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Strong lens with time delay

Observer(E) Lens(L)

Source(S)

Image i

Image j

~θi

~θj

~β

α̂i

α̂j

DA(EL) DA(LS)

DA(ES)

bi

∆ti,j =
1 + zL

2c

DA(EL)DA(ES)

DA(LS)
φ(~θ, ~β) ≡ D∆t

2c
φ(~θ, ~β) (1)



Time-delay distance D∆t

I Strong lens with variable sources

I Measure of distance-like quantity, D∆t

I Sensitive only to the Hubble constant H0

I External convergence (mass external to the lens lies along the
line-of-sight) as the main source of uncertainty
(Suyu et al. 2006)

⇒ Alternative way to measure the distance using strong lenses?



Measuring DA using time-delay lenses

Paraficz & Hjorth (2009)

I Singular isothermal sphere (SIS) density profile

I Combine lensing dynamics (velocity dispersion) and the time-delay

I Measured the angular diameter distance using time delay ∆ti,j ,
velocity dispersion σ2, lens redshift zL and the image positions θi , θj

DA(EL) =
c3∆ti,j

4πσ2(1 + zL)

1

(θj − θi )
(2)

Limitations

I Spherically symmetric mass distribution, isotropic velocity dispersion

I No study on the effect of external convergence



Physical Intuition
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When the mass distribution is known,

I Time delay → Mass estimate

I Velocity dispersion → Potential

⇒ Combine them to get the physical size (b) of the system

Observation of strong lensing arc gives the angular size (θ) of the system

⇒ The system can be used as a standard ruler to measure the
angular diameter distances to the lens galaxy (DA(EL) = b

θ )



Power-law density profile and the deflection angle
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Density profile

ρ = ρ0

(
r

r0

)−γ
(3)

Deflection angle at the lens plane
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∝ σ2
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Scaled deflection angle (to the source plane)
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Power-law density profile and the time delay

Time delay

∆ti,j =
(1 + zL)
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⇒ The angular diameter distance becomes

DA(EL) =
c3∆ti,j

4πσ2
r (r)(1 + zL)

(∆θ̃i,j)
−1 (7)

where ∆θ̃i,j is a function of θi , θj and γ.



Mass-sheet transformation : properties
Used to model the external convergence

Family of the source-position transformation

Can reproduce strong lens observables as

I Image position

I Flux ratio

Changes

I Source position (not an observable)

I Time delay

κlens → κMST = κext + (1− κext)κlens (8)
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Mass-sheet transformation : effect

Time-delay after the MST

∆ti,j,MST = (1− κext) ∆ti,j (9)

Velocity dispersion after the MST

σ2
MST = (1− κext)σ2 (10)

⇒ DA(EL) ∝ ∆t
σ2 invariant under the MST!

No need to model the external convergence



Uncertainty on DA

Figure: B1608+656 Figure: RXJ1131-1231

Tests on B1608+686 & RXJ1131−1231
(Data and figures from Suyu et al. 2010 & Suyu et al. 2013, and
references therein, respectively)

I Uncertainties from γ and ∆ti,j are negligible

I Velocity dispersion is the biggest source of uncertainty

I Uncertainty on DA is ∼ 13− 14% with current data

I Potential estimation (velocity dispersion) seems to play an important
role: How to take into account the anisotropic velocity dispersion?



Anisotropic velocity dispersion : modeling

Osipkov-Merritt anisotropy

βani(r) =
r2

r2
a + r2

= 1− σ2
T (r)

σ2
r (r)

(11)

I Anisotropy parametrization : ra = nReff

I Isotropic core & radial envelope

Jeans equation

1
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Projection & luminosity weighting (Hernquist profile)

σ2
p(R) = IH(R)σ2

s (R) = 2
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Aperture-averaged velocity dispersion
Measured velocity dispersion is luminosity-weighted, aperture-averaged

〈σ2
p〉ap ≡

∫
ap
σ2
s IHR dR dθ∫

ap
IHR dR dθ

(14)

The velocity dispersion varies significantly due to the anisotropy!



Sweet-spot method

Radius where the scatter in anisotropic velocity dispersion is minimized



Monte-Carlo simulation 1: DA measured at 〈σ2
p〉ap

Anisotropic velocity dispersion biases the distribution, and the width of
the distribution is increased



Monte-Carlo simulation 2: DA measured at σ2
p(Rsweet)

Anisotropic velocity dispersion does not bias the distribution, and the
width of the distribution does not change significantly



Expectation
Uncertainties on measured velocity dispersion [km/s] vs. the fractional
uncertainty on DA inferred

∼ 7% precision is achievable with 5% precision measurement on σ2

from a single system!



Summary

I Strong lens with time delay can be used as a standard ruler to
measure the angular diameter distances to the lens

I The external convergence cancels out : The main source of
uncertainty in measuring the time-delay distances is not there

I The biggest uncertainty on DA is from the velocity dispersion and its
anisotropy

I Using spatially resolved velocity dispersion profile (at the sweet spot
radius) will improve the precision

I More studies on anisotropy parametrization are required

I arXiv:1410.7770 for more details!


