Impacts of satellite galaxies on the redshift-space distortion analysis

Chiaki HIKAGE (KMI, Nagoya U.)

Ref. C.H., Kazuhiro Yamamoto, JCAP 08 (2013), 19 C.H., MNRAS Letter, 441 (2014) 21

Galaxy redshift surveys

What can we learn ?

- Dark energy
- Gravity test
- Neutrino mass
- Primordial Non-Gaussianity

previous/on-going surveys
CfA, LCRS, 2dF, SDSS, BOSS, WiggleZ, VVDS,

VIPERS, FastSound, ...

planned surveyPFS, HETDEX, DESI, Euclid, WFIRST, ...

Redshift-space distortion (RSD)

Peculiar motion of galaxies distort the observed (redshift-space) galaxy distribution

$$z_{obs} = z_{true} + \delta v/c$$

Linear regime Coherent bulk motion squashes the galaxy distribution along the LOS direction "Kaiser effect"

Nonlinear regime Random motion of galaxies elongate the galaxy distribution along the LOS direction "Fingers-of-God effect"

Test of Gravity

Redshift-space galaxy power spectra in linear regime

$$P_{\rm g}(k,\mu) = (b + f\mu^2)^2 P_{\rm m}(k)$$
 (Kaiser1987)

b: linear galaxy bias $\mu = k_{\parallel}/k$ *f*: growth rate

Growth rate is a key probe to test gravity

$$f \equiv \frac{d\ln D}{d\ln a} \simeq \Omega_m(z)^{\gamma}$$

(Peebles 1976, Lahav et al. 1991)

 $\gamma\simeq 0.55$ for $\Lambda {\rm CDM}$

$$\gamma\simeq 0.68$$
 for flat DGP (e.g., Linder & Cahn 2007)

 $\gamma\simeq 0.43$ for f(R) (e.g., Hu & Sawicki 2007)

2-point correlation functions for BOSS CMASS samples $\xi(r_p, r_\pi)$

Constraints on Growth rate

Samshia et al. 2014

Subaru/PFS cosmology survey

- Subaru 8.2m telescope
- same sky coverage as HSC (1500deg²)
- Target: 4M LRGs, ELGs (OII)
- 0.8<z<2.4 (9.3 Gpc/h³)
- Err. of $D_A(z)$, H(z) ~3% (Ω_k ~7%), f_z ~5% in 6 bins , Ω_k ~0.3%
- 2019-2023 (planed)

Takada et al. 2013

Euclid

- 1.2m space telescope
- Imaging 15,000 deg² sky, 40gals/arcmin²
- Spectrum of 50M H α emitters at 0.5<z<2
- FoV 0.5deg², rizYJH(550nm~1800nm)
- 2021~

Systematics

In order to achieve these goals, we have to control systematics at percent-level accuracy

1. Nonlinear Gravity

2. Relationship between galaxy and DM haloa) Galaxy biasing

b) Non-linear redshift-space distortion (i.e., Fingersof-God)

Fingers-of-God (FoG) effect

Nonlinear redshift-space distortion due to internal motion of galaxies in the host halos

Central and Satellite galaxies

<u>Central galaxies</u>, which locate around the halo mass center, has small internal motion

<u>Satellite galaxies</u> have larger internal motion <u>Main source of FoG</u>

credit: NASA/JPL-Caltech/SDSS/NOAO

Reconstruction of halo catalogs

SDSS DR7 Luminous Red Galaxy sample (0.16<z<0.47)

LRG Multiplicity function

Brightest LRG catalog

We compare the power spectra of following 3 samples to see the impact of satellite galaxies

1) ALL : All LRGs

2) BLRG : Brightest LRG in each group(BLRGs are not always centrals, but many satellites are removed in this catalog)

3) **Single** : Single LRG systems only

Difference among the samples is just \sim 5% LRGs

Multipole expansion of galaxy power spectrum

Clustering anisotropy is described with the multipole power spectra

$$P_{\ell}(k) = \frac{1}{2} \int_{-1}^{+1} P(k,\mu) \mathcal{L}_{\ell}(\mu) d\mu,$$

 \mathcal{L}_l :Legendre polynomials µ=k_{||}/k: cosine angle against the line-of-sight direction

Kaiser effect mainly generates quadrupole anisotropy (I=2) Fingers-of-God affects higher-I multipole anisotropy (I=2, 4, ...)

All LRG vs Brightest LRG

Sample difference is just ~5% satellites

Impact of satellites is significantly large even at k~0.2Mpc/h

Impact on Growth Rate measurement

Estimate growth rate by fitting monopole and quadrupole with Kaiser+FoG model

$$P(k,\mu) = (b(k) + f\mu^2)^2 P_{\rm m}^{\rm NL}(k) \mathcal{D}[k\mu \widetilde{\sigma}_v],$$

FoG damping assuming Lorentzian form (velocity dispersion σ_v is free)

Systematic difference between ALL and BLRG/Single samples

Cosmology is fixed to WMAP9

All LRG power spectrum

One halo term (blue line) is necessary to describe ALL LRG power spectra

One-halo term is dominated for P_{I} (I \geq 4)

Brightest LRG power spectrum

BLRG power spectra can be described only with 2-halo term (P₄ & P₆ are consistent with 0)

P₂ is well described when 20% of Brightest LRG is satellite (blue lines)

P₄ as a probe of satellite properties

High I multipole power spectra (I≧4) are good probes of satellite fraction and velocity dispersions (or HOD)

Expected constraints on growth rate and satellite fractions/velocity : w/o P₄ vs w/ P₄

fitting parameters: HOD (M_{min} , σ_{logM} , M_{cut} , M_1 , α) + growth rate (Cosmology is fixed)

Growth rate index

Velocity dispersion of satellite galaxies

High-I multipole components are useful for breaking the degeneracy between satellite FoG and growth rate

Summary

- Galaxy redshift surveys have a huge potential to provide a key insight on the nature of gravity
- Major difficulty in this analysis comes from the systematic uncertainty due to Fingers-of-God effect
- Even just 5% fraction of satellite galaxies has large impact on the redshift-space galaxy clustering
- High-I (I≥4) multipole power spectrum provides a good probe of satellite fraction and kinematics
- High-I multipole information significantly improves the accuracy of both HOD and growth rate measurement