ ¼ 0:74. When the ionized fraction is small, the ionized
regions are also small, with characteristic sizes P0.5 Mpc. At
this point they are not much bigger than the Strömgren spheres
surrounding individual galaxies. However, the size increases
rapidly as the neutral fraction decreases; when Q̄ ¼ 0:5, the
bubbles are already several megaparsecs in size. The charac-
teristic scale then begins to increase extremely rapidly because
B0 ! 0 as we approach overlap (see Fig. 1). This behavior
matches the results of the simulations cited above—although
note that the scales we find can exceed the simulation box sizes
well before overlap (see below).
This contrasts sharply with a scenario in which we assign

ionized regions to individual galaxies: the top panel of Figure 4
compares the predictions of our model with one in which
each galaxy hosts its own distinct ionized bubble. Note that
we have not normalized the curves by Q̄. In the galaxy-based
model, we see that the bubble sizes change only very slowly;
the filling factor is dominated by the smallest galaxies. In such
a scenario, overlap is achieved not by the growth of existing H ii
regions but through the formation of more distinct bubbles.
Also note that, provided our model is correct, the sizes of
ionized regions cannot be determined even from the Strömgren
spheres around ‘‘large’’ or L' galaxies. Instead large-scale

Fig. 2.—Bubble size distribution Q̄"1Vdn=d ln R at several different red-
shifts in our model, assuming " ¼ 40 (note that R is the comoving size). Dot-
dashed, short-dashed, long-dashed, dotted, and solid lines are for z ¼ 18, 16, 14,
13, and 12, respectively. These have Q̄ ¼ 0:037, 0.11, 0.3, 0.5, and 0.74. [See the
electronic edition of the Journal for a color version of this figure.]

Fig. 3.—Global ionization history for several scenarios. The curves that rise
from zero assume " ¼ 500, 40, and 12, from right to left; solid lines are for our
model, and dashed lines are the ‘‘true’’ values, " fcoll. [See the electronic
edition of the Journal for a color version of this figure.]
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However, after percolation of bubbles… 

But: The isolated and spherical assumption for the 
ionized bubbles breaks down  

  the neutral islands are more isolated 

2. The existence of an ionizing background 

  the shape of barriers could be changed  

Late Stage of EoR is interesting, and it may be  
easier for the upcoming instruments to probe the 
signal at the late reionization stages. 

distribution functions (PDFs) produced thusly are shown by the
solid curves in Figure 6 for ionized regions (top panel ) and neutral
regions (bottompanel ). Curves correspond to (z; x̄H i)¼ (10; 0:89),
(9.25, 0.79), (8.50, 0.61), (8.00, 0.45), (7.50, 0.27), and (7.00, 0.10),
from left to right in the top panel, respectively (or from right to
left in the bottom panel ). All curves are normalized so that the
probability density integrates to unity.

It is useful to compare these distributions to the analytic bubble
mass function of Furlanetto et al. (2004c); although this analytic
approach is motivated by the same excursion-set barriers as our
seminumerical approach, it does not account for the full geom-
etry of sources.We compute the probability distribution from the

analytic model by assuming purely spherical bubbles and convolv-
ing with the volume-weighted distance to the sphere’s edge,

p(r) dr ¼ 2!r 2 dr

1" x̄H ið Þ

Z
dR nb(R) 1" r

2R

! "
; ð15Þ

where nb(R) is the comoving number density of bubbles with
radii between R and Rþ dR (taken from Furlanetto et al. 2004c).
Several points are evident from Figures 5 and 6. As expected

(e.g., Furlanetto et al. 2004c, 2006a; McQuinn et al. 2007), there
is a well-defined bubble scale at each neutral fraction, despite
some scatter in the sizes. This scale also gets more pronounced

Fig. 5.—Slices through the 2003 ionization field at z ¼ 10, 9, 8.25, and 7.25 (left to right across rows). With the assumption of " ¼ 15:1, these redshifts correspond to
x̄H i ¼ 0:89, 0.74, 0.53, and 0.18, respectively. All slices are 100 Mpc on a side and 0.5 Mpc deep. The bottom left panel corresponds to the halo field in the top right
panel of Fig. 3, generated on a high-resolution 12003 grid. [See the electronic edition of the Journal for a color version of this figure.]
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Fig. 5.—Slices through the 2003 ionization field at z ¼ 10, 9, 8.25, and 7.25 (left to right across rows). With the assumption of " ¼ 15:1, these redshifts correspond to
x̄H i ¼ 0:89, 0.74, 0.53, and 0.18, respectively. All slices are 100 Mpc on a side and 0.5 Mpc deep. The bottom left panel corresponds to the halo field in the top right
panel of Fig. 3, generated on a high-resolution 12003 grid. [See the electronic edition of the Journal for a color version of this figure.]
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The Island Model 
* Negative island barrier (“inside-out” reionization) 

* Island mass scales are identified by first-down-crossings through 
the island barrier (but not the “never-up-crossing” distribution). 

* With the inclusion of an ionizing background, the condition of 
keeping from being ionized: 

 The island barrier: 

the integral number of background ionizing photons consumed by an 
island during the time interval between the setup of an ionizing 
background and the redshift under consideration. 
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high density and hence high recombination rates, which keep them from being ionized. We shall

not discuss these small, highly dense HI systems in this paper, their number distribution can be

predicted with the usual halo model formalism (see Cooray & Sheth 2002 for a review). The neutral

islands during the late era of reionization are more likely isolated than the ionized bubbles, similar

to the voids at lower redshifts.

In the island model, we assume that most part of the Universe has been ionized, but the

reionization has not been completed. The condition for a region remains neutral is just the opposite

of the ionization condition, that is, the total number of ionizing photons is less than the number

required to ionize all hydrogen atoms in the region. At this stage, however, it is also important to

include the background ionizing photons which are produced outside the region. An island of mass

scale M at redshift z has to satisfy the following condition in order to remain neutral:

ξfcoll(δM;M, z) +
Ωm

Ωb

NbackmH

MXH(1 + n̄rec)
< 1, (11)

where Nback is the number of background ionizing photons that are consumed by the island, and XH

is the mass fraction of the baryons in hydrogen. The first term on the L.H.S. is due to self-ionization,

while the second term is due to the ionizing background. Note that in the usual convention of the

bubble model, the number of recombination factor (1+ n̄rec)
−1

is absorbed in the ξ parameter, and

to be consistent with these literatures here we follow this convention, but we should keep in mind

that if one changes n̄rec, the adopted ξ value should be changed accordingly.

Using Eq. (5), the condition (11) can be rewritten as a constraint on the overdensity of the

region:

δM < δI(M, z) ≡ δc(z)−
�
2[Smax − S(M)] erfc

−1
[K(M, z)] , (12)

where

K(M, z) = ξ−1

�
1−Nback(1 + n̄rec)

−1
mH

M(Ωb/Ωm)XH

�
. (13)

Due to the contribution of the ionizing background photons, in the excursion set model the barrier

for the neutral islands is different from the barrier used in the bubble model, as the ionizing

background would not be present when the bubbles are isolated. Below, we shall call a barrier with

only the self-ionization term the “bubble barrier”, denoted by δB(M, z), since it is used to compute

the probability of forming bubbles. Inclusion of the ionizing background would make the barrier

much more negative, and we shall call the full barrier the “island barrier”, denoted by δI(M, z).

As discussed in the last section, the bubble barrier lowers as the structure formation progresses.

Even if we simply compute the barrier as in the original bubble model, i.e. including only the

ionizing photons from collapsed halos within the region being considered, it could have negative

intercepts, i.e. δB(S = 0) < 0 (see e.g. the thin lines in Fig. 2). When bubble barrier passes

through the origin of the δ − S plane, all regions with the mean density δ = 0 are ionized, this

means that most of the Universe is ionized. It is also from this moment onward a global ionizing

background is gradually set up. We will define the redshift when this occurred as the “background



The Island Model 

* Define the “background onset time” as  

the time at which the barrier curve passes  

through the origin point on the δ − S plane 

* We take                                                    as the fiducial set 

of parameters, so that ξ = 40 and zback = 8.6. 
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We take {fesc, f!, Nγ/H, n̄rec} = {0.2, 0.1, 4000, 1} as the fiducial set of parameters, so that ξ = 40

and zback = 8.6, consistent with the observations of the quasars/gamma-ray bursts absorption

spectra (Gallerani et al. 2008a,b) and Lyman alpha emitters surveys (e.g. Malhotra & Rhoads

2006; Dawson et al. 2007) which suggests xHI ! 1 at z ≈ 6.

As all trajectories start from the point (S, δ) = (0, 0), we see that instead of the usual up-

crossing condition in the excursion set model, here the condition of forming a neutral island is

represented by a down-crossing of the barrier. Once a random walk trajectory hits the island

barrier, we identify an island with the crossing scale, and assign the points inside this region to a

neutral island of the appropriate mass. Similar to the “cloud-in-cloud” problem in the halo model

(Bond et al. 1991), or the “void-in-void” problem in the void model (Sheth & van de Weygaert

2004), there is also an “island-in-island” problem. As in those cases, this problem can also be solved

naturally by considering only the first-down-crossings of the barrier curve.

For a general barrier, Zhang & Hui (2006) developed an intergral equation method for com-

puting the first-up-crossing distribution. Similarly, denoting the island scale with its variance SI,

the first-down-crossing distribution of random trajectories with an arbitrary island barrier can be

solved as:

fI(SI) = −g1(SI)−
∫ SI

0
dS′fI(S

′)
[

g2(SI, S
′)
]

, (15)

where

g1(SI) =

[

δI(SI)

SI
− 2

dδI
dSI

]

P0[δI(SI), SI], (16)

g2(SI, S
′) =

[

2
dδI
dSI

−
δI(SI)− δI(S′)

SI − S′

]

P0[δI(SI)− δI(S
′), SI − S′], (17)

and P0(δ, S) is the normal Gaussian distribution with variance S, which is defined as

P0(δ, S) =
1√
2πS

exp

(

−
δ2

2S

)

. (18)

These integral equations can be solved numerically with the algorithm of Zhang & Hui (2006), we

can then obtain the mass function of islands at redshift z:

dn

d lnMI
(MI, z) = ρ̄m,0fI(SI, z)

∣

∣

∣

∣

dSI

dMI

∣

∣

∣

∣

. (19)

With the neutral island mass function, the volume fraction of neutral regions is given by

QV =

∫

dMI
dn

dMI
V (MI). (20)

3.2. The ionizing background

The intensity of the ionizing background is very important in the reionization process. However,

it has not yet be observed yet, and in any case it evolves with redshift and depends on the detailed
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onset redshift” zback, and it can be solved from the following equation:

δI(S = 0; z = zback) = δc(zback)−
�
2Smax(zback) erfc

−1(ξ−1) = 0. (14)

We take {fesc, f�, Nγ/H, n̄rec} = {0.2, 0.1, 4000, 1} as the fiducial set of parameters, so that ξ = 40

and zback = 8.6, consistent with the observations of the quasars/gamma-ray bursts absorption

spectra (Gallerani et al. 2008a,b) and Lyman alpha emitters surveys (e.g. Malhotra & Rhoads

2006; Dawson et al. 2007) which suggests xHI � 1 at z ≈ 6. We note that this background

onset redshift is also consistent with our ionizing background model presented in §4,
in which the intensity of the ionizing background starts to rapidly increase around

redshift z ∼ 8 − 9 (see Fig. 5). However, the exact value of this background onset

redshift has little impact on the final model predictions on the island distribution, as

the ionizing background increases quite rapidly during the late stage of reionization

(see §4) and the main background contribution to the ionizations comes from the

redshift range just above the redshift under consideration.

As all trajectories start from the point (S, δ) = (0, 0), we see that instead of the usual up-

crossing condition in the excursion set model, here the condition of forming a neutral island is

represented by a down-crossing of the barrier. Once a random walk trajectory hits the island

barrier, we identify an island with the crossing scale, and assign the points inside this region to a

neutral island of the appropriate mass. Similar to the “cloud-in-cloud” problem in the halo model

(Bond et al. 1991), or the “void-in-void” problem in the void model (Sheth & van de Weygaert

2004), there is also an “island-in-island” problem. As in those cases, this problem can also be solved

naturally by considering only the first-down-crossings of the barrier curve.

For a general barrier, Zhang & Hui (2006) developed an intergral equation method for com-

puting the first-up-crossing distribution. Similarly, denoting the island scale with its variance SI,

the first-down-crossing distribution of random trajectories with an arbitrary island barrier can be

solved as:

fI(SI) = −g1(SI)−
� SI

0

dS�fI(S
�)
�
g2(SI, S

�)
�
, (15)

where

g1(SI) =

�
δI(SI)

SI

− 2
dδI
dSI

�
P0[δI(SI), SI], (16)

g2(SI, S
�) =

�
2
dδI
dSI

− δI(SI)− δI(S�)

SI − S�

�
P0[δI(SI)− δI(S

�), SI − S�], (17)

and P0(δ, S) is the normal Gaussian distribution with variance S, which is defined as

P0(δ, S) =
1√
2πS

exp

�
− δ2

2S

�
. (18)

These integral equations can be solved numerically with the algorithm of Zhang & Hui (2006), we

can then obtain the mass function of islands at redshift z:

dn

d lnMI

(MI, z) = ρ̄m,0fI(SI, z)

����
dSI

dMI

���� . (19)



* Solving for the first-down-crossing distribution (Zhang & Hui 2006): 

(the “island-in-island” problem is naturally solved) 

* The mass function of islands: 

* The volume fraction of neutral regions: 
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onset redshift” zback, and it can be solved from the following equation:
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2006; Dawson et al. 2007) which suggests xHI � 1 at z ≈ 6. We note that this background

onset redshift is also consistent with our ionizing background model presented in §4,
in which the intensity of the ionizing background starts to rapidly increase around

redshift z ∼ 8 − 9 (see Fig. 5). However, the exact value of this background onset

redshift has little impact on the final model predictions on the island distribution, as
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(see §4) and the main background contribution to the ionizations comes from the
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naturally by considering only the first-down-crossings of the barrier curve.

For a general barrier, Zhang & Hui (2006) developed an intergral equation method for com-

puting the first-up-crossing distribution. Similarly, denoting the island scale with its variance SI,

the first-down-crossing distribution of random trajectories with an arbitrary island barrier can be

solved as:

fI(SI) = −g1(SI)−
� SI

0

dS�fI(S
�)
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g2(SI, S

�)
�
, (15)

where

g1(SI) =
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δI(SI)

SI

− 2
dδI
dSI

�
P0[δI(SI), SI], (16)

g2(SI, S
�) =

�
2
dδI
dSI

− δI(SI)− δI(S�)
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�
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These integral equations can be solved numerically with the algorithm of Zhang & Hui (2006), we

can then obtain the mass function of islands at redshift z:
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����
dSI

dMI

���� . (19)

– 10 –

onset redshift” zback, and it can be solved from the following equation:

δI(S = 0; z = zback) = δc(zback)−
�
2S2

max(zback) erfc
−1(ξ−1) = 0. (14)

We take {fesc, f�, Nγ/H, n̄rec} = {0.2, 0.1, 4000, 1} as the fiducial set of parameters, so that ξ = 40

and zback = 8.6, consistent with the observations of the quasars/gamma-ray bursts absorption

spectra (Gallerani et al. 2008a,b) and Lyman alpha emitters surveys (e.g. Malhotra & Rhoads

2006; Dawson et al. 2007) which suggests xHI � 1 at z ≈ 6. We note that this background

onset redshift is also consistent with our ionizing background model presented in §4,
in which the intensity of the ionizing background starts to rapidly increase around

redshift z ∼ 8 − 9 (see Fig. 5). However, the exact value of this background onset

redshift has little impact on the final model predictions on the island distribution, as

the ionizing background increases quite rapidly during the late stage of reionization

(see §4) and the main background contribution to the ionizations comes from the

redshift range just above the redshift under consideration.

As all trajectories start from the point (S, δ) = (0, 0), we see that instead of the usual up-

crossing condition in the excursion set model, here the condition of forming a neutral island is

represented by a down-crossing of the barrier. Once a random walk trajectory hits the island

barrier, we identify an island with the crossing scale, and assign the points inside this region to a

neutral island of the appropriate mass. Similar to the “cloud-in-cloud” problem in the halo model

(Bond et al. 1991), or the “void-in-void” problem in the void model (Sheth & van de Weygaert

2004), there is also an “island-in-island” problem. As in those cases, this problem can also be solved

naturally by considering only the first-down-crossings of the barrier curve.

For a general barrier, Zhang & Hui (2006) developed an intergral equation method for com-

puting the first-up-crossing distribution. Similarly, denoting the island scale with its variance SI,

the first-down-crossing distribution of random trajectories with an arbitrary island barrier can be

solved as:

fI(SI) = −g1(SI)−
� SI

0

dS�fI(S
�)
�
g2(SI, S

�)
�
, (15)

where

g1(SI) =

�
δI(SI)

SI

− 2
dδI
dSI

�
P0[δI(SI), SI], (16)

g2(SI, S
�) =

�
2
dδI
dSI

− δI(SI)− δI(S�)

SI − S�

�
P0[δI(SI)− δI(S

�), SI − S�], (17)

and P0(δ, S) is the normal Gaussian distribution with variance S, which is defined as

P0(δ, S) =
1√
2πS

exp

�
− δ2

2S

�
. (18)

These integral equations can be solved numerically with the algorithm of Zhang & Hui (2006), we

can then obtain the mass function of islands at redshift z:

dn

d lnMI

(MI, z) = ρ̄m,0fI(SI, z)

����
dSI

dMI

���� . (19)

– 10 –

onset redshift” zback, and it can be solved from the following equation:

δI(S = 0; z = zback) = δc(zback)−
�

2S2
max(zback) erfc

−1(ξ−1) = 0. (14)

We take {fesc, f�, Nγ/H, n̄rec} = {0.2, 0.1, 4000, 1} as the fiducial set of parameters, so that ξ = 40

and zback = 8.6, consistent with the observations of the quasars/gamma-ray bursts absorption

spectra (Gallerani et al. 2008a,b) and Lyman alpha emitters surveys (e.g. Malhotra & Rhoads

2006; Dawson et al. 2007) which suggests xHI � 1 at z ≈ 6. We note that this background

onset redshift is also consistent with our ionizing background model presented in §4,
in which the intensity of the ionizing background starts to rapidly increase around

redshift z ∼ 8 − 9 (see Fig. 5). However, the exact value of this background onset

redshift has little impact on the final model predictions on the island distribution, as

the ionizing background increases quite rapidly during the late stage of reionization

(see §4) and the main background contribution to the ionizations comes from the

redshift range just above the redshift under consideration.

As all trajectories start from the point (S, δ) = (0, 0), we see that instead of the usual up-

crossing condition in the excursion set model, here the condition of forming a neutral island is

represented by a down-crossing of the barrier. Once a random walk trajectory hits the island

barrier, we identify an island with the crossing scale, and assign the points inside this region to a

neutral island of the appropriate mass. Similar to the “cloud-in-cloud” problem in the halo model

(Bond et al. 1991), or the “void-in-void” problem in the void model (Sheth & van de Weygaert

2004), there is also an “island-in-island” problem. As in those cases, this problem can also be solved

naturally by considering only the first-down-crossings of the barrier curve.

For a general barrier, Zhang & Hui (2006) developed an intergral equation method for com-

puting the first-up-crossing distribution. Similarly, denoting the island scale with its variance SI,

the first-down-crossing distribution of random trajectories with an arbitrary island barrier can be

solved as:

fI(SI) = −g1(SI)−
� SI

0

dS�fI(S
�)
�
g2(SI, S

�)
�
, (15)

where

g1(SI) =

�
δI(SI)

SI

− 2
dδI
dSI

�
P0[δI(SI), SI], (16)

g2(SI, S
�) =

�
2
dδI
dSI

− δI(SI)− δI(S�)

SI − S�

�
P0[δI(SI)− δI(S

�), SI − S�], (17)

and P0(δ, S) is the normal Gaussian distribution with variance S, which is defined as

P0(δ, S) =
1√
2πS

exp

�
− δ2

2S

�
. (18)

These integral equations can be solved numerically with the algorithm of Zhang & Hui (2006), we

can then obtain the mass function of islands at redshift z:

dn

d lnMI

(MI, z) = ρ̄m,0fI(SI, z)

����
dSI

dMI

���� . (19)– 11 –

With the neutral island mass function, the volume fraction of neutral regions is given by

Q
I

V =

�
dMI

dn

dMI

V (MI). (20)

3.2. A toy model with island-permeating ionizing background photons

To illustrate the basic ideas of the island model, let us consider a toy model in which the

ionizing photons permeated through the neutral islands with a uniform density. This is not a

physically realistic model, because if ionizing photons can permeate through the neutral regions

with sufficient flux, there would be no distinct ionizing bubbles or neutral islands, though it may be

possible to have a small component of penetrating radiation such as hard X-rays, but that would

be much smaller than the total ionizing background. The reason we consider this model is that it

is possible to derive a simple analytical solution, which could illustrate some aspects of the island

model.

The island-permeating ionizing background photons are likely to be hard X-rays,

whose mean free paths are extremely large even in the IGM with a high neutral frac-

tion. Therefore, here we use an extremely simple model for the ionizing background, in

which the absorptions by dense clumps are neglected, and the mean free path of these

background photons are comparable with the Hubble scale. A more realistic model

for the ionizing background will be described in the next section. Further, we assume

that the total number of ionizing photons produced by redshift z is proportional to

the total collapse fraction of the Universe at that redshift. Some of these photons

would have already been consumed by ionizations took place before that redshift, and

the ionizing background photons are what left behind. The comoving number density

of background ionizing photons is then given by

nγ = n̄H fcoll(z) f�Nγ/H fesc − (1−QI

V) n̄H (1 + n̄rec), (21)

where n̄H is the average comoving number density of hydrogen in the Universe, and

the other parameters are the same as those in Eq.(3). The number density of ionizing

photons given by Eq. (21) depends on the global neutral fraction QI

V
, which is only

known after we have applied the ionizing background intensity itself and solved the

reionization model, so this equation should be solved iteratively.

Suppose that the background ionizing photons are uniformly distributed and consumed within

the islands, then Nback is proportional to the island volume. We see from Eq.(13) that Nback cancels

with the island mass M in the denominator, and we have Nback/M = nγ/ρ̄m. Therefore, in this

model, the K factor is essentially independent of M , i.e. K(M, z) = K(z), then the island barrier

becomes:

δI(M, z) = δc(z)−
�

2 [Smax − S(M)] erfc−1 [K(z)] . (22)
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With the neutral island mass function, the volume fraction of neutral regions is given by

Q
I

V =
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dMI
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dMI
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3.2. A toy model with island-permeating ionizing background photons

To illustrate the basic ideas of the island model, let us consider a toy model in which the

ionizing photons permeated through the neutral islands with a uniform density. This is not a

physically realistic model, because if ionizing photons can permeate through the neutral regions

with sufficient flux, there would be no distinct ionizing bubbles or neutral islands, though it may be

possible to have a small component of penetrating radiation such as hard X-rays, but that would

be much smaller than the total ionizing background. The reason we consider this model is that it

is possible to derive a simple analytical solution, which could illustrate some aspects of the island

model.

The island-permeating ionizing background photons are likely to be hard X-rays,

whose mean free paths are extremely large even in the IGM with a high neutral frac-

tion. Therefore, here we use an extremely simple model for the ionizing background, in

which the absorptions by dense clumps are neglected, and the mean free path of these

background photons are comparable with the Hubble scale. A more realistic model

for the ionizing background will be described in the next section. Further, we assume

that the total number of ionizing photons produced by redshift z is proportional to

the total collapse fraction of the Universe at that redshift. Some of these photons

would have already been consumed by ionizations took place before that redshift, and

the ionizing background photons are what left behind. The comoving number density

of background ionizing photons is then given by

nγ = n̄H fcoll(z) f�Nγ/H fesc − (1−QI

V) n̄H (1 + n̄rec), (21)

where n̄H is the average comoving number density of hydrogen in the Universe, and

the other parameters are the same as those in Eq.(3). The number density of ionizing

photons given by Eq. (21) depends on the global neutral fraction QI

V
, which is only

known after we have applied the ionizing background intensity itself and solved the

reionization model, so this equation should be solved iteratively.

Suppose that the background ionizing photons are uniformly distributed and consumed within

the islands, then Nback is proportional to the island volume. We see from Eq.(13) that Nback cancels

with the island mass M in the denominator, and we have Nback/M = nγ/ρ̄m. Therefore, in this

model, the K factor is essentially independent of M , i.e. K(M, z) = K(z), then the island barrier

becomes:

δI(M, z) = δc(z)−
�
2 [Smax − S(M)] erfc−1 [K(z)] . (22)
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history of the reionization, conversely, the evolution of the ionizing background also affects the

reionization process.

Here, we develop a self-consistent model of the evolving ionizing background. We assume that

the total number of ionizing photons produced by redshift z is proportional to the total collapse

fraction of the Universe at that redshift. Some of these photons would have already been consumed

by ionizations took place before that redshift, and the ionizing background photons are what left

behind. The comoving number density of ionizing photons is then given by

nγ = n̄H fcoll(z) f"Nγ/H fesc − (1−QV) n̄H (1 + n̄rec), (21)

where n̄H is the average comoving number density of hydrogen in the Universe, and the other

parameters are the same as those in Eq.(3). The background ionizing photon flux F (z) is related

to the photon number density by

F (z) = nγ(z) c/4. (22)

The number density of ionizing photons given by Eq. (21) depends on the global neutral

fraction QV, which is only known after we have applied the ionizing background intensity itself

and solved the reionization model, so this equation can not be solved directly. However, given

certain assumptions on the geometry and mode of photon consumption, the equation can be solved

iteratively.

3.3. A toy model with island-permeating ionizing background photons

To illustrate the basic ideas of the island model, let us consider a toy model in which the

ionizing photons permeated through the neutral islands with a uniform density. This is not a

physically realistic model, because if ionizing photons can permeate through the neutral regions

with sufficient flux, there would be no distinct ionizing bubbles or neutral islands, though it may be

possible to have a small component of penetrating radiation such as hard X-rays, but that would

be much smaller than the total ionizing background. The reason we consider this model is that it

is possible to derive a simple analytical solution, which could illustrate some aspects of the island

model.

Suppose that the background ionizing photons are uniformly distributed and consumed within

the islands, then Nback is proportional to the island volume. We see from Eq.(13) that Nback cancels

with the island mass M in the denominator, and we have Nback/M = nγ/ρ̄m. Therefore, in this

model, the K factor is essentially independent of M , i.e. K(M, z) = K(z), then the island barrier

becomes:

δI(M, z) = δc(z)−
√

2[σ2
min − σ2(M)] erfc−1 [K(z)] . (23)

For a given redshift, K =constant, so similar to the bubble barrier, the only dependence of the

island barrier on mass scale comes from σ2(M). Taking the fiducial set of parameters, we plot
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Fig. 2.— The island barriers in the model with uniform island-permeating ionizing background

photons, the barriers are plotted for redshifts 8.2, 8.0 and 7.8 as thick curves from top to bottom

respectively. Here we assume {fesc, f!, Nγ/H , n̄rec} = {0.2, 0.1, 4000, 1}. The bubble barriers (with-

out ionizing background) at the same set of redshifts are shown as thin curves. On the top of figure

box we also show the mass scales corresponding to S for reference.

the island barriers at redshift 8.2, 8.0 and 7.8 in Fig. 2 with thick curves from top to bottom

respectively. The bubble barriers are also plotted with thin lines in the same figure. Indeed, in this

case the island barriers have the similar shape as the bubble barriers. Both barriers increase with

S, as shown in Fig. 2.

As the redshift decreases, the linearly extrapolated critical overdensity δc(z) decreases, and

both barriers move downward. For a given set of parameters, as the redshift decreases, nγ increases

and ρ̄m decreases, so that Nback/M increases. As a result, the island barrier decreases faster than

the bubble barrier for the same decrease in redshift. We cut all the curves in the figure at ξMmin,

which is the scale for which a halo of Mmin can ionize, and this set the lower limit of an island

(bubble) scale in the linear regime. Below this scale, the neutral hydrogen exists only in minihalos

or galaxies.

The first-down-crossing distribution for the islands in the island-permeating photons model is

plotted for three redshifts in Fig. 3, S and corresponding mass scaleM are shown on the bottom and

top axes respectively. As expected, at small S the down-crossing probability is vanishingly small,

because in this region the barrier is very negative, and the average displacement of the random

trajectories is still very small. As S increases, the trajectories excurse with wider ranges, and in this

model the barriers also raise up with increasing S, so the crossing probability increases rapidly. For
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With the neutral island mass function, the volume fraction of neutral regions is given by

Q
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dMI
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3.2. A toy model with island-permeating ionizing background photons

To illustrate the basic ideas of the island model, let us consider a toy model in which the

ionizing photons permeated through the neutral islands with a uniform density. This is not a

physically realistic model, because if ionizing photons can permeate through the neutral regions

with sufficient flux, there would be no distinct ionizing bubbles or neutral islands, though it may be

possible to have a small component of penetrating radiation such as hard X-rays, but that would

be much smaller than the total ionizing background. The reason we consider this model is that it

is possible to derive a simple analytical solution, which could illustrate some aspects of the island

model.

The island-permeating ionizing background photons are likely to be hard X-rays,

whose mean free paths are extremely large even in the IGM with a high neutral frac-

tion. Therefore, here we use an extremely simple model for the ionizing background, in

which the absorptions by dense clumps are neglected, and the mean free path of these

background photons are comparable with the Hubble scale. A more realistic model

for the ionizing background will be described in the next section. Further, we assume

that the total number of ionizing photons produced by redshift z is proportional to

the total collapse fraction of the Universe at that redshift. Some of these photons

would have already been consumed by ionizations took place before that redshift, and

the ionizing background photons are what left behind. The comoving number density

of background ionizing photons is then given by

nγ = n̄H fcoll(z) f�Nγ/H fesc − (1−QI

V) n̄H (1 + n̄rec), (21)

where n̄H is the average comoving number density of hydrogen in the Universe, and

the other parameters are the same as those in Eq.(3). The number density of ionizing

photons given by Eq. (21) depends on the global neutral fraction QI

V
, which is only

known after we have applied the ionizing background intensity itself and solved the

reionization model, so this equation should be solved iteratively.

Suppose that the background ionizing photons are uniformly distributed and consumed within

the islands, then Nback is proportional to the island volume. We see from Eq.(13) that Nback cancels

with the island mass M in the denominator, and we have Nback/M = nγ/ρ̄m. Therefore, in this

model, the K factor is essentially independent of M , i.e. K(M, z) = K(z), then the island barrier

becomes:

δI(M, z) = δc(z)−
�

2 [Smax − S(M)] erfc−1 [K(z)] . (22)

– 9 –

high density and hence high recombination rates, which keep them from being ionized. We shall

not discuss these small, highly dense HI systems in this paper, their number distribution can be

predicted with the usual halo model formalism (see Cooray & Sheth 2002 for a review). The neutral

islands during the late era of reionization are more likely isolated than the ionized bubbles, similar

to the voids at lower redshifts.

In the island model, we assume that most part of the Universe has been ionized, but the

reionization has not been completed. The condition for a region remains neutral is just the opposite

of the ionization condition, that is, the total number of ionizing photons is less than the number

required to ionize all hydrogen atoms in the region. At this stage, however, it is also important to

include the background ionizing photons which are produced outside the region. An island of mass

scale M at redshift z has to satisfy the following condition in order to remain neutral:

ξfcoll(δM;M, z) +
Ωm

Ωb

NbackmH

MXH(1 + n̄rec)
< 1, (11)

where Nback is the number of background ionizing photons that are consumed by the island, and XH

is the mass fraction of the baryons in hydrogen. The first term on the L.H.S. is due to self-ionization,

while the second term is due to the ionizing background. Note that in the usual convention of the

bubble model, the number of recombination factor (1+ n̄rec)
−1

is absorbed in the ξ parameter, and

to be consistent with these literatures here we follow this convention, but we should keep in mind

that if one changes n̄rec, the adopted ξ value should be changed accordingly.

Using Eq. (5), the condition (11) can be rewritten as a constraint on the overdensity of the

region:

δM < δI(M, z) ≡ δc(z)−
�
2[Smax − S(M)] erfc

−1
[K(M, z)] , (12)

where

K(M, z) = ξ−1

�
1−Nback(1 + n̄rec)

−1
mH

M(Ωb/Ωm)XH

�
. (13)

Due to the contribution of the ionizing background photons, in the excursion set model the barrier

for the neutral islands is different from the barrier used in the bubble model, as the ionizing

background would not be present when the bubbles are isolated. Below, we shall call a barrier with

only the self-ionization term the “bubble barrier”, denoted by δB(M, z), since it is used to compute

the probability of forming bubbles. Inclusion of the ionizing background would make the barrier

much more negative, and we shall call the full barrier the “island barrier”, denoted by δI(M, z).

As discussed in the last section, the bubble barrier lowers as the structure formation progresses.

Even if we simply compute the barrier as in the original bubble model, i.e. including only the

ionizing photons from collapsed halos within the region being considered, it could have negative

intercepts, i.e. δB(S = 0) < 0 (see e.g. the thin lines in Fig. 2). When bubble barrier passes

through the origin of the δ − S plane, all regions with the mean density δ = 0 are ionized, this

means that most of the Universe is ionized. It is also from this moment onward a global ionizing

background is gradually set up. We will define the redshift when this occurred as the “background
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Fig. 3.— The first-down-crossing distribution in the island-permeating photon model as a function

of the island scale at redshifts 8.2, 8.0 and 7.8 from top to bottom respectively.

z = 8.2, the probability peaks at SI ≈ 5.8 with fI ≈ 0.07, then begins to decrease, because for many

trajectories the first crossing happened earlier. As the redshift decreases, the island barrier moves

downward rapidly, and it becomes harder and harder to down-cross it at large scales, with most of

the first down-crossings happen at smaller scales. As a result, the first-down-crossing probability

decreases very rapidly at large scale, and it increases at small scales.

The mass functions of islands at three redshifts are plotted in the left panel of Fig. 4. The vol-

ume filling factors of the neutral islands are QV = 0.70 (z = 8.2), 0.59 (z = 8.0), and 0.46 (z = 7.8),

respectively, and the corresponding ionizing background can be expressed as an HI photoionization

rate of Γ = nγ(1+ z)3 cσi, which is 4.90× 10−11 s−1, 4.88× 10−11 s−1, and 4.74× 10−11 s−1, respec-

tively. To facilitate comparisons with the bubble distribution function in Furlanetto et al. (2004),

we also plot in the right panel the volume weighted distribution of the effective radii of the islands

computed assuming that the islands are uniform spheres, normalized by the total neutral fraction

as in the bubble model. Note that

V
dn

d lnR
∝ 3M2 dn

dM
∝ M

dn

d lnM
, (24)

so this also reflects how masses are distributed in islands of different sizes.

Unsurprisingly, within a given volume, small size bubbles are much more numerous than larger

ones, as shown in the left panel. Similar to the general shape of the volume weighted bubble size

distribution in the bubble model, there is a peak in the island size distribution at each redshift in

this model. This means that in the photon-permeating model, the neutral mass is dominated by
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Fig. 2.— The island barriers in the model with uniform island-permeating ionizing background

photons, the barriers are plotted for redshifts 8.2, 8.0 and 7.8 as thick curves from top to bottom

respectively. Here we assume {fesc, f!, Nγ/H , n̄rec} = {0.2, 0.1, 4000, 1}. The bubble barriers (with-

out ionizing background) at the same set of redshifts are shown as thin curves. On the top of figure

box we also show the mass scales corresponding to S for reference.

the island barriers at redshift 8.2, 8.0 and 7.8 in Fig. 2 with thick curves from top to bottom

respectively. The bubble barriers are also plotted with thin lines in the same figure. Indeed, in this

case the island barriers have the similar shape as the bubble barriers. Both barriers increase with

S, as shown in Fig. 2.

As the redshift decreases, the linearly extrapolated critical overdensity δc(z) decreases, and

both barriers move downward. For a given set of parameters, as the redshift decreases, nγ increases

and ρ̄m decreases, so that Nback/M increases. As a result, the island barrier decreases faster than

the bubble barrier for the same decrease in redshift. We cut all the curves in the figure at ξMmin,

which is the scale for which a halo of Mmin can ionize, and this set the lower limit of an island

(bubble) scale in the linear regime. Below this scale, the neutral hydrogen exists only in minihalos

or galaxies.

The first-down-crossing distribution for the islands in the island-permeating photons model is

plotted for three redshifts in Fig. 3, S and corresponding mass scaleM are shown on the bottom and

top axes respectively. As expected, at small S the down-crossing probability is vanishingly small,

because in this region the barrier is very negative, and the average displacement of the random

trajectories is still very small. As S increases, the trajectories excurse with wider ranges, and in this

model the barriers also raise up with increasing S, so the crossing probability increases rapidly. For

The first-down-crossing 
distribution 
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Fig. 4.— Left panel: The number distribution functions of neutral islands in the model with a

uniform island permeating ionizing background. The numerical solutions are shown as thick curves

for redshifts 8.2, 8.0 and 7.8 from top to bottom on the right respectively, the corresponding

volume filling factors of islands are QV = 0.70 (z = 8.2), 0.59 (z = 8.0), and 0.46 (z = 7.8),

respectively. The thin curves show the distribution function given by the analytical form in the

linear approximation. Right panel: The size distributions of islands at the same redshifts as in the

left panel, normalized by the total neutral fraction QV.

those islands with the characteristic scale where the distribution peak locates. As redshift decreases,

the left panel of Fig. 4 shows that the number of large islands decreases rapidly, while the number

of the smallest ones even increases a little. This evolutionary behavior is also shown in the right

panel of Fig. 4, in which large bubbles gradually disappeared, resulting in a raising curve on the

small R end.

In fact, for this toy model, the barrier shape is very close to a straight line, for which simple

analytical solution exists and is very accurate. If we expand the barrier as a linear function of S,

we have

δI(M, z) = δI,0 + δI,1 S, (25)

where the intercept is

δI,0 ≡ δc(z)−
√
2σmin erfc

−1 [K(z)] , (26)

and the slope is

δI,1 ≡
erfc−1 [K(z)]√

2σmin
. (27)

Mass function of islands Size distribution of islands 
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probability of a random walk which first up-crosses δB at between SB and SB + dSB given a start-

ing point of (SI, δI).

In order to compute fB, we could effectively shift the origin of coordinates to the point (SI, δI),

then the method developed by Zhang & Hui (2006) is still applicable. The effective bubble barrier

becomes:

δ′B = δB(S + SI)− δI(SI), (31)

where S = SB − SI. Given an island (SI, δI), on average, the fraction of volume (or mass) of the

island occupied by bubbles of different sizes is

qB(SI, δI; z) =

∫ Smax(ξ·Mmin)

SI

[1 + δID(z)] fB[SB, δB|SI, δI] dSB. (32)

The factor [1 + δID(z)] enters because these bubbles are in the environment with underdensity of

δID(z), where D(z) is the linear growth factor. Then the net neutral mass of the host island can

be written as M = MI(SI) [1 − qB(SI, δI; z)]. Taking into account the effect of bubbles-in-island,

the neutral mass function of the islands at redshift z is

dn

dM
(M, z) =

dn

dMI

dMI

dM
=

ρ̄m,0

MI
fI(SI, z)

∣

∣

∣

∣

dSI

dMI

∣

∣

∣

∣

dMI

dM
. (33)

4. The Reionization Process

4.1. Ionization at the surfaces of neutral islands

We now use the excursion set model developed above to study the neutral islands during the

reionization process. In the last section, we used a simple toy model to illustrate the basic formalism,

but we have noted that it is based on an unrealistic assumption, that the ionizing photons permeate

through the neutral islands. Here we consider more physically motivated model assumptions.

We assume that a spatially homogeneous ionizing background flux is established throughout

all of the ionized regions at redshift zback. These ionizing photons can not penetrate the neutral

islands, but were consumed near the surface of the islands. We may then assume that the photons

consumed by an island at any instant is proportional to its surface area, or in terms of mass, M2/3.

The number of background ionizing photons consumed is then given by

Nback =

∫

F (z)ΣI(1 + z) dt, (34)

where ΣI is the comoving surface area of the neutral island, while F (z) is the photon flux of the

ionizing background, which could be determined iteratively. For spherical islands, the surface area

is related to the scale radius by ΣI = 4πR2. For non-spherical islands, one could still introduce a

characteristic scale R and the area would be related to R2. In fact, under the action of the ionizing
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resulting intensity of the ionizing background is unreasonably high. Here we give

a more realistic model for the ionizing background. Due to the existence of dense

clumps that have high recombination rate and limit the mean free path of the ionizing

background photons, an island does not see all the ionizing photons emitted by all

the sources, but only out to a distance of roughly the mean free path of the ionizing

photons. The comoving number density of background ionizing photons at redshift z

can be modeled as the integration of escaped ionizing photons that are emitted from

newly collapsed objects and survived to the distances between the sources and the

position under consideration:

nγ(z) =

�

z
n̄H

����
dfcoll(z�)

dz�

���� f�Nγ/H fesc exp

�
− l(z, z�)

λmfp(z)

�
dz�, (33)

where l(z, z�) is the physical distance between the source at redshift z� and the redshift

z under consideration, and λmfp is the physical mean free path of the background

ionizing photons.

Various absorption systems could limit the mean free path of the background

ionizing photons. The most frequently discussed absorbers are Lyman limit systems,

which have large enough HI column density to keep self-shielded (e.g. Miralda-Escudé

et al. 2000; Furlanetto & Oh 2005; Bolton & Haehnelt 2013). Minihalos are also

self-shielding systems that could block ionizing photons. Furlanetto & Oh (2005)

developed a simple model for the mean free path of ionizing photons in a Universe

where minihalos dominate the recombination rate. However, as also mentioned in

Furlanetto & Oh (2005), the formation and the abundance of minihalos are highly

uncertain (Oh & Haiman 2003), and minihalos would be probably evaporated during

the late epoch of reionization (Barkana & Loeb 1999; Shapiro et al. 2004), although

they may consume substantial ionizing photons before they are totally evaporated

(Iliev et al. 2005). In addition to Lyman limit systems and minihalos, the accumulative

absorption by low column density systems can not be neglected (Furlanetto & Oh

2005), but the quantitative contribution from these systems are quite uncertain, and

need to be calibrated by high resolution simulations or observations.

Here we focus on the effect of Lyman limit systems on the mean free path of ion-

izing photons, and use a simple model for the IGM density distribution developed by

Miralda-Escudé et al. (2000) (hereafter MHR00). In the MHR00 model, the volume-

weighted density distribution of the IGM measured from numerical simulations can

be fitted by the formula

PV(∆) d∆ = A0 exp

�
− (∆−2/3 − C0)2

2 (2δ0/3)2

�
∆−β d∆ (34)

for z ∼ 2− 6, where ∆ = ρ/ρ̄. Here δ0 and β are parameters fitted to simulations. The

value of δ0 can be extrapolated to higher redshifts by the function δ0 = 7.61/(1 + z)
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(Miralda-Escudé et al. 2000), and we take β = 2.5 for the redshifts of interest. The

parameters A0 and C0 are set by normalizing PV(∆) and ∆PV(∆) to unity.

Using the density distribution of the IGM, the mean free path of ionizing photons

can be determined by the mean distance between self-shielding systems with relative

densities above a critical value ∆crit, and can be written as (Miralda-Escudé et al. 2000;

Choudhury & Ferrara 2005)

λmfp =
λ0

[1 − FV(∆crit)]2/3
, (35)

where FV(∆crit) is the volume fraction of the IGM occupied by regions with the relative

density lower than ∆crit, given by

FV(∆crit) =

� ∆crit

0

PV(∆) d∆. (36)

Following Schaye (2001), and assuming photoionization equilibrium and case A recom-

bination rate, the critical relative density for a clump to self-shield can be approxi-

mately written as (see also Miralda-Escudé et al. 2000; Furlanetto & Oh 2005; Bolton

& Haehnelt 2013):

∆crit = 36Γ2/3
−12

T 2/15
4

� µ

0.61

�1/3
�

fe
1.08

�−2/3 �
1 + z

8

�−3

, (37)

where Γ−12 = ΓHI/10−12 s−1 is the hydrogen photoionization rate in units of 10−12 s−1,

T4 = T/104K is the gas temperature in units of 104K, µ is the mean molecular weight,

and fe = ne/nH is the free electron fraction with respect to hydrogen. For the mostly

ionized IGM during the late stage of reionization, we assume T4 = 2.

The HI photoionization rate ΓHI in Eq.(37) is related to the total number density

of ionizing photons nγ in Eq.(33) by

ΓHI =

�
dnγ

dν
(1 + z)3 cσν dν, (38)

where dnγ/dν is the spectral distribution of the background ionizing photons, c is the

speed of light, and σν = σ0 (ν/ν0)−3 with σ0 = 6.3× 10−18 cm2 and ν0 being the frequency

of hydrogen ionization threshold. Assuming a power law spectral distribution of the

form dnγ/dν = (n0
γ/ν0)(ν/ν0)

−η−1, in which n0
γ is related to the total photon number

density nγ by nγ = n0
γ/η, then the HI photoionization rate can be written as

ΓHI =
η

η + 3
nγ (1 + z)3 cσ0. (39)

In the following we assume η = 3/2 to approximate the spectra of starburst galaxies

(Furlanetto & Oh 2005).
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background should be absent inside large neutral regions. Note
that in the toy model discussed above, the ionizing background
permeates through the neutral islands. It does not make sense
to distinguish the island barriers outside and the bubble barriers
inside and the problem of bubbles-in-island cannot be discussed.

In the following, we denote the host island scale (including the
bubbles inside) and the bubble scale by SI and SB, respectively,
the first down-crossing distribution by fI(SI, δI), and the condi-
tional probability for a bubble form inside as fB(SB, δB|SI, δI).
The probability distribution of finding a bubble of size SB in a
host island of size SI is then given by

F(SB, SI) = fI(SI, δI) · fB(SB, δB|SI, δI). (28)

The neutral mass of an island is given by the total mass of
the host island minus the masses of bubbles of various sizes
embedded in the host island, i.e.,

M = MI(SI) −
∑

i

Mi
B

(
Si

B

)
. (29)

The conditional probability distribution fB(SB, δB|SI, δI) char-
acterizes the size distribution of bubbles inside an island of scale
SI and overdensity δI and fB(SB, δB|SI, δI)dSB is the conditional
probability of a random walk that first up-crosses δB between
SB and SB + dSB, given a starting point of (SI, δI).

In order to compute fB, we could effectively shift the origin
point of coordinates to the point (SI, δI), then the method
developed by Zhang & Hui (2006) is still applicable. The
effective bubble barrier becomes:

δ′
B = δB(S + SI) − δI(SI), (30)

where S = SB − SI. Given an island (SI, δI), on average, the
fraction of volume (or mass) of the island occupied by bubbles
of different sizes is

qB(SI, δI; z) =
∫ Smax(ξ ·Mmin)

SI

[1 + δI D(z)]fB(SB, δB|SI, δI)dSB.

(31)

The factor [1 + δI D(z)] enters because these bubbles are
in the environment with underdensity of δI D(z), where D(z)
is the linear growth factor. Then, the net neutral mass of the host
island can be written as M = MI(SI) [1 − qB(SI, δI; z)]. Taking
into account the effect of bubbles-in-island, the neutral mass
function of the islands at a redshift z is

dn

dM
(M, z) = dn

dMI

dMI

dM
= ρ̄m,0

MI
fI(SI, z)

∣∣∣∣
dSI

dMI

∣∣∣∣
dMI

dM
. (32)

4. THE IONIZING BACKGROUND

The intensity of the ionizing background is very important
in the late reionization epoch. However, it has only been
constrained after reionization from the mean transmitted flux
in the Lyman-α forest (e.g., Wyithe & Bolton 2011; Calverley
et al. 2011) and in any case it evolves with redshift and depends
on the detailed history of reionization. Conversely, the evolution
of the ionizing background also affects the reionization process.

In the toy model presented in Section 3.2, we considered an
island-permeating ionizing background, for which the absorp-
tions from dense clumps are neglected and the resulting intensity
of the ionizing background is unreasonably high. Here, we give

a more realistic model for the ionizing background. Due to the
existence of dense clumps that have high recombination rates
and limit the mean free path of the ionizing background photons,
an island does not see all the ionizing photons emitted by all the
sources, but only out to a distance of roughly the mean free path
of the ionizing photons. The comoving number density of back-
ground ionizing photons at a redshift z can be modeled as the
integration of escaped ionizing photons that are emitted from
newly collapsed objects that survived to the distances between
the sources and the position under consideration:

nγ (z) =
∫

z

n̄H

∣∣∣∣
dfcoll(z′)

dz′

∣∣∣∣ f& Nγ /H fesc exp
[

− l(z, z′)
λmfp(z)

]
dz′,

(33)

where l(z, z′) is the physical distance between the source at
redshift z′ and the redshift z under consideration and λmfp is the
physical mean free path of the background ionizing photons.

Various absorption systems could limit the mean free path
of the background ionizing photons. The most frequently
discussed absorbers are LLSs, which have large enough H i
column densities to remain self-shielded (e.g., Miralda-Escudé
et al. 2000; Furlanetto & Oh 2005; Bolton & Haehnelt 2013).
Minihalos are also self-shielding systems that could block
ionizing photons. Furlanetto & Oh (2005) developed a simple
model for the mean free path of ionizing photons in a universe
where minihalos dominate the recombination rate. However, as
also discussed in Furlanetto & Oh (2005), the formation and
the abundance of minihalos are highly uncertain (Oh & Haiman
2003) and minihalos would be probably evaporated during the
late epoch of reionization (Barkana & Loeb 1999; Shapiro et al.
2004), although they may consume substantial ionizing photons
before they are totally evaporated (Iliev et al. 2005). In addition
to LLSs and minihalos, the accumulative absorption by low
column density systems cannot be neglected (Furlanetto & Oh
2005), but the quantitative contributions from these systems are
quite uncertain and need to be calibrated by high-resolution
simulations or observations.

Here, we focus on the effect of LLSs on the mean free path
of ionizing photons and use a simple model for the IGM density
distribution developed by Miralda-Escudé et al. (2000, hereafter
MHR00). In the MHR00 model, the volume-weighted density
distribution of the IGM measured from numerical simulations
can be fit by the formula

PV(∆) d∆ = A0 exp
[

− (∆−2/3 − C0)2

2 (2δ0/3)2

]
∆−β d∆ (34)

for z ∼ 2–6, where ∆ = ρ/ρ̄. Here, δ0 and β are parameters
fitted to simulations. The value of δ0 can be extrapolated to
higher redshifts by the function δ0 = 7.61/(1 + z) (MHR00)
and we take β = 2.5 for the redshifts of interest. The parameters
A0 and C0 are set by normalizing PV(∆) and ∆PV(∆) to unity.

Using the density distribution of the IGM, the mean free path
of ionizing photons can be determined by the mean distance
between self-shielding systems with relative densities above a
critical value ∆crit and can be written as (Choudhury & Ferrara
2005, MHR00)

λmfp = λ0

[1 − FV(∆crit)]2/3
, (35)

8
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(Miralda-Escudé et al. 2000), and we take β = 2.5 for the redshifts of interest. The

parameters A0 and C0 are set by normalizing PV(∆) and ∆PV(∆) to unity.

Using the density distribution of the IGM, the mean free path of ionizing photons

can be determined by the mean distance between self-shielding systems with relative

densities above a critical value ∆crit, and can be written as (Miralda-Escudé et al. 2000;

Choudhury & Ferrara 2005)

λmfp =
λ0

[1 − FV(∆crit)]2/3
, (35)

where FV(∆crit) is the volume fraction of the IGM occupied by regions with the relative

density lower than ∆crit, given by

FV(∆crit) =

� ∆crit

0

PV(∆) d∆. (36)

Following Schaye (2001), and assuming photoionization equilibrium and case A recom-

bination rate, the critical relative density for a clump to self-shield can be approxi-

mately written as (see also Miralda-Escudé et al. 2000; Furlanetto & Oh 2005; Bolton

& Haehnelt 2013):

∆crit = 36Γ2/3
−12

T 2/15
4

� µ

0.61

�1/3
�

fe
1.08

�−2/3 �
1 + z

8

�−3

, (37)

where Γ−12 = ΓHI/10−12 s−1 is the hydrogen photoionization rate in units of 10−12 s−1,

T4 = T/104K is the gas temperature in units of 104K, µ is the mean molecular weight,

and fe = ne/nH is the free electron fraction with respect to hydrogen. For the mostly

ionized IGM during the late stage of reionization, we assume T4 = 2.

The HI photoionization rate ΓHI in Eq.(37) is related to the total number density

of ionizing photons nγ in Eq.(33) by

ΓHI =

�
dnγ

dν
(1 + z)3 cσν dν, (38)

where dnγ/dν is the spectral distribution of the background ionizing photons, c is the

speed of light, and σν = σ0 (ν/ν0)−3 with σ0 = 6.3× 10−18 cm2 and ν0 being the frequency

of hydrogen ionization threshold. Assuming a power law spectral distribution of the

form dnγ/dν = (n0
γ/ν0)(ν/ν0)

−η−1, in which n0
γ is related to the total photon number

density nγ by nγ = n0
γ/η, then the HI photoionization rate can be written as

ΓHI =
η

η + 3
nγ (1 + z)3 cσ0. (39)

In the following we assume η = 3/2 to approximate the spectra of starburst galaxies

(Furlanetto & Oh 2005).
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Fig. 5.— The redshift evolution of the hydrogen ionization rate Γ−12.

It has been suggested that the characteristic length λ0 in Eq.(35) is related to the

Jeans length and can be fixed by comparing with low redshift observations (Choudhury

& Ferrara 2005; Kulkarni et al. 2013). We take λ0 = AmfprJ, where rJ is the physical

Jeans length. Taking the proportional constant Amfp as a free parameter, the comoving

number density of background ionizing photons nγ, or equivalently the HI photoion-

ization rate ΓHI, can be solved by combining Eq.(33) - (37) and Eq.(39). We scale

the hydrogen photoionization rate to be ΓHI = 10−12.8 s−1
at redshift 6, as suggested by

recent measurements from the Ly-α forest (Wyithe & Bolton 2011; Calverley et al.

2011). Then the parameter Amfp is constrained to be Amfp = 0.482. The redshift evo-

lution of the hydrogen photoionization rate due to the ionizing background is shown

in Fig. 5. Note that by scaling the background photoionization rate of hydrogen to

the observed value, we implicitly take into account the possible absorptions due to

minihalos and low column density systems.

In the above treatment of the ionizing background, the derived intensity is ef-

fectively the averaged value over the whole Universe. Due to the clustering of the

ionizing sources, however, the ionizing background should fluctuate significantly from

place to place at the end of reionization. The detailed space fluctuations of the ionizing

background would be challenging to incorporate, and for the purpose of illustrating

the island model and predicting the statistical results in the next section, here we use

a uniform ionizing background with the averaged intensity.
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total number of background ionizing photons consumed is given by

Nback =
4π

3

�
R3

i −R3

f

�
n̄H(1 + n̄rec), (38)

4.2. Size Distribution

With this model for the consumption behavior of the background ionizing photons, and taking

the fiducial set of parameters, we plot the island barriers of inequation (12) in the left panel of

Fig. 5 for several redshifts. The corresponding first down-crossing distributions as a function of the

host island scale SI (i.e. including ionizing bubbles inside the island) are plotted in the right panel

of Fig. 5. Note that obtaining these barriers is highly non-trivial, because the barrier depends on

the intensity of the ionizing background, while the ionizing background itself also depends on the

reionization history. For the moment, let us first focus on obtaining solutions for a given barrier.

Unlike the toy model with permeating ionizing photons, in this model the shape of the island

barriers is drastically different from the bubble barriers, hence a different shape of the first down-

crossing distribution curves. The island and bubble barriers have the same intercept at S ∼ 0,

because on very large scales, the contribution of the ionizing background which is proportional

to the surface area would become unimportant when compared with the self-ionization which is

proportional to the volume. However, the island barriers bend downward at S > 0, because of the

contribution of the ionizing background. As the barrier curves are quite steep, it is increasingly

harder for the random walks to first down-cross them at smaller scales, even though on the smaller

scales the dispersion of the random trajectory grow larger. As a result, the first down-crossing

distribution drops rapidly on small scales, and there is a mass cut on the host island scale, MI,min,

at each redshift in order to make sure K(M, z) ≥ 0. This lower cut on the island mass scale

assures ∆R ≤ Ri, i.e. the whole island is not completely ionized during this time by the ionizing

background, and MI,min is the minimum mass of the host island at zback that can survive till the

redshift z under consideration.

The mass distribution function of the host islands can be obtained directly from Eq. (19), from

which we can see clearly the shrinking process of these islands. What we are interested is the mass

of the host island at redshift z, but the mass scale M in Eqs. (11-13) is the initial island mass at

redshift zback. We may convert the two masses using Eq. (37):

Mf

Mi
= (1− ∆R

Ri
)
3

(39)

Islands with initial radius Ri < ∆R would not survive, and islands with larger radius would also

evolve into smaller ones.

The distributions of the host island mass (including ionized bubbles inside) are plotted for z =

8.45, 8.40, and 8.35 in Fig. 6 as thick lines. The distributions of the corresponding progenitors

at redshift zback are plotted as thin lines. Using our fiducial model parameters, the corresponding
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5. The Island model of Reionization

5.1. Ionization at the surfaces of neutral islands

We now use the excursion set model developed above to study the neutral islands during the

reionization process. In the section 3.2, we used a simple toy model to illustrate the basic formalism,

but we have noted that it is based on an unrealistic assumption, that the ionizing photons permeate

through the neutral islands. Here we consider more physically motivated model assumptions.

We assume that a spatially homogeneous ionizing background flux is established throughout

all of the ionized regions at redshift zback. These ionizing photons can not penetrate the neutral

islands, but were consumed near the surface of the islands. We may then assume that the photons

consumed by an island at any instant is proportional to its surface area, or in terms of mass, M
2/3

.

The number of background ionizing photons consumed is then given by

Nback =

�
F (z)ΣI(t) dt, (40)

where ΣI is the physical surface area of the neutral island, while F (z) is the physical

number flux of background ionizing photons which is related to the comoving photon

number density by F (z) = nγ(z) (1 + z)
3
c/4. For spherical islands, the surface area is related

to the scale radius by ΣI = 4πR2
/(1+z)

2
, in which R is in comoving coordinates. For non-spherical

islands, one could still introduce a characteristic scale R and the area would be related to R
2
. In

fact, under the action of the ionizing background, non-spherical neutral regions have a tendency to

evolve to spherical ones because a sphere has the minimum surface area for the same volume.

The usual excursion set approach does not contain time or history, and everything is determined

from the information at a given redshift. However, we see from Eq. (40) that the consumption of the

ionizing background photons by an island depends on its history. Below we try to solve this problem

by considering some simplified assumptions. We assume that the neutral islands shrink with time,

and the hydrogen number density around an island is nearly a constant, which is approximately

true when we are considering large scales. For simplicity, let us consider a spherical island. When

the island shrinks, counting the required number of ionizations gives

nH(R)(1 + n̄rec) 4πR
2
(−dR) = F (z)

4πR2

(1 + z)2
dt, (41)

where the hydrogen number density nH is in comoving coordinates, so that

dR

dt
= − F (z)/(1 + z)

2

nH(R)(1 + n̄rec)
≈ −F (z)/(1 + z)

2

n̄H(1 + n̄rec)
. (42)

Integrating from the background onset redshift zback to redshift z, we have

∆R ≡ Ri −Rf =

� zback

z

F (z)

n̄H(1 + n̄rec)

dz

H(z)(1 + z)3
, (43)
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Nback =
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The usual excursion set approach does not contain time or history, and everything is determined

from the information at a given redshift. However, we see from Eq. (40) that the consumption of the

ionizing background photons by an island depends on its history. Below we try to solve this problem

by considering some simplified assumptions. We assume that the neutral islands shrink with time,

and the hydrogen number density around an island is nearly a constant, which is approximately

true when we are considering large scales. For simplicity, let us consider a spherical island. When

the island shrinks, counting the required number of ionizations gives
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2
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≈ −F (z)/(1 + z)

2

n̄H(1 + n̄rec)
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z

F (z)
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dz

H(z)(1 + z)3
, (43)
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but we have noted that it is based on an unrealistic assumption, that the ionizing photons permeate
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We assume that a spatially homogeneous ionizing background flux is established throughout

all of the ionized regions at redshift zback. These ionizing photons can not penetrate the neutral

islands, but were consumed near the surface of the islands. We may then assume that the photons

consumed by an island at any instant is proportional to its surface area, or in terms of mass, M
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number flux of background ionizing photons which is related to the comoving photon
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/(1+z)

2
, in which R is in comoving coordinates. For non-spherical

islands, one could still introduce a characteristic scale R and the area would be related to R
2
. In
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evolve to spherical ones because a sphere has the minimum surface area for the same volume.

The usual excursion set approach does not contain time or history, and everything is determined

from the information at a given redshift. However, we see from Eq. (40) that the consumption of the

ionizing background photons by an island depends on its history. Below we try to solve this problem

by considering some simplified assumptions. We assume that the neutral islands shrink with time,

and the hydrogen number density around an island is nearly a constant, which is approximately

true when we are considering large scales. For simplicity, let us consider a spherical island. When

the island shrinks, counting the required number of ionizations gives

nH(R)(1 + n̄rec) 4πR
2
(−dR) = F (z)

4πR2

(1 + z)2
dt, (41)

where the hydrogen number density nH is in comoving coordinates, so that
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= − F (z)/(1 + z)
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nH(R)(1 + n̄rec)
≈ −F (z)/(1 + z)

2

n̄H(1 + n̄rec)
. (42)

Integrating from the background onset redshift zback to redshift z, we have

∆R ≡ Ri −Rf =

� zback

z

F (z)

n̄H(1 + n̄rec)

dz

H(z)(1 + z)3
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Fig. 6.— Left panel: the island barriers for our fiducial model. The solid, dashed and dot-dashed

curves are for redshifts 6.9, 6.7 and 6.5 from top to bottom respectively, and the corresponding

neutral fractions of the Universe (excluding the bubbles in islands) are QHI

V
= 0.17, 0.11, and 0.05,

respectively. Right panel: The corresponding first down-crossing distributions at the same redshifts

as the left panel.

where Ri and Rf denote the initial and final scale of the island respectively. This shows that the

change in R is independent of the mass of the island, but depends solely on the elapsed time. The

total number of background ionizing photons consumed is given by

Nback =
4π

3

�
R3

i −R3

f

�
n̄H(1 + n̄rec), (44)

5.2. Island Size Distribution

With this model for the consumption behavior of the background ionizing photons, and taking

the fiducial set of parameters, we plot the island barriers of inequation (12) in the left panel of

Fig. 6 for several redshifts. The corresponding first down-crossing distributions as a function of the

host island scale SI (i.e. including ionizing bubbles inside the island) are plotted in the right panel

of Fig. 6.

Unlike the toy model with permeating ionizing photons, in this model the shape of the island

barriers is drastically different from the bubble barriers, hence a different shape of the first down-

crossing distribution curves. The island and bubble barriers have the same intercept at S ∼ 0,

because on very large scales, the contribution of the ionizing background which is proportional
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Fig. 7.— The mass function of the host islands in terms of the mass at redshift z (thick lines)

and the initial mass at redshift zback (thin lines) for our fiducial model. The solid, dashed, and

dot-dashed lines are for z = 6.9, 6.7, and 6.5, from top to bottom respectively.

to the surface area would become unimportant when compared with the self-ionization which is

proportional to the volume. However, the island barriers bend downward at S > 0, because of

the contribution of the ionizing background. As the barrier curves become gradually steeper when

approaching larger S, it is increasingly harder for the random walks to first down-cross them at

smaller scales, even though on the smaller scales the dispersion of the random trajectory grow

larger. As a result, the first down-crossing distribution rapidly increases to a peak value and drops

down on small scales, and there is a mass-cut on the host island scale, MI,min, at each redshift

in order to make sure K(M, z) ≥ 0. This lower cut on the island mass scale assures ∆R ≤ Ri,

i.e. the whole island is not completely ionized during this time by the ionizing background, and

MI,min is the minimum mass of the host island at zback that can survive till the redshift z under

consideration.

The mass distribution function of the host islands can be obtained directly from Eq. (19), from

which we can see clearly the shrinking process of these islands. What we are interested is the mass

of the host island at redshift z, but the mass scale M in Eqs. (11-13) is the initial island mass at

redshift zback. We may convert the two masses using Eq. (43):

Mf

Mi
= (1− ∆R

Ri
)
3

(45)

Islands with initial radius Ri < ∆R would not survive, and islands with larger radius would also

evolve into smaller ones.
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total number of background ionizing photons consumed is given by

Nback =
4π

3

�
R3

i −R3

f

�
n̄H(1 + n̄rec), (38)

4.2. Size Distribution

With this model for the consumption behavior of the background ionizing photons, and taking

the fiducial set of parameters, we plot the island barriers of inequation (12) in the left panel of

Fig. 5 for several redshifts. The corresponding first down-crossing distributions as a function of the

host island scale SI (i.e. including ionizing bubbles inside the island) are plotted in the right panel

of Fig. 5. Note that obtaining these barriers is highly non-trivial, because the barrier depends on

the intensity of the ionizing background, while the ionizing background itself also depends on the

reionization history. For the moment, let us first focus on obtaining solutions for a given barrier.

Unlike the toy model with permeating ionizing photons, in this model the shape of the island

barriers is drastically different from the bubble barriers, hence a different shape of the first down-

crossing distribution curves. The island and bubble barriers have the same intercept at S ∼ 0,

because on very large scales, the contribution of the ionizing background which is proportional

to the surface area would become unimportant when compared with the self-ionization which is

proportional to the volume. However, the island barriers bend downward at S > 0, because of the

contribution of the ionizing background. As the barrier curves are quite steep, it is increasingly

harder for the random walks to first down-cross them at smaller scales, even though on the smaller

scales the dispersion of the random trajectory grow larger. As a result, the first down-crossing

distribution drops rapidly on small scales, and there is a mass cut on the host island scale, MI,min,

at each redshift in order to make sure K(M, z) ≥ 0. This lower cut on the island mass scale

assures ∆R ≤ Ri, i.e. the whole island is not completely ionized during this time by the ionizing

background, and MI,min is the minimum mass of the host island at zback that can survive till the

redshift z under consideration.

The mass distribution function of the host islands can be obtained directly from Eq. (19), from

which we can see clearly the shrinking process of these islands. What we are interested is the mass

of the host island at redshift z, but the mass scale M in Eqs. (11-13) is the initial island mass at

redshift zback. We may convert the two masses using Eq. (37):

Mf

Mi
= (1− ∆R

Ri
)
3

(39)

Islands with initial radius Ri < ∆R would not survive, and islands with larger radius would also

evolve into smaller ones.

The distributions of the host island mass (including ionized bubbles inside) are plotted for z =

8.45, 8.40, and 8.35 in Fig. 6 as thick lines. The distributions of the corresponding progenitors

at redshift zback are plotted as thin lines. Using our fiducial model parameters, the corresponding

  The shrinking hosts 
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Fig. 8.— Left panel: The mass function of bubbles in an island of scale SI = 0.01, 0.05, and 0.1,

from bottom to top respectively. The redshift shown here is 6.9. Right panel: The average mass

fraction of bubbles in an island as a function of the island scale at redshifts z = 6.9, 6.7, and

6.5, from top to bottom respectively. The percolation threshold pc = 0.16 is also shown as the

horizontal line.

M ∼ 10
12M⊙ host islands, and about 42% for M ∼ 10

14M⊙ host islands. This is because

what are left at later time are relatively deep underdense regions, and the probability of forming

galaxies in such underdense environments is lower.

Excluding the bubbles in islands, we plot the mass function and the size distribution of the net

neutral islands in the left and right panel of Fig. 9 respectively. The solid, dashed, and dot-dashed

lines are for z = 6.9, 6.7, and 6.5, with a volume filling factor of the net neutral islands of QHI

V
=

0.17 (z = 6.9), 0.11 (z = 6.7), and 0.05 (z = 6.5), respectively. Similar to the host island mass

function shown in Fig. 7, there is also a small scale cutoff on the neutral island mass due to the

existence of an ionizing background. Because of the high bubbles-in-island fraction in large host

islands, excluding the bubbles in islands results in much fewer large islands. As seen from the size

distribution in the right panel, in which the scale R is converted from the neutral island volume

assuming spherical shape, both the mass fractions of large and small islands decrease with time,

and the distribution curve becomes sharper and sharper, but the characteristic scale of the neutral

islands remains almost unchanged.

Fig. 9 shows basically the number and mass distribution of the neutral components of the host

islands. However, the results of bubbles-in-island fraction in the right panel of Fig. 8 show that

within large host islands, a large fraction of the island volume could be ionized by the photons from



The island-vS model  
 – the mass function and size distribution 

– 25 –

Fig. 9.— Left panel: The mass function of neutral islands at redshift z = 6.9, 6.7, and 6.5, from

top to bottom respectively. The corresponding volume filling factor of the neutral islands at these

redshifts are QHI

V
= 0.17, 0.11, and 0.05, respectively. Right panel: The size distribution of neutral

islands, with the scale R converted from their volume, at redshifts z = 6.9, 6.7, and 6.5, from

bottom to top at the center respectively.

newly formed galaxies within. A naive application of the host island mass function may greatly

overestimate the mean neutral fraction of the Universe, while the application of the neutral island

size distribution, as shown in the right panel of Fig. 9, would never reveal the real image of the

ionization field. Indeed, if there are so many ionized bubbles inside large neutral islands, it may

be difficult to visually identify the host islands. In light of this, we need to consider the condition

under which the isolated island picture is still applicable. Especially, if the bubbles inside an island

are so numerous and large as to overlap with each other, they may form a network which percolates

through the whole island, and break the island into pieces, or form a sponge-like topology of neutral

and ionized regions.

5.4. Percolation Model

Within the spherical model, it is difficult to deal with the sponge-like topology, but we may

limit ourselves to the case where the treatment is still valid. According to the theory of percolation,

in a binary phase system, percolation of one phase occurs when the filling factor of it exceeds a

threshold fraction pc (see e.g. Bunde & Havlin 1991). In the context of cosmology, Klypin &

Shandarin (1993) obtained the percolation threshold pc for the clustered large scale structures



* Host islands  overestimate the neutral 

fraction 

* Neutral island  atoll or smaller islands? 

* Difficult to visually identify the host islands 

* Break down of bubble model inside islands 

*  Percolation of islands 

The problem of large bubbles-in-island fraction 

distribution functions (PDFs) produced thusly are shown by the
solid curves in Figure 6 for ionized regions (top panel ) and neutral
regions (bottompanel ). Curves correspond to (z; x̄H i)¼ (10; 0:89),
(9.25, 0.79), (8.50, 0.61), (8.00, 0.45), (7.50, 0.27), and (7.00, 0.10),
from left to right in the top panel, respectively (or from right to
left in the bottom panel ). All curves are normalized so that the
probability density integrates to unity.

It is useful to compare these distributions to the analytic bubble
mass function of Furlanetto et al. (2004c); although this analytic
approach is motivated by the same excursion-set barriers as our
seminumerical approach, it does not account for the full geom-
etry of sources.We compute the probability distribution from the

analytic model by assuming purely spherical bubbles and convolv-
ing with the volume-weighted distance to the sphere’s edge,

p(r) dr ¼ 2!r 2 dr

1" x̄H ið Þ

Z
dR nb(R) 1" r

2R

! "
; ð15Þ

where nb(R) is the comoving number density of bubbles with
radii between R and Rþ dR (taken from Furlanetto et al. 2004c).
Several points are evident from Figures 5 and 6. As expected

(e.g., Furlanetto et al. 2004c, 2006a; McQuinn et al. 2007), there
is a well-defined bubble scale at each neutral fraction, despite
some scatter in the sizes. This scale also gets more pronounced

Fig. 5.—Slices through the 2003 ionization field at z ¼ 10, 9, 8.25, and 7.25 (left to right across rows). With the assumption of " ¼ 15:1, these redshifts correspond to
x̄H i ¼ 0:89, 0.74, 0.53, and 0.18, respectively. All slices are 100 Mpc on a side and 0.5 Mpc deep. The bottom left panel corresponds to the halo field in the top right
panel of Fig. 3, generated on a high-resolution 12003 grid. [See the electronic edition of the Journal for a color version of this figure.]
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percolation problem 

percolation threshold pc 

* The bubble model regime:  

     z > zBp (xHII < pc) 

* The island model regime:  

     z < zIp (xHI < pc) 

* The background onset redshift:  

     zBp > zback > zIp 

* The definition of bona fide neutral islands:          

     qB < pc 
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Fig. 8.— Left panel: The mass function of bubbles in an island of scale SI = 0.01, 0.05, and 0.1,

from bottom to top respectively. The redshift shown here is 6.9. Right panel: The average mass

fraction of bubbles in an island as a function of the island scale at redshifts z = 6.9, 6.7, and

6.5, from top to bottom respectively. The percolation threshold pc = 0.16 is also shown as the

horizontal line.

M ∼ 10
12M⊙ host islands, and about 42% for M ∼ 10

14M⊙ host islands. This is because

what are left at later time are relatively deep underdense regions, and the probability of forming

galaxies in such underdense environments is lower.

Excluding the bubbles in islands, we plot the mass function and the size distribution of the net

neutral islands in the left and right panel of Fig. 9 respectively. The solid, dashed, and dot-dashed

lines are for z = 6.9, 6.7, and 6.5, with a volume filling factor of the net neutral islands of QHI

V
=

0.17 (z = 6.9), 0.11 (z = 6.7), and 0.05 (z = 6.5), respectively. Similar to the host island mass

function shown in Fig. 7, there is also a small scale cutoff on the neutral island mass due to the

existence of an ionizing background. Because of the high bubbles-in-island fraction in large host

islands, excluding the bubbles in islands results in much fewer large islands. As seen from the size

distribution in the right panel, in which the scale R is converted from the neutral island volume

assuming spherical shape, both the mass fractions of large and small islands decrease with time,

and the distribution curve becomes sharper and sharper, but the characteristic scale of the neutral

islands remains almost unchanged.

Fig. 9 shows basically the number and mass distribution of the neutral components of the host

islands. However, the results of bubbles-in-island fraction in the right panel of Fig. 8 show that

within large host islands, a large fraction of the island volume could be ionized by the photons from

pc = 0.16 

for Gaussian random fields 



The percolation criterion:  

*  Limit ourselves to the valid (not 

percolated) case 

*  Find bona fide neutral islands 

* The additional barrier is obtained by 

solving  

   qB(SI, δI; z) < pc  

* pc = 0.16 for Gaussian random fields 
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Fig. 10.— The basic island barriers (green curves), the percolation threshold induced barriers (red

curves), and the effective island barriers (black curves) for our fiducial model. The solid, dashed

and dot-dashed curves are for redshifts 6.9, 6.7 and 6.5 from top to bottom respectively.

from cosmological simulations. However, the spatial distribution of ionized bubbles and neutral

islands are much less filamentary than the gravitationally clustered dark matter or galaxies. As

the ionization field follows the density field (Battaglia et al. 2012a), which is almost Gaussian

on large scales (Planck Collaboration et al. 2013b), here we use the percolation threshold for a

gaussian random field of pc = 0.16 (Klypin & Shandarin 1993), below which we may assume that

the bubbles-in-island does not percolate through the whole island.

The problem of percolation appears in several stages of reionization. At the early stage of

reionization, the filling factor of ionized bubbles increases as the bubble model predicted. Once

the bubble filling factor becomes larger than the percolation threshold pc, the ionized bubbles are

no longer isolated, and the predictions made from the bubble model are not accurate anymore.

Therefore, the threshold pc sets a critical redshift zBp, below which the bubble model may not be

reliable. Similarly, the model of neutral islands can make accurate predictions only below a certain

redshift zIp, when the island filling factor is below pc. The ionizing background was set up after the

ionized bubbles percolated but before the islands were all isolated, so zBp > zback > zIp. Finally,

the percolation threshold may also be applied to the bubbles-in-island fraction. An island with a

high value of qB may not qualify as a whole neutral island, and the bubbles inside it are probably

not isolated regions.

It may be desirable to consider also the distribution of those bona fide neutral islands, for

which the bubble fraction is below the percolation threshold, i.e. after excluding those islands



Results  
– the size distribution with pc cutoff 
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Fig. 11.— The size distribution of neutral islands in our fiducial model taking into account the

bubbles-in-island effect and the pc cutoff on bubbles-in-island fraction. The solid, dashed, and dot-

dashed curves are for redshifts z = 6.9, 6.7, and 6.5, respectively, and the corresponding volume

filling factors of neutral islands are QHI

V
= 0.16 (z = 6.9), 0.09 (z = 6.7), and 0.04 (z = 6.5),

respectively.

used here, the second effect dominates for the redshifts of interest, and the neutral

fractions predicted in the model with pc cutoff is slightly lower than in the model

without pc cutoff.

As shown in Fig. 11, in this model, the island size distribution after zIp also has a peak. For

this set of model parameters, the characteristic size of neutral islands at z = 6.9 is about

1.6 Mpc, but the distribution extends a range, with the lower value as small as 0.2 Mpc, and

the high value as large as 10 Mpc. As the redshift decreases, small islands disappear rapidly

because of the ionizing background. This is qualitatively consistent with simulation results (Shin

et al. 2008) in which small islands are much rarer during the late reionization as compared to those

small ionized bubbles in the early stage. As the reionization proceeds, the large islands shrink and

the small islands are being swallowed by the ionizing background, with the small ones disappearing

more rapidly, and the peak position of the distribution curve shifts slightly towards larger scale

but does not change much. Due to the rapidly decreasing number of small islands, the distribution

curve becomes narrower. The distribution also becomes taller with decreasing redshift because it

is normalized against the volume neutral fraction QHI

V
at each redshift. With QHI

V
decreasing, the

normalized distribution has narrower and higher peaks, but the absolute number of neutral islands

per comoving volume is decreasing.



Summary 
An analytical model of neutral islands during the late EoR based on the 

excursion set theory, to help understand reionization process 

* An island barrier on the density contrast for the islands to remain neutral, 
with the inclusion of an ionizing background. 

* An island was identified when the random walk first-down-crosses the 
island barrier. 

* We took into account the effect of bubbles-in-island by computing the 
conditional first up-crossing distribution. 

* An semi-empirical way to determine the intensity of the ionizing 
background self-consistently. 

* A percolation criterion was applied to find bona fide neutral islands 

* The size distribution of neutral islands shows a peak indicating a 
characteristic scale of the islands, and it does not change much with 
redshift. 
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