Dynamical model of the Milky Way

Yougang Wang 王有刚 National Astronomical Observatories of China (NAOC) With: BRAVA collaboration 2014-11-6 in KIAS

Outline

- Background
- Dynamical models

• Summary & Discussion

• LAMOST survey

Milk Way Galaxy-A typical barred spiral galaxy

横看成岭侧成峰, 远近高低各不同。 不识庐山真面目, 只缘身在此山中。

苏轼(1037~1101)

It's like a range when you look at the mountain from the front. But it's like a peak When you look at it sideways. The mountain shows its different features In different levels near and far. You don't know the real Lushan Mountain, Because you are in the mountain yourself.

- Precision cosmological model:
- $\Omega_b h^2 = 0.02273 \pm 0.00062$
- $\Omega_c h^2 = 0.1099 \pm 0.0062$
- $\Omega_{\Lambda}h^2=0.742\pm0.030$
- $n_s = 0.963^{+0.014}_{-0.015}$
- $\tau = 0.087 \pm 0.017$
- $\sigma_8 = 0.796 \pm 0.0036$

- Loose Galaxy model:
- Total mass:
- 0.8-2.4×10¹²= M_{solar}
- Bar:

bar mass, pattern speed, bar angel

• Disk:

thin, thick, gas,

- Dark matter halo: triaxial or axissymmetrical
 - ???

Data

Observations	Star type	Number	Photometric/ spectrum	region	date
Hipparcos	common	118218	Photometric	Solar neighborhood	1997
OGLE	common	30 million	Photometric	bulge	2002
BRAVA	M-type giants	10000	spectrum	bulge	2012
ARGOS	Clump giants	28000	spectrum	bulge	2012
RAVE	common	483330	spectrum	disk+halo	2013
APOGEE	Red giants	100000	spectrum	full	2014
LAMOST	common	>3 million	spectrum	disk+halo	2014

Five modeling methods

- Jeans equation
- Schwarzschild method: Orbit based method

- Made-to-Measure (M2M): Particle based method
- Torus Method
- N-body

Why do we want to study the bar region

- Bar is main driver for the secular evolution of disc galaxies
- Pushes mass from the bar region to the center where it creates a a central mass concentration
- Drives the angular momentum exchange within a disc galaxy.
- bar is triaxial
- bar has the fixed pattern speed
- pathfinder to the full Milky Way model

BRAVA data (Bulge Radial Velocity Assay)

- ~10,000 M stars
- The velocity error is ~5km/s
- The data has been released by http:// brava.astro.ucla.edu /data.htm

Cerro Tololo Inter-American Observatory 4 m Hydra multiobject spectrograph.

Model of the Milky Way Schwarzschild model(1)

- Bar + bulge $\rho(x, y, z) = \rho_0 \left[\exp\left(-\frac{r_1^2}{2}\right) + r_2^{-1.85} \exp(-r_2) \right]$ $r_1 = \left\{ \left[\left(\frac{x}{x_0}\right)^2 + \left(\frac{y}{y_0}\right)^2 \right]^2 + \left(\frac{z}{z_0}\right)^4 \right\}^{1/4}$ $r_2 = \left[\frac{q^2(x^2 + y^2) + z^2}{z_0^2} \right]^{1/2}$
- Miyamoto-Nagai disk

$$\Phi_d(x, y, z) = -\frac{GM_d}{r_3},$$

$$r_{3} = \left\{ x^{2} + y^{2} + \left[a_{\rm MN} + (z^{2} + b_{\rm MN}^{2})^{1/2} \right]^{2} \right\}^{1/2},$$

Some typical regular orbits

Self-consistency of the model

Best-fitting model

$$\Omega_p = -60 \, km \, / \, s \, / \, kpc$$

$$M_{disk} = 10^{11} \, M_{sun}$$

$$\theta_{bar} = 20^{\circ}$$

2012, MNRAS, Wang et al., 427, 1429

Proper motion & Stability

Field	(l,b)	σ_l	σ_b	Ref.
	(°)	$(mas yr^{-1})$	$(mas yr^{-1})$	
Baade's Window Baade's Window Baade's Window Baade's Window Baade's Window Baade's Window Baade's Window Plaut's Window Sagittarius I Sagittarius I Sagittarius I Sagittarius I NGC 6558	(1,-4) (1,-4) (1,-4) (1,-4) (0,9,-4) (1,-4) (0,9,-4) (1,-4) (1,13,-3,76) (0,-8) (1,25,-2,65) (1,27,-2,66) (1,25,-2,65) (1,26,-2,65) (1,26,-2,65) (0,28,-6,17)	$\begin{array}{c} 3.2 \pm 0.1 \\ 3.14 \pm 0.11 \\ 2.9 \\ 2.87 \pm 0.08 \\ 3.06 \pm 0.11 \\ 3.13 \pm 0.16 \\ 3.11 \pm 0.08 \\ 3.39 \pm 0.11 \\ 3.3 \\ 3.07 \pm 0.08 \\ 3.067 \\ 3.56 \pm 0.08 \\ 2.90 \pm 0.11 \end{array}$	$\begin{array}{c} 2.8 \pm 0.1 \\ 2.74 \pm 0.08 \\ 2.5 \\ 2.59 \pm 0.08 \\ 2.79 \pm 0.13 \\ 2.50 \pm 0.10 \\ 2.74 \pm 0.13 \\ 2.91 \pm 0.09 \\ 2.7 \\ 2.73 \pm 0.07 \\ 2.760 \\ 2.87 \pm 0.08 \\ 2.87 \pm 0.13 \end{array}$	Spaenhauer et al. (1992) Zhao et al. (1996) Kuijken & Rich (2002) Kozłowski et al. (2006) Soto et al. (2007) Babusiaux et al. (2010) Soto (2012) in preparation Vieira et al. (2007, 2009) Kuijken & Rich (2002) Kozłowski et al. (2006) Clarkson et al. (2008) Soto (2012) in preparation Soto (2012) in preparation
Baade's Window Plaut's Window Sagittarius I NGC 6558	(1,-4) (0,-8) (1,-3) (0,-6)	$ \begin{array}{r} 4.44 \\ 5.28 \\ 4.43 \\ 4.46 \end{array} $	2.52 2.32 2.67 2.36	Model 23 Model 23 Model 23 Model 23

The bar is only stable within 0.5 Gyr !!!

Regular orbit fraction

Orbit integrated time	1/4Hubble time	1/3Hubble time	1/2Hubble time	Hubble time
Regular orbit fraction	19.4%	18.7%	8.8%	7.1%
Irregular orbit fraction	80.6%	81.3%	91.2%	92.9%

New density input model

Schwarzschild model(2)

Shen et al. 2010's model

• Bar is evolved from an unbarred, thin disk with

 $M_{disk} = 4.25 \times 10^{10} M_{sun}$

- 10⁶ particles
- A log halo potential

$$\Phi = \frac{1}{2} v_c^2 \ln(1 + r^2 / R_c^2)$$

Parameters

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Model ID	$\Omega_{\rm p}$	θ_{bar}	χ^2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$({\rm km}{\rm s}^{-1}{\rm kpc}^{-1})$	$(^{\circ})$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	30	13.4	556
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	30	20	422
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	30	30	441
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	30	45	465
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	30	60	408
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	40	13.4	313
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	40	20	339
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	40	30	310
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	40	45	262
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	40	60	337
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	50	13.4	360
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	50	20	401
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	50	30	391
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	50	45	359
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	50	60	343
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	60	13.4	417
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	60	20	365
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	60	30	410
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	60	45	407
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	60	60	442
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	70	13.4	445
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	70	20	503
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	70	30	488
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	70	45	568
26 80 13.4 505 27 80 20 510 28 80 30 525 29 80 45 604 30 80 60 618	25	70	60	534
27 80 20 510 28 80 30 525 29 80 45 604 30 80 60 618	26	80	13.4	505
28 80 30 525 29 80 45 604 30 80 60 618	27	80	20	510
29 80 45 604 30 80 60 618	28	80	30	525
30 80 60 618	29	80	45	604
	30	80	60	618

• The best-fit model

$$\mathbf{\Omega}_p = -40 \, km \, / \, s \, / \, kpc$$

$$\theta_{bar} = 45^{\circ}$$

Stability & proper motion

Field	(l,b)	σ_l	σ_b	Ref.
	(°)	$(mas yr^{-1})$	$(mas yr^{-1})$	
Baade's Window	(1,-4)	3.2 ± 0.1	2.8 ± 0.1	Spaenhauer et al. (1992)
Baade's Window	(1,-4)	3.14 ± 0.11	2.74 ± 0.08	Zhao et al. (1996)
Baade's Window	(1.13,-3.77)	2.9	2.5	Kuijken & Rich (2002)
Baade's Window	(1,-4)	2.87 ± 0.08	2.59 ± 0.08	Kozłowski et al. (2006)
Baade's Window	(0.9,-4)	3.06 ± 0.11	2.79 ± 0.13	Soto et al. (2007)
Baade's Window	(1,-4)	3.13 ± 0.16	2.50 ± 0.10	Babusiaux et al. (2010)
Baade's Window	(1.13,-3.76)	3.08 ± 0.08	2.74 ± 0.13	Soto et al. (2012)
Plaut's Window	(0,-8)	3.39 ± 0.11	2.91 ± 0.09	Vieira et al. (2007, 2009)
Sagittarius I	(1.25,-2.65)	3.3	2.7	Kuijken & Rich (2002)
Sagittarius I	(1.27,-2.66)	3.07 ± 0.08	2.73 ± 0.07	Kozłowski et al. (2006)
Sagittarius I	(1.25,-2.65)	3.067	2.760	Clarkson et al. (2008)
Sagittarius I	(1.26,-2.65)	3.11 ± 0.08	2.71 ± 0.08	Soto et al. (2012)
NGC 6558	(0.28,-6.17)	2.45 ± 0.11	2.37 ± 0.13	Soto et al. (2012)
Baade's Window	(1,-4)	3.74	2.49	Model 9
Plaut's Window	(0,-8)	3.43	2.40	Model 9
Sagittarius I	(1,-3)	3.61	2.58	Model 9
NGC 6558	(0,-6)	3.67	2.48	Model 9
Baade's Window	(1,-4)	4.44	2.52	Wang et al. (2012)
Plaut's Window	(0,-8)	5.28	2.32	Wang et al. (2012)
Sagittarius I	(1,-3)	4.43	2.67	Wang et al. (2012)
NGC 6558	(0,-6)	4.46	2.36	Wang et al. (2012)

2013, MNRAS, Wang et al., 435, 3437

Made-to-Measure model

$$\Omega_p = -40 km/s/kpc$$
$$\Theta_{bar} = 30^{\circ}$$

2013,MNRAS, Long, Mao, Shen. Wang, 428,3478

Summary & Discussion

- The BRAVA data can be fitted by models within large pattern speed, patter speed from 40 to 60km/s/kpc, bar angle 20-45 degrees
- Results from M2M are consistent with from Schwarzschild
- Proper motion problems
- New density model

Ness et al. 2013, ARGOS

LAMOST Galactic Anti-Center Survey

2.5 million stars brighter than r<19, 5 million stars brighter r<17

Xia Q., Liu C., Mao S et al. 2014 15000 F/G dwarf from LAMOST

Famaey et al. 2005/ Hipparcos/ K Gaints

Orbits from different region

10

bottom region

up region

The K giant stars from the LAMOST survey data I: identification, metallicity, and distance

Chao Liu¹, Li-Cai Deng¹, Jeffrey L. Carlin², Martin C. Smith³, Jing Li^{1,3}, Heidi Jo Newberg², Shuang Gao¹, Fan Yang¹, Xiang-Xiang Xue⁴, Yan Xu¹, Yue-Yang Zhang¹, Y Xin¹, Ge Jin⁵

liuchao@nao.cas.cn

ABSTRACT

We present a support vector machine classifier to identify the K giant stars from the LAMOST survey directly using their spectral line features. The completeness of the identification is about 75% for tests based on LAMOST stellar parameters. The contamination in the identified K giant sample is lower than 2.5%. Applying the classification method to about 2 million LAMOST spectra observed during the pilot survey and the first year survey, we successfully select 298,036 K giant stars. The metallicities of the sample are also estimated with uncertainty of 0.13 ~ 0.29 dex based on the equivalent widths of Mg_b and iron lines. A Bayesian method is then developed to estimate the posterior probability of the distance for the K giant stars, based on the estimated metallicity and 2MASS photometry. The synthetic isochrone-based distance estimates have been calibrated using 7 globular clusters with a wide range of metallicities. The uncertainty of the sample, is about 0.6 mag, corresponding to ~ 30% in distance. As a scientific verification case, the trailing

Opportunities and challenges

- We have many data
- Improved the methods and models
- A long way to construct a full Galactic model which can fit most of observations

Thank You