Probing the Galaxy Cluster Population to High Redshift with the Sunyaev-Zel’dovich Effect

Joe Mohr

7th KIAS Workshop on Cosmology and Structure Formation

Sunyaev-Zel’dovich Effect Galaxy Cluster Selection

Cluster SZE Signature

- Measures total thermal energy in ICM
- Strongly correlated with mass (low scatter)
- Signature at fixed mass is ~independent of redshift!
SPT-SZ 2500 deg² Survey

Carlstrom+ 2010

- Maps produced from bolometer time stream of $\sim 10^5$ T measurements/s integrated over 4 years with $\sim 65\%$ efficiency

- Matched filter selection
- Painstaking optical followup

First SZE selected clusters pulled from first year SPT data (Staniszewiski+09)

SPT-SZ Sample

Song+12, Bleem+15

- 2500 deg² sample
 - 516 at $\xi>4.5$
 - 387 at $\xi>5.0$
 - Bleem+15

- High z subsample
 - 36 at $z>1$
 - Max $z_{\text{spec}}=1.47$
 - Bayliss+13
 - Highest phot-z
 - Strazzullo+

- Clean sample with $M_{500}>3\times10^{14}$ M_\odot to $z\sim1.7$
Sure:
- (see Haiman, Mohr & Holder 2001)
- Observable distribution $d^2N/dzd\xi$ must be mapped to cosmology dependent hydro mass function $d^2N/dzdM$
- Need observable-mass relation
Observable-Mass Relation
Bocquet+15

- Statistical relationship between observable and underlying halo mass
 - Clusters are young, merging objects
 - Crucial for selection observable (S/N, Y, L_x)
 - Include lower scatter mass proxies (Y_x, M_micm)

- SZE Observable-Mass relation
 - Minimum of four free parameters: power law plus (log-normal) intrinsic scatter
 \[\zeta = A_{SZ} \left(\frac{M_{500}}{3 \times 10^{14} h^{-1} M_\odot} \right)^{B_{SZ}} \left(\frac{E(z)}{E(0.6)} \right)^{C_{SZ}} \]
 4 params: A_{SZ}, B_{SZ}, C_{SZ} and D_{SZ}
 - Parametrization allows systematic uncertainties to be included
 - Mass information added through weak lensing, galaxy kinematics, external priors

SPT Cluster Cosmology
de Haan+16

- 387 SPT clusters
- Mass calibration
 - 82 X-ray Y_x s
 - WL prior on Y_x-mass
- 14 parameters
 - 6 cosmological
 - 4 SZ mass-obs
 - 4 X-ray Y_x-mass-obs
- Tension?
 - Insignificant in ΛCDM
 - Insignificant in wCDM

SPT Cluster Cosmology Constraints in good agreement with other probes within ΛCDM and wCDM models

SPT-SZ: w=-1.28+/-0.31 SPT-SZ++: w=-1.023+/-0.042
Planck Cluster Cosmology
Planck Collaboration XXIV (2015)

- 439 clusters
- Mass-obs rel’n
 - 3 params
 (C_{w} fixed)
- Mass calibration
 - WL- WtG
 - WL-CCCP
 - WL-CMB
- Significant tension only if CMB WL used

PlanckSZE+BAO (CCCP): w=-1.00+/-0.18

1. Nov 2016
7th KIAS Workshop on Cosmology and Structure Formation - Mohr

Planck Cluster Mass Priors
Planck Collaboration XXIV (2015)

- External cosmology priors prefer higher masses than direct measurements
- CMB lensing and LoCUSS WL imply no hydrostatic mass bias (in conflict with simulations)
- Some tension among mass priors
 - WtG: 1-b=0.69+/-0.07
 - CCCP: 1-b=0.78+/-0.09
 - CMBlens: 1-b=0.99+/-0.19
 - LoCUSS: 1-b=0.95+/-0.04

Planck adopts hydrostatic masses as baseline
b is hydrostatic mass bias scale factor
M_{hydro} = b M_{true}
SPT Cluster Masses
Bocquet+15

- External cosmo priors (also WMAP) tend to prefer higher cluster masses
- Direct constraints (WL, Dyn, Hydro) prefer lower values
- Constraints are still weak - everything statistically consistent

\[
\zeta = A_{SZ} \left(\frac{M_{500}}{3 \times 10^{15} h^2 \, M_\odot} \right) \frac{E(z)}{E(0.6)}
\]

SPT Mass Calibration Ongoing

- Direct mass calibration of clusters
 - Dynamical masses:
 - Bocquet+15 (with dispersions)
 - Capasso+ (Jeans analysis)
 - Magnification masses:
 - Chiu+16
 - Shear masses:
 - Dietrich+ (Magellan imaging)
 - Schrabback+ (HST+VLT imaging)
 - Stern+ (DES imaging)
Do External Cosmological Priors Prefer Higher Cluster Masses?

- Evidence is intriguing but not compelling
- What might explain if future data show it is real?
 - Theoretical mass function wrong? (Bocquet+16)
 - Tinker mass function is biased on high mass end
 - $\Delta \sigma_8(\Omega_m/0.27)^{0.3} = +0.02$ (30% of the offset noted in Planck SZE analysis)
 - Unresolved systematics in the CMB data still possible-
 - Tension between base P15 CMB and CMB Lensing (Planck+15, Grandis+16)
 - Could incompleteness in the cluster sample play a role? (Gupta+16)
 - First measurement of 150GHz cluster radio galaxy LF
 - Indicates 2 to 5% incompleteness in SPT-SZ like survey
 - Revision of cosmological model required?

Baryon Impact on Mass Function
Bocquet+16

- For massive cluster surveys like Planck and SPT there is no significant impact of baryon physics on the MF
- Of greater importance is the difference between the Tinker and the Bocquet mass functions!
- Watson MF is parametrized incorrectly and has “artificial” cosmological sensitivity
External Cosmo Priors Push Masses Higher?

- Evidence is intriguing but not compelling
- What might explain if future data show it is real?
 - Theoretical mass function wrong? (Bocquet+16)
 - Tinker mass function is biased on high mass end
 - \(\Delta \sigma_8(\Omega_m/0.27)^{0.3} \approx +0.02 \) (30% of the offset noted in Planck SZE analysis)
 - Unresolved systematics in the CMB data still possible-
 - Tension between base P15 CMB and CMB Lensing (Planck+15, Grandis+16)
 - Could incompleteness in the cluster sample play a role? (Gupta+16)
 - First measurement of 150GHz cluster radio galaxy LF
 - Indicates 2 to 5% incompleteness in SPT-SZ like survey
 - Revision of cosmological model required?

1. Nov 2016 7th KIAS Workshop on Cosmology and Structure Formation - Mohr

Systematics in CMB?

- We heard yesterday (from Karim) about high-l vs. low-l 2\(\sigma \) tension
- Also a related \(A_L \) 2\(\sigma \) tension between Planck TT + low TEB and Lensing constraints
- Consistency with non-CMB data?
 - In flat \(\Lambda \)CDM there is 8\(\sigma \) surprise when adding \(H_0 \)
 - Planck prefers curved Universe at 2.7\(\sigma \)
 - In curved \(\Lambda \)CDM model >3\(\sigma \) surprises exist between Planck TT + low TEB and BAO, SNe, \(H_0 \) and CMB lensing

1. Nov 2016 7th KIAS Workshop on Cosmology and Structure Formation - Mohr
External Cosmo Priors Push Masses Higher?

- Evidence is intriguing but not compelling
- What might explain *if* future data show it is real?
 - Theoretical mass function wrong? (Bocquet+16)
 - Tinker mass function is biased on high mass end
 - $\Delta \sigma_8(\Omega_m/0.27)^{0.3}+0.02$ (30% of the offset noted in Planck SZE analysis)
 - Unresolved systematics in the CMB data still possible-
 - Tension between base P15 CMB and CMB Lensing (Planck+15, Grandis+16)
 - Could incompleteness in the cluster sample play a role? (Gupta+16)
 - First measurement of 150GHz cluster radio galaxy LF
 - Indicates 2 to 5% incompleteness in SPT-SZ like survey
 - Revision of cosmological model required?

Cluster Radio Galaxies at 150GHz

Gupta+16

- Study the overdensity of high frequency radio galaxies 95, 150, 220GHz toward clusters
- Centrally concentrated
 - consistent with 1.4GHz- see Lin & Mohr 2007
- High-ν sources 10X rarer at a given luminosity
- Mock SPT-SZ samples with radio galaxies are incomplete at 2 to 5%
External Cosmo Priors Push Masses Higher?

- Evidence is intriguing but not compelling
- What might explain if future data show it is real?
 - Theoretical mass function wrong? (Bocquet+16)
 - Tinker mass function is biased on high mass end
 - $\Delta\sigma_8(\Omega_m/0.27)^{0.3} = +0.02$ (30% of the offset noted in Planck SZE analysis)
 - Unresolved systematics in the CMB data still possible-
 - Tension between base P15 CMB and CMB Lensing (Planck+15, Grandis+16)
 - Could incompleteness in the cluster sample could play a role? (Gupta+16)
 - First measurement of 150GHz cluster radio galaxy LF
 - Indicates 2 to 5% incompleteness in SPT-SZ like survey
 - Revision of cosmological model required?

1. Nov 2016 7th KIAS Workshop on Cosmology and Structure Formation - Mohr

1. Nov 2016

Future SZE Surveys

- SPTpol + SPT-3G + AdvACT underway
- CORE space mission proposed for ESA M5
- CMB-S4 ground based (US coordinated, seeking European participation)
- Large cluster samples:
 - $z>1.5$: 500, 5000, 20,000 clusters
- Exquisite mass constraints

Melin+16 forecasts for CORE

1. Nov 2016 7th KIAS Workshop on Cosmology and Structure Formation - Mohr
Summary

SPT Cluster Cosmology
- Good agreement with CMB++ datasets and other probes in ΛCDM/wCDM
- WL and dynamical mass calibration ongoing- first wave of papers imminent
- Planck: Mixed story on agreement with CMB++ datasets in ΛCDM/wCDM
 - + WL mass constraints from WtG or CCCP
 - - CMB lensing constraints and Smith WL masses provide tension

Cluster mass measurements
- Improved direct measurements with WL and dynamical data needed
- Additional hydro simulation studies of MF needed

Larger samples and better calibration on the way
- SPT-3G, Core, CMB-S4
- And don’t forget about eROSITA!!!

LMU Cosmology and Structure Formation Group

- Focus:
 Observational cosmology and structure formation studies

- Survey Projects
 South Pole Telescope
 Dark Energy Survey
 D-MeerKAT
 eROSITA
 Euclid
 LSST

- Group Members:
 Research Scientists
 Joerg Dietrich
 Alex Saro
 Veronica Strazzullo

 Euclid subgroup
 Martin Kümmel
 Michael Wetzstein
 Moham. Mirakzemi
 Holger Israel
 Thomas Vassallo

 Postdoc Fellows
 Matthias Klein
 Maurillio Panella

 PhD Students
 Nikhel Gupta
 Corvin Gangkofner
 Raffaella Capasso
 Sebastian Grandis