MEASURING THE GROWTH OF GALAXY CLUSTERS

Antonaldo Diaferio

Università degli Studi di Torino – Dipartimento di Fisica
 Istituto Nazionale di Fisica Nucleare - Sezione di Torino

with Ana Laura Serra, Cristiano De Boni, Heng Yu, Kenneth Rines and Margaret Geller

6th KIAS Workshop on Cosmology and Structure Formation

Seoul, November 5th 2014

OUTLINE

- The growth of structures on linear and non-linear scales
- Mass distribution within and around clusters
- Estimation of the mass in the outskirts of clusters and its connection to the mass accretion rate
- How well we can identify cluster substructures and surrounding groups and their connection with cluster formation

Identification of cluster members and modified gravity

TESTING DARK ENERGY AND MODIFIED GRAVITY MODELS with lensing and/or redshift surveys

Measuring the growth factor

$$f(z) = \frac{dln D}{dln a} = \Omega_0^{\gamma}(z)$$

with $\gamma = 0.55$ in GR.

Measurable quantity in redshift surveys: redshift distortion

$$\beta = \frac{f(z)}{b}$$

VIPERS (Guzzo et al. 2014)

Growth rate on large scales

Upcoming surveys (e.g., DES, eBOSS, DESI, PFS, LSST, Euclid, WFIRST) claim 1% accuracy in the redshift range 0<z<2 up to wave numbers *k*~0.2 h/Mpc in the next decade or two

Measures to smaller scales, up to $k\sim 2-3$ h/Mpc?

STRUCTURE GROWTH ON NON-LINEAR SCALES

CoDECS simulations (Baldi 2012)

STRUCTURE GROWTH ON NON-LINEAR SCALES

Different MAH's propagate

into different mass functions

De Boni et al. in prep.

Mass Accretion History and Mass Accretion Rate

The ultimate cluster mass

The ultimate cluster mass

Busha et al. 2005

MASS DISTRIBUTION IN THE OUTER REGION OF CLUSTERS

Regös & Geller 1989

THE CAUSTIC TECHNIQUE

MEASURING THE GRAVITATIONAL POTENTIAL PROFILE (unclean sample...!)

Serra et al. 2011

MEASURING THE CUMULATIVE MASS PROFILE (unclean sample...!)

3000 synthetic clusters (ACDM model)

Serra et al. 2011

CAUSTIC vs. LENSING MASS

Geller et al. 2013

THE TWO CLUSTERS MS0906 AND A750

Geller et al. 2013

The ultimate cluster mass

HeCS: The ultimate cluster mass

Measured accretion rate $\Delta M / \Delta t$

vs Expected accretion rate @ z~0

Measured accretion rate $\Delta M/\Delta t$

Expected accretion rate

Measure

Expected rate from

(McBride et al 2009)

Serra et al. in prep.

ACCRETION WITH SURROUNDING GROUPS

RXJ2129 0.6 2500 0.4 2000 0.2 1₅₀₀ ₀ 900/# DEC [deg] CL2130 0.6 1000 2000 -0.20.4 500 1500 -0.4 0.2 #/deg 1000 322.4 323 322.8 322.6 322.2 322 321.8 RA [deg] -0.2500 -0.4 323 322.8 322.6 322.4 322.2 322 RA [deg]

7 clusters from the CLASH collaboration: Lemze et al. 2013

ACCRETION WITH SURROUNDING GROUPS

satellite mass/cluster mass

Lemze et al. 2013

SUBSTRUCTURES AND SURROUNDING GROUPS WITH THE CAUSTIC TECHNIQUE

SUBSTRUCTURES AND SURROUNDING GROUPS WITH THE CAUSTIC TECHNIQUE

recovery tests

Yu et al. in prep.

SUBSTRUCTURES AND SURROUNDING GROUPS WITH THE CAUSTIC TECHNIQUE

sampling redshift range around the cluster center

Yu et al. in prep.

IDENTIFICATION OF CLUSTER MEMBERS WITH THE CAUSTIC TECHNIQUE

CLUSTER VELOCITY DISPERSION PROFILE IN MODIFIED GRAVITY

Lam et al. 2012

Geller et al. 2014

THE EQUATION OF STATE OF DARK MATTER

By combining kinematic and lensing mass estimates (Faber & Visser 2006)

SUMMING UP

With the caustic technique we can:

- **1.** Measure the mass in the cluster infall region $\hat{\mathbf{n}}$
- 2. Identify the cluster substructures and surrounding groups
- **3.** Measure the cluster accretion rate
- 4. Identify the cluster galaxy members

TEST FORMATION OF GALAXY CLUSTERS AND MODIFIED GRAVITY MODELS

