2 Title & Abstract

Name	Ralf Schiffler
Title	Definition and basic properties of cluster algebras
Abstract	This talk is a short introduction to cluster algebras. I will give the definition
	and several examples, describe different types of cluster algebras and discuss
	some results.

Name	Tomoki Nakanishi
Title	On generalized cluster algebras
Abstract	Generalized cluster algebras (GCAs) was introduced by Chekhov and Shapiro
	in 2011. They are generalizations of the ordinary cluster algebras by replacing
	the ``binomial" in the right hand side of the exchange relation of cluster
	variables with ``polynomial" so that the Laurent property still holds. Recently
	GCAs appear in several different contexts such as Teichm¥"uller theory,
	quantum groups, exact WKB analysis. In this talk I explain that GCAs preserve
	(perhaps) all basic and important properties of the ordinary cluster algebras,
	including the structure theorems of seeds and quantization.
	References:
	1. L. Chekhov and M. Shapiro, Teichm¥"uller spaces of Riemann surfaces with
	orbifold points of arbitrary order and cluster variables, Int. Math. Res. Notices
	2014 (2014), 2746–2772;arXiv:1111.3963 [math–ph].
	2. Tomoki Nakanishi, Structure of seeds in generalized cluster algebras,
	arXiv:1409.5967.
	3. Tomoki Nakanishi, Quantum generalized cluster algebras and quantum
	dilogarithms of higher degrees, arXiv:1410.0584.

Name	Michael Gekhtman
Title	Networks on surfaces and integrable systems
Abstract	This talk is an overview of Poisson geometric properties of directed weighted
	networks and discrete integrable systems arising from transformations of
	these networks.

Name	Rinat Kedem
Title	Quantum Q-systems, grading on tensor products and generalized Whittaker
	functions
Abstract	The quantum discrete evolution coming from the cluster algebra associated
	with the Q-system allows us to express the graded Feigin-Loktev characters
	of tensor products of Kirillov-Reshetikhin modules as a constant term identity,
	in terms of a product of non-commuting cluster variables. This compact
	expression lends itself to the derivation of a family of difference equations
	due to the existence of integrals of motion for the quantum Q-system, which
	is a quantum integrable discrete evolution.

Name	Man Wai Cheung
Title	Scattering diagrams and cluster algebras
Abstract	The concepts of scattering diagrams and theta functions were introduced by
	Gross and Siebert when they were working on the toric degeneration of
	surfaces. Later on, It was discovered that these two objects encode far more
	information than the original setup. For instance, one can associate each
	cluster algebra with a scattering diagram. In this talk, we are going to discuss
	this geometric point of view to cluster algebras.

Name	Murad Alim
Title	BPS Quivers and Mirror Symmetry
Abstract	I will describe how a BPS quiver is assigned to a family of N=2 theories. These
	theories can be obtained geometrically using string theory on two mirror
	families of Calabi-Yau threefolds. The nodes of the quivers are assigned to
	bases of objects on both sides of mirror symmetry corresponding to stable
	coherent sheaves and special Lagrangians. Quiver representation theory
	together with a physically motivated stability condition encodes the BPS
	spectra of the theories and their wall-crossing behavior in the moduli space.

Name	Piljin Yi
Title	Quivers, Witten Index, and Wall-Crossing Invariants
Abstract	Quiver quantum mechanics is a useful tool for exploring wall-crossing
	phenomena of BPS objects in certain d=4 supersymmetric theories. After a

cursory motivation from the physics side, we explore simple examples and discuss how the resulting wall-crossing formulae from tree-like quivers have been proved to coincide with predictions from Kontsevich-Soibelman (KS) algebra.

Quivers with orientied loops offer more challenges, where the notion of wallcrossing-safe invariants, or the quiver invariant, become necessary and enter KS algebra as an input data. We explore these invariants using Abelian cyclic quivers, and outline strategies for counting and classifying BPS states for completely general quivers.

Name	Harold Williams
Title	Toda Systems, Cluster Characters, and Spectral Networks
Abstract	We discuss recent work identifying the Hamiltonians of the open relativistic
	Toda system as cluster characters of nonrigid representations of a quiver with
	potential. Equivalently, we use the spectral networks of the periodic Toda
	system to identify these cluster characters of traces of holonomies on a wild
	character variety of \$₩BC^*\$.

Name	Arkady Berenstein
Title	Noncommutative Laurent Phenomenon
Abstract	ТВА

Name	Matthew B. Young
Title	Orientifold Donaldson-Thomas theory of quivers
Abstract	Motivated by the counting of BPS states in string theory with orientifolds, we
	study moduli spaces of self-dual representations of a quiver with
	contravariant involution. Wall-crossing formulas, describing the behaviour of
	generating functions counting semistable self-dual representations under
	changes in stability, recover formulas predicted in the string theory literature
	on orientifolds. In certain cases, wall-crossing can be understood in terms of
	quantum dilogarithm identities that are in some sense square roots of the
	identities appearing in ordinary Donaldson-Thomas theory. The main tool we

use is a representation of the Hall algebra that is of independent interest- it
is a model for the space of BPS states in an orientifolded theory.

Name	Thorsten Weist
Title	Quiver Grassmannians of Type \tilde{D}_n
Abstract	Quiver Grassmannians of real root representations of quivers of type \tilde{D}_n have a decom- position into affine spaces. For representations of small defect the non-empty cells are in one-to-one correspondence with certain subgraphs of a particular tree-shaped coefficient quiver of the representation. In particular, the Euler characteristic is given by counting these subgraphs. A slight generalization of results of Caldero and Chapoton yields that also quiver Grassmannians of real root representations of higher defect have a decom- position into affine spaces. Moreover, the Euler characteristic is already given by Euler characteristics of quiver Grassmannians of representations of smaller defect. In both cases it is possible to give a recursive and also an explicit formula for the generating function of the Euler characteristics.

Name	Masashi Hamanaka
Title	Noncommutative Solitons and Instantons
Abstract	I would like to discuss extension of theory of solitons and instantons to noncommutative (NC) space, focusing on noncommutative anti-self-dual (ASD) Yang-Mills equations in four dimensional flat space.
	Firstly, we discuss Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction of noncommutative instantons. Instantons are finite-action (global) solutions of the ASD Yang-Mills equations. ADHM construction is based on a beautiful duality between moduli space of the instantons and moduli space of the ADHM data. We prove the duality in NC space together with some introductory reviews of explicit examples and D-brane interpretations. This is based on collaboration with Toshio Nakatsu (Setsunan Univ.).
	Secondly, we give wide class of exact (local) solutions by using Backlund transformations for the G=U(2) noncommutative ASD Yang-Mills eqs. We find that one kind of noncommutative determinants, quasideterminants, play crucial roles in the construction of noncommutative solutions. We also discuss reduction of the noncommutative ASD Yang-Mills equations to lower dimensions to give various noncommutative integrable equations (such as KdV, NLS, Toda eqs. and so on). This is partially based on collaboration with C. Gilson and J. Nimmo (Glasgow Univ.).

Name	Masahito Yamazaki
Title	ТВА
Abstract	ТВА

Name	Amihay Hanany
Title	ТВА
Abstract	ТВА

Name	Alastair King	
Title	Grasmannian cluster categories and dimers on a disc	
Abstract	will describe a full categorification of the cluster structure on the	
	homogeneous coordinate ring of a Grassmannian and explain how it provides	
	an example of a dimer model (with boundary) on a disc.	

Name	Gregg Musiker
Title	Pyramid Partition Functions for the Del-Pezzo 3 Quiver as Subgraphs of Brane
	Tilings
Abstract	This talk considers Pyramid Partition Functions as stuided by B. Szendroi and
	B. Young (for the conifold), W. Chuang and D. Jafferis (in relation to Seiberg
	duality), and later by R. Eager and S. Franco (in more generality). I will
	discuss the del Pezzo 3 quiver as a very interesting case, where work with
	REU students I. Jeong, S. Zhang on the one hand, and M. Leoni, S. Neel, and
	P. Turner, on the other, gave a combinatorial model for pyramid partition
	functions for a two-dimensional subspace of toric cascades of Seiberg
	dualities. I will also describe recent work in progress with T. Lai which
	generalizes these results to a three-dimensional subspace in the duality web.
	I will close with applications on the integrability of the related dynamical
	systems.

Name	Yang-Hui He		
------	-------------	--	--

Title	Gauge Theories: Quivers, Mutations & Dessins d'Enfants	
Abstract	We discuss how bipartite graphs on Riemann surfaces encapture a wealth of	
	information about the physics and the mathematics of gauge theories. The	
	correspondence between the gauge theory, the underlying algebraic	
	geometry of its space of vacua, the combinatorics of dimers and toric	
	varieties, the relation between Seiberg duality and cluster mutations, as well	
	as the number theory of dessin d'enfants becomes particular intricate under	
	this light.	

Name	Philippe R. Di Francesco	
Title	Whittaker functions, cluster algebras and McDonald difference operators	
Abstract	Whittaker functions have recently reappeared in the context of random	
	polymers and special McDonald processes. We revisit their earlier life in	
	representation theory: they were originally built out of Whittaker vectors, for	
	which we give a new statistical weighted path formulation, valid for simple	
	and affine Lie algebras as well as the quantum algebra \$U_q(sl_n)\$. We show	
	how this formulation bypasses the classical derivation of Toda-type	
	differential/difference equations satisfied by these functions.	
	We then consider graded tensor products of current algebra \$g[t]\$-	
	modules, and show that their characters obey difference equations,	
	generalizing the difference Toda equation, allowing for viewing graded	
	characters as generalized Whittaker functions. This is done using a constant	
	term expression for the characters using a solution of the quantum Q-system,	
	a set of non-commuting integrable recursion relations that are particular	
	mutations of a quantum cluster algebra attached to the Lie algebra \$g\$.	
	Finally, we obtain a new compact expression for graded \$sl_n\$ characters	
	by constructing a presentation of the quantum Q-system via generalized	
	McDonald-Ruijsenaars difference operators.	
	(based on joint works with R. Kedem, and R. Kedem and B. Turmunkh).	

Name	Michael Shapiro	
Title	Higher pentagram maps and cluster dynamics	
Abstract	The pentagram map associates to a projective polygon a new one formed by	
	intersections of short diagonals. We reprove the famous result by V. Ovsienko,	

R. Schwartz and S. Tabachnikov that pentagram map is a discrete completely integrable system using the theory of cluster algebras and the Poisson geometry of weighted directed networks on surfaces. We prove also complete integrability for a discrete family of corrugated pentagram maps. The ingredients necessary for complete integrability -- invariant Poisson brackets, integrals of motion in involution, Lax representation -- are recovered from combinatorics of the networks. Our integrable systems depend on one discrete parameter k>1. The case k=3 corresponds to the pentagram map. For k>3, we give our integrable systems a geometric interpretation as pentagram-like maps involving deeper diagonals. If k=2 and the ground field is \$\#C\$, we give a geometric interpretation in terms of circle patterns. This a joint work with M.Gekhtman, S.Tabachnikov, and A.Vainshtein.