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Introduction

The motion of an incompressible viscous Newtonian fluid is governed by a non-

linear system of partial differential equations, called the Navier-Stokes equa-

tions. The purpose of this note is to introduce a classical theory of the well-

posedness for the Navier-Stokes equations in three-dimensional domains.

The note consists of three sections. The first section, Section 1, is devoted to

proving some preliminary results which have been essential tools to the math-

ematical theory of fluid mechanics. Of particular importance to the (incom-

pressible) Navier-Stokes equations is the De Rham theorem in Sobolev spaces

of arbitrary order which characterizes the gradient of a scalar field; such a result

allows us to deduce the existence of a pressure from the weak formulation for the

Navier-Stokes equations. Among several approaches to the De Rham theorem,

we follow a duality approach based on the solvability of the equation div u = g

with u being an unknown vector field. As a byproduct, we prove the so-called

Helmholtz-Weyl decomposition of vector fields in Lebesgue spaces. The section

ends with discussing the well-posedness for the stationary Stokes equations and

introducing the Stokes operator.

The goal of Section 2 is to develop the existence theory of global weak so-

lutions due to Leray. Weak solutions of the Navier-Stokes equations may be

defined, as usual, by multiplying the equations by divergence-free test functions

and integrating by parts. We derive several equivalent definitions of weak solu-

tions, which are indeed necessary to prove the existence and regularity of weak

solutions. On the other hand, by virtue of the nonlinear character of the prob-

lem, any existence proof of weak solutions should rely on suitable compactness

results in vector-valued Lebesgue spaces. The so-called Aubin-Lions compact-

ness lemma is proved in a quite self-contained manner. Finally, the global exis-

tence of weak solutions is established, by applying the standard Faedo-Galerkin

method.

The uniqueness and regularity of weak solutions have been the most out-

standing open questions in the mathematical fluid mechanics and are closely

related to one of the seven Clay Millennium Problems: the so-called ”Navier-

Stokes existence and smoothness problem”. Some partial answers are given in

Section 3. First, we establish weak-strong uniqueness results which show that

weak solutions are unique if a strong or smooth solution exists. It is also shown

that a strong or smooth solution exists at least for a short time interval and

globally in time if the data is sufficiently small. The regularity of weak solutions

is then studied in the last part of the section. We prove the Leray structure the-

orem for the singular time set of a weak solution. A refinement due to Scheffer
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is also discussed. Finally, further regularity of weak solutions is deduced from

the classical maximal regularity results for the linear Stokes equations.

1 Preliminaries

1.1 The equation div u = g

Let Ω be a bounded domain in Rn, n ≥ 2. Consider the problem of finding a

vector field u = (u1, ..., un) : Ω → Rn such that

div u = g in Ω, (1)

where g : Ω → R is a given scalar function.

A solution of (1) can be constructed by a classical potential technique, pro-

vided that g is sufficiently regular. Let Γ be the fundamental solution of the

Laplace equation, defined by

Γ(x) =

{ 1
n(2−n)ωn

1
|x|n−2 if n ≥ 3

1
2π log |x| if n = 2,

where ωn is the volume of the unit ball in Rn:

ωn = |B1(0)| =
2πn/2

nΓ(n/2)
.

Assume that g ∈ C∞
0 (Ω), and let G be the Newtonian potential of g:

G(x) =

∫
Ω

Γ(x− y)g(y) dy (x ∈ Rn).

Then by a straightforward calculation,

G ∈ C∞(Rn) and ∆G = g in Ω.

Moreover, by the Calderón-Zygmund theory,

∥∇m+2G∥q;Rn ≤ C(m, q, n)∥∇mg∥q;Ω

for every m ∈ N ∪ {0} and 1 < q <∞, where

∥∇mg∥qq;Ω =
∑

|α|=m

∥Dαg∥qLq(Ω).

Hence the vector field

u(x) =

∫
Ω

∇Γ(x− y)g(y) dy =

∫
Ω

1

nωn

(x− y)

|x− y|n
g(y) dy (2)
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satisfies

u ∈ C∞(Rn)n := C∞(Rn;Rn), div u = g in Ω,

and

∥∇m+1u∥q;Rn ≤ C(m, q, n)∥∇mg∥q;Ω

for everym ∈ N∪{0} and 1 < q <∞. Denote byWm,q
0 (Ω) the closure of C∞

0 (Ω)

in Wm,q(Ω); thus W 0,q
0 (Ω) = Lq(Ω). Then by a standard continuity argument,

we deduce that for each g ∈Wm,q
0 (Ω) there exists at least one u ∈Wm+1,q(Ω)n

such that

div u = g in Ω

and

∥∇u∥m,q;Ω ≤ C(m, q, n)∥g∥m,q;Ω,

where

∥g∥qm,q;Ω =
m∑
j=0

∥∇jg∥qq;Ω.

But for various applications to fluid mechanics, the vector field u should satisfy

the additional property that

u ∈Wm+1,q
0 (Ω)n.

To find such a vector field u is a fundamental problem in mathematical fluid

mechanics, which has been resolved by many researchers for quite general do-

mains Ω including bounded Lipschitz domains. By a bounded Lipschitz domain

in Rn, we mean a bounded, open, and connected subset Ω of Rn such that for

each x0 ∈ ∂Ω there exist a number r > 0 and a Lipschitz continuous function

ϕ : Rn−1 → R satisfying

Ω ∩Br(x0) = {x ∈ Br(x0) : xn < ϕ(x1, ..., xn−1)}

and

∂Ω ∩Br(x0) = {x ∈ Br(x0) : xn = ϕ(x1, ..., xn−1)}

in some coordinate system {x1, ..., xn} with the origin at x0
1. Here Br(x0) de-

notes the open ball of radius r centered at x0: Br(x0) = {x ∈ Rn : |x− x0| < r} .
Following a classical approach due to Bogovskĭi [1], we shall prove the fol-

lowing results.

Theorem 1.1. Let Ω be a bounded Lipschitz domain in Rn and ζ ∈ C∞
0 (Ω) a

fixed function with
∫
Ω
ζ dx = 1. Then there exists a linear operator

BΩ : C∞
0 (Ω) → C∞

0 (Ω)n

1Ω is said to be of class Ck if ϕ is a Ck-function
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such that for each g ∈ C∞
0 (Ω), the vector field u = BΩ[g] satisfies

div u = g −
(∫

Ω

g dx

)
ζ in Ω

and

∥u∥m+1,q;Ω ≤ C(m, q, n,Ω)∥g∥m,q;Ω

for every m ∈ N ∪ {0} and 1 < q < ∞. Moreover, by continuity, BΩ can be

extended uniquely to a bounded linear operator fromWm,q
0 (Ω) intoWm+1,q

0 (Ω)n,

called the Bogovskĭi operator and denoted again by BΩ.

Corollary 1.2. Let Ω be a bounded Lipschitz domain in Rn and let m ∈ N∪{0}
and 1 < q < ∞. Then for each g ∈ Wm,q

0 (Ω) with
∫
Ω
g dx = 0, there exists

u ∈Wm+1,q
0 (Ω)n such that

div u = g in Ω

and

∥u∥m+1,q;Ω ≤ C(m, q, n,Ω)∥g∥m,q;Ω.

Remark 1.3. The so-called compatibility condition
∫
Ω
g dx = 0 is necessary for

the existence of u ∈W 1,q
0 (Ω)n such that div u = g in Ω; indeed by the divergence

theorem, ∫
Ω

g dx = lim
k→∞

∫
Ω

div uk dx = lim
k→∞

∫
∂Ω

uk · ν dσ = 0,

where {uk} is any sequence in C∞
0 (Ω)n with uk → u in W 1,q(Ω)n.

Theorem 1.1 can be proved by using an explicit representation formula due

to Bogovskĭi [1], if the domain Ω is star-shaped with respect to a ball B ⊂ Ω;

that is, λx0 + (1− λ)x ∈ Ω for every x0 ∈ B, x ∈ Ω, and λ ∈ [0, 1]. To state his

result, we fix a function η ∈ C∞
0 (B1(0); [0, 1]) with

∫
B1(0)

η dx = 1 and define

ηR(x) = R−nη (x/R). Note that ηR ∈ C∞
0 (BR(0)) and

∫
BR(0)

ηR dx = 1.

Lemma 1.4 (Bogovskĭi [1]). Let Ω be a bounded domain in Rn that is star-

shaped with respect to an open ball B = BR(0) with B ⊂ Ω. For each g ∈
C∞

0 (Ω), we define

u(x) = BΩ[g](x)

=

∫
Ω

g(y)

[
(x− y)

|x− y|n

∫ ∞

|x−y|
ηR

(
y + r

x− y

|x− y|

)
rn−1 dr

]
dy

for all x ∈ Ω. Then

u ∈ C∞
0 (Ω)n, div u = g −

(∫
Ω

g dx

)
ηR in Ω,
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and

∥∇u∥m,q;Ω ≤ C(m, q, n, δ(Ω)/R)∥g∥m,q;Ω

for every m ∈ N ∪ {0} and 1 < q <∞, where δ(Ω) is the diameter of Ω.

Proof. Step 1. Note first that if y ∈ Ω and y ̸= x, then∫ ∞

|x−y|
ηR

(
y + r

x− y

|x− y|

)
rn−1 dr ≤

∫ R+|y|

|x−y|

1

Rn
rn−1 dr

≤ C(n, δ(Ω)/R)).

Hence u(x) is well-defined for all x ∈ Ω. By a change of variables, we have

u(x) =

∫
Ω

g(y)

[
(x− y)

∫ ∞

1

ηR (y + r(x− y)) rn−1 dr

]
dy

for x ∈ Ω. This implies, in particular, that u is supported in the compact set

E = {λx0 + (1− λ)y : x0 ∈ supp (ηR), y ∈ supp (g), λ ∈ [0, 1]} .

Since supp (ηR) ⊂ B and Ω is star-shaped with respect to B, it follows that

E ⊂ Ω. Hence u has compact support in Ω. Moreover, noting that

u(x) =

∫
Rn

g(x− z)

[
z

∫ ∞

0

ηR (x+ rz) (r + 1)n−1 dr

]
dz,

we deduce that u ∈ C∞
0 (Ω); for instance,

Dju
i(x) =

∫
Rn

Djg(x− z)

[
zi

∫ ∞

0

ηR (x+ rz) (r + 1)n−1 dr

]
dz

+

∫
Rn

g(x− z)

[
zi

∫ ∞

0

DjηR (x+ rz) (r + 1)n−1 dr

]
dz

for i, j = 1, ..., n.

Step 2. Fix i, j = 1, ..., n. Then for x ∈ Ω, we have

Dju
i(x) = lim

ε→0

∫
Bε(0)c

∂

∂zj
[−g(x− z)]

[
zi

∫ ∞

0

ηR (x+ rz) (r + 1)n−1 dr

]
dz

+ lim
ε→0

∫
Bε(0)c

g(x− z)

[
zi

∫ ∞

0

DjηR (x+ rz) (r + 1)n−1 dr

]
dz.

Using the integration by parts, we thus obtain

Dju
i(x) = lim

ε→0

∫
∂Bε(0)

g(x− z)

[
zi

∫ ∞

0

ηR (x+ rz) (r + 1)n−1 dr

]
zj
|z|

dσ(z)

+ lim
ε→0

∫
Bε(0)c

g(x− z)

[
δij

∫ ∞

0

ηR (x+ rz) (r + 1)n−1 dr

+ zi

∫ ∞

0

DjηR (x+ rz) (r + 1)n dr

]
dz

= Iij1 (x) + Iij2 (x).
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It is easy to compute Iij1 (x):

Iij1 (x) = lim
ε→0

∫
∂B1(0)

g(x− εz)

[
εzizj

∫ ∞

0

ηR (x+ εrz) (r + 1)n−1 dr

]
εn−1dσ(z)

= lim
ε→0

∫
∂B1(0)

g(x− εz)

[
zizj

∫ ∞

0

ηR (x+ rz) (r + ε)n−1 dr

]
dσ(z)

= g(x)

∫
∂B1(0)

zizj

[∫ ∞

0

ηR (x+ rz) rn−1 dr

]
dσ(z)

= g(x)

∫
Rn

yiyj
|y|2

ηR(x+ y) dy.

Hence

|Iij1 (x)| ≤ |g(x)|
∫
Rn

ηR(x+ y) dy = |g(x)|

and
n∑

i=1

Iii1 (x) = g(x)

∫
Rn

ηR(x+ y) dy = g(x).

It is easier to compute
∑n

i=1 I
ii
2 (x):

n∑
i=1

Iii2 (x) = lim
ε→0

∫
Bε(0)c

g(x− z)

[
n

∫ ∞

0

ηR (x+ rz) (r + 1)n−1 dr

+

∫ ∞

0

d

dr
{ηR (x+ rz)} (r + 1)n dr

]
dz

= lim
ε→0

∫
Bε(0)c

g(x− z) [−ηR(x)] dz

= −
(∫

Ω

g dx

)
ηR(x).

Step 3. To complete the proof for the case m = 0, it remains to show that

∥Iij2 ∥q;Ω ≤ C(n, q, δ(Ω)/R)∥g∥q;Ω.

To show this, we write

Iij2 (x) = lim
ε→0

∫
Ω\Bε(x)

g(y)Kij(x, x− y) dy,

where

Kij(x, z) = δij

∫ ∞

0

ηR (x+ rz) (r + 1)n−1 dr + zi

∫ ∞

0

DjηR (x+ rz) (r + 1)n dr

for z ̸= 0. Define

Kij
s (x, z) = δij

∫ ∞

0

ηR (x+ rz) rn−1 dr + zi

∫ ∞

0

DjηR (x+ rz) rn dr
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and

Kij
ws(x, z) = Kij(x, z)−Kij

s (x, z).

Note that if x ∈ Ω and 0 < |z| < δ(Ω), then

|Kij
ws(x, z)| ≤ C

∫ ∞

0

[
ηR (x+ rz) (r + 1)n−2 + |z||DηR (x+ rz) |(r + 1)n−1

]
dr

≤ C(n, δ(Ω)/R)

|z|n−1
∈ L1(Ω).

Hence by Young’s convolution inequality, we obtain∥∥∥∥∫
Ω

g(y)Kij
ws(·, · − y) dy

∥∥∥∥
q;Ω

≤ C∥g∥q;Ω.

On the other hand, the singular kernel Kij
s can be written as

Kij
s (x, z) =

kijs (x, z/|z|)
|z|n

,

where kijs is a smooth function on Rn × ∂B1(0) defined by

kijs (x, ω) = δij

∫ ∞

0

ηR (x+ rω) rn−1 dr + ωi

∫ ∞

0

DjηR (x+ rω) rn dr.

Note that∫
∂B1(0)

kijs (x, ω) dσ(ω) =

∫
Rn

[δijηR(x+ z) + ziDjη(x+ z)] dz = 0.

Therefore, by the Calderón-Zygumnd theory (see [3, Theorem 2]),∥∥∥∥∫
Ω

g(y)Kij
s (·, · − y) dy

∥∥∥∥
q;Ω

≤ C∥g∥q;Ω.

This completes the proof for the most important case m = 0. The above

argument can be adapted to prove the lemma for the case m ≥ 1 but its details

is omitted.

Proof of Theorem 1.1. Here we provide only a sketch of the proof. A more

detailed proof is given in Galdi’s book [6].

Step 1. First we recall that the bounded Lipschitz domain Ω can be written

as the union of a finite number of star-shaped domains; more precisely, there

exist a finite number of open sets G1, ..., Gm, Gm+1, ..., Gm+k such that

(i) Ω ⊂ ∪m+k
i=1 Gi, ∂Ω ⊂ ∪m

i=1Gi;

(ii) Ωi = Ω∩Gi is star-shaped with respect to an open ball Bi with Bi ⊂ Ωi

for each i = 1, ...,m;
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(iii) Ωm+j = Gm+j is an open ball with Gm+j ⊂ Ω for each j = 1, ..., k.

Step 2. We next need to prove that if g ∈ C∞
0 (Ω) and

∫
Ω
g dx = 0, then

g =

m+k∑
i=1

gi

for some functions gi ∈ C∞
0 (Ωi) with

∫
Ω
gi dx = 0 given by

gi = ζig +

mi∑
j=1

(∫
Ω

ϕjg dx

)
θj ,

where mi ∈ N, ζi, θj ∈ C∞
0 (Ωi), and ϕj ∈ C∞(Rn). Note also that

m+k∑
i=1

∥gi∥m,q;Ω ≤ C(m, q, n,Ω)∥g∥m,q;Ω (m ≥ 0, 1 < q <∞).

To show this, we choose functions ψ1, ..., ψm+k such that

ψi ∈ C∞
0 (Gi) for 1 ≤ i ≤ m+ k and

m+k∑
i=1

ψi = 1 in Ω.

Then the functions gi may be defined by

g1 = ψ1g −
(∫

Ω

ψ1g dx

)
χ1, h1 = g − g1,

g2 = ψ2h1 −
(∫

Ω

ψ2h1 dx

)
χ2, h2 = g1 − g2,

...

gm+k = ψm+khm+k−1 −
(∫

Ω

ψm+khm+k−1 dx

)
χm+k,

for some suitable functions χi ∈ C∞
0 (Ωi) with

∫
Ω
χi dx = 0.

Step 3. Let g ∈ C∞
0 (Ω) be given. Suppose first that

∫
Ω
g dx = 0. Then

using Lemma 1.4 together with the decomposition

g =
m+k∑
i=1

gi

from Step 2, we define

BΩ[g] =

m+k∑
i=1

BΩi [gi].

9



By Lemma 1.4 and Step 2, we have

BΩ[g] ∈ C∞
0 (Ω),

divBΩ[g] =
m+k∑
i=1

divBΩi [gi] =
m+k∑
i=1

gi = g in Ω,

and

∥BΩ[g]∥m+1,q;Ω ≤
m+k∑
i=1

∥BΩi [gi]∥m+1,q;Ωi

≤ C
m+k∑
i=1

∥gi∥m,q;Ω ≤ C∥g∥m,q;Ω.

Finally, for general g ∈ C∞
0 (Ω), we define

BΩ[g] = BΩ

[
g −

(∫
Ω

g dx

)
ζ

]
.

This completes the proof of Theorem 1.1.

1.2 The Helmholtz-Weyl decomposition

Theorem 1.1 enables us to deduce several important results in fluid mechanics

by some elementary arguments. First of all, we prove a quite general result

which characterizes the gradient in Sobolev spaces of arbitrary orders.

For m ≥ 1 and 1 < q < ∞, we denote by W−m,q(Ω) the dual space of

Wm,q′

0 (Ω), where q′ = q/(q − 1) is the Hölder conjugate of q. The norm on

W−m,q(Ω) is denoted by ∥ · ∥−m,q;Ω:

∥f∥−m,q;Ω = sup
{
< f, ϕ > : ϕ ∈Wm,q′

0 (Ω), ∥ϕ∥m,q′;Ω ≤ 1
}
.

Let C∞
0,σ(Ω) be the space of all divergence-free (or solenoidal) test functions on

Ω:

C∞
0,σ(Ω) = {u ∈ C∞

0 (Ω)n : div u = 0 in Ω} .

Theorem 1.5. Let Ω be a bounded Lipschitz domain in Rn, and let m ∈ Z and

1 < q <∞. If f ∈Wm,q(Ω)n satisfies

⟨f,Φ⟩ = 0 for all Φ ∈ C∞
0,σ(Ω), (3)

then there exists ψ ∈Wm+1,q(Ω) such that

f = ∇ψ in Ω

and

∥ψ∥m+1,q;Ω ≤ C∥f∥m,q;Ω

for some constant C = C(m, q,Ω).
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Proof. Assume first that m ≤ −1. Then f is a bounded linear functional on

W−m,q′

0 (Ω)n. Since the Bogovskĭi operator B = BΩ maps W−m−1,q′

0 (Ω) into

W−m,q′

0 (Ω)n boundedly, it follows that

< f,B[g] > ≤ ||f ||m,q;Ω||B[g]||−m,q′;Ω

≤ C||f ||m,q;Ω||g||−m−1,q′;Ω

for all g ∈W−m−1,q′

0 (Ω). Hence if we define ψ by

< ψ, g > = − < f,B[g] > for all g ∈W−m−1,q′

0 (Ω), (4)

then

ψ ∈Wm+1,q(Ω) and ∥ψ∥m+1,q;Ω ≤ C∥f∥m,q;Ω;

if m = −1, then ψ ∈ Lq(Ω) by the Riesz representation theorem.

Let Φ ∈ C∞
0 (Ω)n be given. Then taking g = divΦ, we have

divB[g] = divΦ−
(∫

Ω

divΦ dx

)
ζ = divΦ,

which implies that B[g]− Φ ∈ C∞
0,σ(Ω). Hence it follows from (4) and (3) that

− < ψ, divΦ > = − < ψ, g > = < f,B[g] > = < f,Φ > .

This completes the proof for the case thatm ≤ −1. We next assume thatm ≥ 0.

Then since f ∈W−1,q(Ω)n in particular, it follows that f = ∇ψ for some scalar

ψ ∈ Lq(Ω). It is obvious that ψ ∈Wm+1,q(Ω). The proof is complete.

Corollary 1.6. Let Ω be a bounded Lipschitz domain in Rn, and let m ∈ Z and

1 < q <∞. If ψ is a distribution on Ω such that ∇ψ ∈Wm,q(Ω)n, then

ψ ∈Wm+1,q(Ω).

Moreover, if m = −1, then∥∥∥∥ψ − 1

|Ω|

∫
Ω

ψ dx

∥∥∥∥
q;Ω

≤ C(n, q,Ω)∥∇ψ∥−1,q;Ω.

It can be shown (not so difficult) that any domain in Rn is the union of an

increasing sequence of bounded Lipschitz domains. Hence from Theorem 1.5,

we can deduce the following result.

Theorem 1.7. Let Ω be an arbitrary domain in Rn and let 1 < q < ∞. If

f ∈ Lq
loc(Ω)

n satisfies∫
Ω

f · Φ dx = 0 for all Φ ∈ C∞
0,σ(Ω),

then there exists ψ ∈W 1,q
loc (Ω) such that

f = ∇ψ in Ω.
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We next prove the so-called Helmholtz-Weyl decomposition of Lq(Ω)n. For

1 < q < ∞, we denote by Lq
σ(Ω) the closure of C∞

0,σ(Ω) in Lq(Ω)n. We also

denote by D1,q(Ω) the homogeneous Sobolev space consisting of all ψ ∈ Lq
loc(Ω)

such that ∇ψ ∈ Lq(Ω)n.

Lemma 1.8. Let Ω be an arbitrary domain in Rn and let 1 < q <∞. Then

Lq
σ(Ω) =

{
u ∈ Lq(Ω)n :

∫
Ω

u · ∇ψ dx = 0 for all ψ ∈ D1,q′(Ω)

}
.

Hence Lq
σ(Ω) consists of all u ∈ Lq(Ω)n such that

div u = 0 in Ω and u · ν = 0 on ∂Ω

in some weak sense.

Proof. By a density argument, we easily deduce that if u ∈ Lq
σ(Ω), then∫

Ω

u · ∇ψ dx = 0 for all ψ ∈ D1,q′(Ω),

which proves one inclusion. To prove the reverse inclusion, we argue by contra-

position. Let u ∈ Lq(Ω)n \ Lq
σ(Ω) be given. Then since Lq

σ(Ω) is a closed sub-

space of Lq(Ω)n, it follows from the hyperplane separation theorem in Banach

spaces (a consequence of the Hahn-Banach theorem) that there is v ∈ Lq′(Ω)n

such that ∫
Ω

u · v dx ̸= 0 and

∫
Ω

w · v dx = 0 for all w ∈ Lq
σ(Ω).

By Theorem 1.7, there is ψ ∈ D1,q′(Ω) such that v = ∇ψ in Ω. But this implies

that ∫
Ω

u · ∇ψ dx =

∫
Ω

u · v dx ̸= 0.

The proof is complete.

Theorem 1.9. Let Ω be an arbitrary domain in Rn. Then

L2(Ω)n = L2
σ(Ω)⊕∇

[
D1,2(Ω)

]
;

that is, for each u ∈ L2(Ω)n there exists a unique pair (v,∇p) such that

u = v +∇p, v ∈ L2
σ(Ω) and p ∈ D1,2(Ω).

Moreover, by the orthogonality, we have

∥v∥22;Ω + ∥∇p∥22;Ω = ∥u∥22;Ω.

Therefore, the mapping u 7→ v defines a bounded linear operator P from L2(Ω)n

onto L2
σ(Ω), called the Helmholtz projection.
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Proof. By Theorem 1.7 and Lemma 1.8, we have[
L2
σ(Ω)

]⊥
= ∇

[
D1,2(Ω)

]
.

Hence the theorem follows immediately from the projection theorem in Hilbert

space theory.

Let u ∈ L2(Ω)n be given. Then by Theorem 1.9, there exists p ∈ D1,2(Ω),

unique up to additive constants, such that

u−∇p ∈ L2
σ(Ω).

By Lemma 1.8, we have∫
Ω

(∇p− u) · ∇ψ dx = 0 for all ψ ∈ D1,2(Ω);

that is, p is a weak solution of the Neumann problem

(N)

{
∆p = div u in Ω
∂p
∂ν = u · ν on ∂Ω.

Conversely, if p ∈ D1,2(Ω) is a weak solution of (N), then u−∇p ∈ L2
σ(Ω). We

have proved

Corollary 1.10. Let Ω be an arbitrary domain in Rn. Then for each u ∈
L2(Ω)n there exists a weak solution p ∈ D1,2(Ω) of the Neumann problem (N),

unique up to additive constants. Moreover, we have

∥∇p∥2;Ω ≤ ∥u∥2;Ω

The Helmholtz-Weyl decomposition of Lq(Ω)n also holds for 1 < q < ∞, if

Ω is sufficiently smooth.

Theorem 1.11. Let Ω be a bounded smooth (say, C1-) domain in Rn and let

1 < q <∞. Then

Lq(Ω)n = Lq
σ(Ω)⊕∇

[
D1,q(Ω)

]
;

that is, for each u ∈ Lq(Ω)n there exists a unique pair (v,∇p) such that

u = v +∇p, v ∈ Lq
σ(Ω) and p ∈ D1,q(Ω).

Moreover, the mapping u 7→ v defines a bounded linear operator Pq from Lq(Ω)n

onto Lq
σ(Ω), called the Helmholtz projection.

Proof. Let u ∈ Lq(Ω)n be given. Then by a classical elliptic PDE theory, there

exists a weak solution p in D1,q(Ω) (called a q-weak solution) of (N), unique up

to additive constants. This p satisfies

∥∇p∥q;Ω ≤ C(n, q,Ω)∥u∥q;Ω.

13



Moreover, it follows from Lemma 1.8 that

v = Pqu = u−∇p ∈ Lq
σ(Ω).

This proves the existence of a decomposition of u. To prove the uniqueness,

suppose that u = v1+∇p1 is another decomposition of u. Then since u−∇p1 ∈
Lq
σ(Ω), it follows from Lemma 1.8 again that p1 is a q-weak solution of (N).

Hence by the uniqueness of q-weak solutions of (N)

∇p1 = ∇p and so v = v1.

The linearity of Pq follows easily from the uniqueness of the Helmholtz-Weyl

decomposition. This completes the proof.

1.3 The stationary Stokes equations

Let Ω be a bounded domain in Rn, n ≥ 2. Consider the following Dirichlet

problem for the stationary Stokes equations:

(S)

 −∆u+∇p = f in Ω
div u = g in Ω

u = 0 on ∂Ω.

Suppose that f ∈ W−1,2(Ω)n, g ∈ L2(Ω) and
∫
Ω
g dx = 0. Then a vector field

u : Ω → Rn is called a weak solution of (S) if

u ∈W 1,2
0 (Ω)n, div u = g a.e. in Ω,

and ∫
Ω

∇u : ∇Φ dx = < f,Φ > for all Φ ∈ C∞
0,σ(Ω).

To prove the uniqueness of weak solutions of (S), we need a density result.

For 1 < q <∞, we denote by W 1,q
0,σ (Ω) the closure of C∞

0,σ(Ω) in W
1,q(Ω)n.

Lemma 1.12. Let Ω be a bounded Lipschitz domain in Rn. Then

W 1,q
0,σ (Ω) =

{
u ∈W 1,q

0 (Ω)n : div u = 0 in Ω
}
.

Proof. Suppose that u ∈ W 1,q
0 (Ω)n and div u = 0 in Ω. Let {vk} be a sequence

in C∞
0 (Ω)n such that vk → u in W 1,q(Ω)n. For each k, define

uk = vk + BΩ[−div vk].

Then since vk ∈ C∞
0 (Ω)n and

∫
Ω
(−div vk) dx = 0, we have

uk ∈ C∞
0 (Ω)n and div uk = 0 in Ω.

14



Moreover since div vk → div u = 0 in Lq(Ω), we have

∥uk − u∥1,q;Ω ≤ ∥BΩ[−div vk]∥1,q;Ω + ∥vk − u∥1,q;Ω
≤ C∥div vk∥q;Ω + ∥vk − u∥1,q;Ω → 0.

Hence it follows that u ∈ W 1,q
0,σ (Ω). This proves one inclusion, but the reverse

one is trivial.

Theorem 1.13. Let Ω be a bounded Lipschitz domain in Rn. Then for each

f ∈ W−1,2(Ω)n and g ∈ L2(Ω) with
∫
Ω
g dx = 0, there exists a unique weak

solution u of (S). Moreover, there exists a unique p ∈ L2(Ω) with
∫
Ω
p dx = 0

such that∫
Ω

∇u : ∇Φ dx−
∫
Ω

pdiv Φ dx = < f,Φ > for all Φ ∈ C∞
0 (Ω)n.

Finally, we have

∥u∥1,2;Ω + ∥p∥2;Ω ≤ C(n,Ω) (∥f∥−1,2;Ω + ∥g∥2;Ω) .

Proof. To prove the uniqueness assertion, suppose that u1, u2 are weak solutions

of (S). Then u = u1 − u2 satisfies

u ∈W 1,2
0 (Ω)n, div u = 0 a.e. in Ω

and ∫
Ω

∇u : ∇Φ dx = 0 for all Φ ∈ C∞
0,σ(Ω).

It follows from Lemma 1.12 that u ∈ W 1,2
0,σ (Ω). Hence choosing Φk ∈ C∞

0,σ(Ω)

with Φk → u in W 1,2(Ω)n, we have∫
Ω

|∇u|2 dx = lim
k→∞

∫
Ω

∇u : ∇Φk dx = 0,

which implies that u = 0 in Ω.

To prove the existence assertion, let us consider the Hilbert space

H =
{
u ∈W 1,2

0 (Ω)n : div u = 0 in Ω
}

equipped with the inner product2

(u, v)H =

∫
Ω

∇u : ∇v dx.

2(·, ·)H being a complete inner product is an easy consequence of the Poincaré inequality.
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Suppose now that f ∈ W−1,2(Ω)n, g ∈ L2(Ω) and
∫
Ω
g dx = 0. Then the

functional

Φ 7→ < f,Φ > −
∫
Ω

∇BΩ[g] · ∇Φ dx

is linear and bounded on H. Hence by the Riesz representation theorem, there

exists a unique v ∈ H such that∫
Ω

∇v : ∇Φ dx = < f,Φ > −
∫
Ω

∇BΩ[g] · ∇Φ dx

for all Φ ∈ H. Obviously, u = v + BΩ[g] is a weak solution of (S). Moreover,

taking Φ = v, we have

∥u∥1,2;Ω ≤ ∥v∥1,2;Ω + ∥BΩ[g]∥1,2;Ω
≤ C(n,Ω) (∥f∥−1,2;Ω + ∥BΩ[g]∥1,2;Ω)
≤ C(n,Ω) (∥f∥−1,2;Ω + ∥g∥2;Ω) .

Finally, the existence and estimate of p follow from Theorem 1.5.

Let Ω be a bounded Lipschitz domain in Rn. Then since L2
σ(Ω) ↪→W−1,2(Ω)n,

it follows from Theorem 1.13 that for each f ∈ L2
σ(Ω) there exists a unique

u = Sf ∈W 1,2
0,σ (Ω) such that

(∇u,∇Φ) = (f,Φ) for all Φ ∈ C∞
0,σ(Ω).

where (·, ·) = (·, ·)Ω denotes the inner product on L2(Ω)n or L2(Ω)n
2

(or some-

times L2(Ω)):

(f,Φ) =

∫
Ω

f · Φ dx.

The solution operator S : L2
σ(Ω) → W 1,2

0,σ (Ω) is linear, bounded, and injective.

The inverse of S is called the Stokes operator (in L2
σ(Ω)) and denoted by A. The

domain D(A) of A is dense in L2
σ(Ω) because

C∞
0,σ(Ω) ⊂ D(A) ⊂W 1,2

0,σ (Ω);

indeed, if u ∈ C∞
0,σ(Ω), then f = −∆u ∈ L2

σ(Ω) and u = Sf ∈ D(A). Hence

the Stokes operator A is an unbounded operator in L2
σ(Ω) with dense domain.

Let I : W 1,2(Ω) ↪→ L2(Ω) be the natural embedding, which is compact by the

Rellich-Kondrachov compactness theorem (see [5] e.g.). Then the composition

K = I ◦ S is a compact linear operator on L2
σ(Ω). Moreover, K is symmetric

and positive: for every f, g ∈ L2
σ(Ω), we have

(Kf, g) = (∇u,∇v) = (f,Kg)
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and

(Kf, f) = ∥∇u∥22;Ω > 0 if f ̸= 0,

where u = Sf and v = Sg. Therefore, by the spectral theory of symmetric

compact operators (see [5, Appendix D] or [9, Chapter 5]), we conclude that

(i) the spectrum σ(A) of the Stokes operator A consists entirely of its positive

eigenvalues with finite multiplicity;

(ii) if we repeat each eigenvalue of A according to its multiplicity, then

σ(A) = {λk}∞k=1,

where 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · and λk → ∞;

(iii) there exists an orthonormal basis {wk}∞k=1 of L2
σ(Ω), where each wk ∈

D(A) is an eigenfunction of A corresponding to λk. Hence for each u ∈ L2
σ(Ω),

we have

u =

∞∑
k=1

ûkwk in L2(Ω)n and ∥u∥22;Ω =

∞∑
k=1

|ûk|2 <∞,

where

ûk = (u,wk) (k = 1, 2, ...);

(iv) 3 {λ−1/2
k wk}∞k=1 is an orthonormal basis of the Hilbert space W 1,2

0,σ (Ω)

equipped with the inner production (∇u,∇v)L2(Ω)n2 . Hence, for each u ∈
W 1,2

0,σ (Ω), we have

u =
∞∑
k=1

ûkwk in W 1,2(Ω)n and ∥∇u∥22;Ω =
∞∑
k=1

|ûk|2λk <∞;

(v) 4 for each f ∈
[
W 1,2

0,σ (Ω)
]′
, we have

∥f∥2
[W 1,2

0,σ(Ω)]
′ =

∞∑
k=1

|f̂k|2

λk
, where f̂k = < f,wk > .

Assume in addition that Ω is sufficiently smooth (say, of class C2). Then

it can be shown by a standard method of difference quotients (see [16, Section

III.1.5] for a detailed proof) that S : L2
σ(Ω) → W 1,2

0,σ (Ω) ∩ W 2,2(Ω)n and so

D(A) ⊂W 1,2
0,σ (Ω) ∩W 2,2(Ω)n. Let u ∈W 1,2

0,σ (Ω) ∩W 2,2(Ω)n be given. Then for

all Φ ∈ C∞
0,σ(Ω), we have

(∇u,∇Φ) = − (∆u,Φ) = (−P∆u,Φ) ,
3(iv) is deduced easily from (iii) by observing that (∇u,∇wk)L2(Ω)n

2 = λk(u,wk)L2(Ω)n

for all u ∈ W 1,2
0,σ (Ω).

4(v) follows from (iv) by using the Riesz representation theorem.
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where P is the Helmholtz projection of L2(Ω)n onto L2
σ(Ω). Hence by the

definition of A, we conclude that

D(A) =W 1,2
0,σ (Ω) ∩W 2,2(Ω)n and Au = −P∆u, u ∈ D(A).

In addition to (i)-(v), there holds the following property for {wk}∞k=1:

(vi) for each u ∈W 1,2
0,σ (Ω) ∩W 2,2(Ω)n, we have

u =
∞∑
k=1

ûkwk in W 2,2(Ω)n and ∥Au∥22;Ω =
∞∑
k=1

|ûk|2λ2k <∞.

Theorem 1.13 was extended to q-weak solutions for 1 < q <∞ by Cattabriga

[2]. By a q-weak solution, we mean a vector field u : Ω → Rn such that

u ∈W 1,q
0 (Ω)n, div u = g a.e. in Ω,

and ∫
Ω

∇u · ∇Φ dx = < f,Φ > for all Φ ∈ C∞
0,σ(Ω),

provided that f ∈W−1,q(Ω)n, g ∈ Lq(Ω) and
∫
Ω
g dx = 0. A complete proof of

the following result can be found in Galdi’s book [6].

Theorem 1.14. Let Ω be a bounded smooth (say, C2-) domain in Rn and let

1 < q < ∞. Then for each f ∈ W−1,q(Ω)n and g ∈ Lq(Ω) with
∫
Ω
g dx = 0,

there exists a unique q-weak solution u of (S). Moreover, we have

∥u∥1,q;Ω ≤ C(n, q,Ω) (∥f∥−1,q;Ω + ∥g∥q;Ω) .

In addition, if f ∈ Lq(Ω)n and g ∈W 1,q(Ω), then

u ∈W 2,q(Ω)n and ∥u∥2,q;Ω ≤ C(n, q,Ω) (∥f∥q;Ω + ∥g∥1,q;Ω) .

Let Ω be a bounded smooth domain in Rn. For 1 < q < ∞, the Stokes

operator Aq (in Lq
σ(Ω)) is an unbounded operator in Lq

σ(Ω) defined by

Aqu = −Pq∆u for all u ∈ D(Aq) =W 1,q
0,σ (Ω) ∩W 2,q(Ω)n,

where Pq is the Helmholtz projection of Lq(Ω)n onto Lq
σ(Ω).
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2 Existence of weak solutions

Let Ω be a bounded Lipschitz domain of R3 and 0 < T < ∞ a finite time.

Consider the following initial boundary value problem for the Navier-Stokes

equations:

(NS)


ut + (u · ∇)u−∆u+∇p = f in (0, T )× Ω

div u = 0 in (0, T )× Ω
u = 0 on (0, T )× ∂Ω
u = u0 on {t = 0} × Ω,

where u = (u1, u2, u3) and p are unknown velocity and pressure, respectively, of

a viscous incompressible fluid (with viscosity equal to 1, only for simplicity).

We first derive basic a priori estimates for solutions of (NS). For simplicity,

we write ∥ϕ∥q = ∥ϕ∥q;Ω for the norm of ϕ in Lq(Ω) or Lq(Ω)n or even Lq(Ω)n
2

.

Let (u, p) be a smooth solution of (NS). Then multiplying the first equation in

(NS) by u and integrating over Ω, we obtain

d

dt

∫
Ω

1

2
|u|2 dx+

∫
Ω

[(u · ∇)u · u−∆u · u+∇p · u] dx =

∫
Ω

f · u dx. (5)

Recall that div u = 0 and u = 0 on (0, T ) × ∂Ω. Hence by the divergence

theorem,

−
∫
Ω

∆u · u dx =

∫
Ω

|∇u|2 dx,∫
Ω

∇p · u dx = −
∫
Ω

p div u dx = 0,

and ∫
Ω

(u · ∇)u · u dx =

∫
Ω

u · ∇
(
1

2
|u|2
)
dx = 0.

Hence from (5), we derive the (differential) energy equality

d

dt

∫
Ω

1

2
|u|2 dx+

∫
Ω

|∇u|2 dx =

∫
Ω

f · u dx. (6)

Integrating this over [0, t], we also derive the (integral) energy equality

1

2
∥u(t)∥22 +

∫ t

0

∥∇u(s)∥22 dt =
1

2
∥u0∥22 +

∫ t

0

(f(s), u(s)) dt (7)

for all t ∈ [0, T ]. Moreover, by the Cauchy-Schwartz inequality, we deduce from

(6) that
d

dt
∥u(t)∥22 + 2∥∇u(t)∥22 ≤ ∥f(t)∥22 + ∥u(t)∥22.
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This differential inequality can be solved by the method of integrating factors.

That is, multiplying by e−t, we obtain

d

dt

(
e−t∥u(t)∥22

)
+ 2e−t∥∇u(t)∥22 ≤ e−t∥f(t)∥22

and so

∥u(t)∥22 + 2

∫ t

0

et−s∥∇u(s)∥22 ds ≤ et∥u0∥22 +
∫ t

0

et−s∥f(s)∥22 ds

for all t ∈ [0, T ]. Since 1 ≤ et−s ≤ eT for all 0 ≤ s ≤ t ≤ T , we finally derive

the following a priori estimate:

∥u(t)∥22 + 2

∫ t

0

∥∇u(s)∥22 ds ≤ eT
(
∥u0∥22 +

∫ t

0

∥f(s)∥22 ds
)

for all t ∈ [0, T ]. This motivates us to introduce the function space

L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;W 1,2

0,σ (Ω))

for weak solutions of (NS). Here, for a Banach space X and 1 ≤ r ≤ ∞,

Lr(0, T ;X) denotes the Banach space of all Bochner-integrable functions u :

[0, T ] → X such that

∥u∥Lr(0,T ;X) =


(∫ T

0
∥u(t)∥rX dt

)1/r
if 1 ≤ r <∞

sup
0≤t≤T

∥u(t)∥X if r = ∞

is finite. We also denote byW 1,r(0, T ;X) the Banach space of all u ∈ Lr(0, T ;X)

having weak derivatives in Lr(0, T ;X); that is, u ∈W 1,r(0, T ;X) if and only if

u ∈ Lr(0, T ;X)

and there exists v ∈ Lr(0, T ;X) such that∫ T

0

η′(t) < f, u(t) > dt = −
∫ T

0

η(t) < f, v(t) > dt

for all η ∈ C∞
0 (0, T ) and all f ∈ X ′; hence for each f ∈ X ′ the scalar function

< f, u(·) > is weakly differentiable on [0, T ] and its weak derivative is< f, v(·) >.
Such a function v, which is unique a.e. on [0, T ], is called the weak derivative

of u and denoted by u′ or du/dt. It can be shown (see [5, Chapter 5] e.g.) that

every u ∈W 1,r(0, T ;X) can be redefined on a subset of [0, T ] with measure zero

so that

u ∈ C([0, T ];X) and max
0≤t≤T

∥u(t)∥X ≤ C∥u∥W 1,r(0,T ;X),

which verifies the continuous embedding

W 1,r(0, T ;X) ↪→ C([0, T ];X).
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2.1 Definitions of weak solutions

Suppose that f ∈ L2(0, T ;L2(Ω)3) and u0 ∈ L2
σ(Ω). Then by a weak solution of

(NS), we mean a vector field

u ∈ L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;W 1,2

0,σ (Ω))

such that∫ T

0

[− (u(t), vt(t)) + (∇u(t),∇v(t)) + ((u(t) · ∇)u(t), v(t))] dt

= (u0, v(0)) +

∫ T

0

(f(t), v(t)) dt

(8)

for all v ∈ C∞
0 ([0, T ) × Ω)3 with div v = 0. It should be noted that each term

in (8) makes sense due to Hölder’s inequality: for instance,∫ T

0

|((u(t) · ∇)u(t), v(t))| dt ≤
∫ T

0

∥u(t)∥2∥∇u(t)∥2∥v(t)∥∞ dt

≤ ∥u∥2
L2(0,T ;W 1,2

0,σ(Ω))
∥v∥L∞((0,T )×Ω)3 .

A refined estimate can be derived by using Sobolev’s inequality. Since u(t) ∈
W 1,2

0,σ (Ω) for a.e. t, it follows from the Hölder and Sobolev inequalities that

|((u(t) · ∇)u(t), v(t))| ≤ ∥u(t)∥3∥∇u(t)∥2∥v(t)∥6
≤ ∥u(t)∥1/22 ∥u(t)∥1/26 ∥∇u(t)∥2∥v(t)∥6
≤ C∥u(t)∥1/22 ∥∇u(t)∥3/22 ∥∇v(t)∥2

for a.e. t ∈ [0, T ]. Using Hölder’s inequality again, we derive a basic estimate∫ T

0

|((u(t) · ∇)u(t), v(t))| dt

≤ C∥u∥1/2L∞(0,T ;L2
σ(Ω))∥u∥

3/2

L2(0,T ;W 1,2
0,σ(Ω))

∥v∥L4(0,T ;W 1,2
0,σ)

,

(9)

where C is an absolute constant. From now on, we will use the following nota-

tions

H = L2
σ(Ω) and V =W 1,2

0,σ (Ω)

for the sake of simplicity. Hence weak solutions of (NS) belong to

L∞(0, T ;H) ∩ L2(0, T ;V ).

Equivalent definitions of weak solutions are provided by the following result.
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Lemma 2.1. Let u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ). Then the following three

statements are all equivalent:

(i) u is a weak solution of (NS).

(ii) The identity (8) holds for all v ∈ L4(0, T ;V )∩W 1,1(0, T ;H) with v(T ) =

0.

(iii) u satisfies the identity

−
∫ T

0

η′(t) (u(t),Φ) dt+

∫ T

0

η(t) [(∇u(t),∇Φ) + ((u(t) · ∇)u(t),Φ)] dt

= η(0) (u0,Φ) +

∫ T

0

η(t) (f(t),Φ) dt

(10)

for all Φ ∈ V and all η ∈W 1,1([0, T ]) with η(T ) = 0.

Proof. The implications (ii) ⇒ (i) and (ii) ⇒ (iii) are trivial.

To prove (i) ⇒ (iii), let u be a weak solution of (NS). Fix any Φ ∈ C∞
0,σ(Ω).

Then taking v = η(t)Φ(x), we deduce that (10) holds for all η ∈ C∞
0 ([0, T )).

Since C∞
0 ([0, T )) is dense in {ϕ ∈W 1,1([0, T ]) : ϕ(T ) = 0}, we also deduce that

(10) also holds for all η ∈W 1,1([0, T ]) with η(T ) = 0.

Now, fix any η ∈ W 1,1([0, T ]) with η(T ) = 0. Given Φ ∈ V , let {Φk} be a

sequence in C∞
0,σ(Ω) such that Φk → Φ in V . Then by (9), we have∫ T

0

|η(t)| |(u(t) · ∇)u(t),Φk)− (u(t) · ∇)u(t),Φ)| dt

≤
∫ T

0

|η(t)|
∫
Ω

|u(t)||∇u(t)||Φk − Φ| dx dt

≤ C(Ω, u, η)∥Φk − Φ∥1,2 → 0.

Hence by a standard density argument, we deduce that (10) also holds for all

Φ ∈ V .

Next, to prove (iii) ⇒ (ii), assume that (10) holds for all Φ ∈ V and

η ∈ W 1,1([0, T ]) with η(T ) = 0. Fix v ∈ L4(0, T ;V ) ∩ W 1,1(0, T ;H) with

v(T ) = 0. Let {wk} be an orthonormal basis of H consisting of eigenvectors of

the Stokes operator A in H. For each k ∈ N, define

vk = vk(t) =
k∑

j=1

ηj(t)wj ,

where

ηj(t) = (v(t), wj) .

Since

ηj ∈W 1,1([0, T ]), η′j(t) = (∂tv(t), wj) and ηj(T ) = 0,
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it follows, by linearity, that (8) holds for v = vk. Moreover, since {wk} is an

orthonormal basis of H, we have

∥∂tvk(t)∥2 ≤ ∥∂tv(t)∥2 and lim
k→∞

∥∂tvk(t)− ∂tv(t)∥2 = 0

for a.a. t ∈ [0, T ]. Recall that {λ−1/2
k wk} is an orthonormal basis of V , where

λk is the eigenvalue corresponding to wk. Hence for a.a. t ∈ [0, T ], we have

∥∇vk(t)∥2 ≤ ∥∇v(t)∥2 and lim
k→∞

∥∇vk(t)−∇v(t)∥2 = 0.

Hence by the dominated convergence theorem, we deduce that

lim
k→∞

∫ T

0

(
∥∇vk(t)−∇v(t)∥42 + ∥∂tvk(t)− ∂tv(t)∥2

)
dt = 0.

Using Hölder’s inequality and the estimate (9), we have∫ T

0

|(u(t), ∂tvk(t))− (u(t), ∂tv(t))| dt ≤
∫ T

0

∥u(t)∥2∥∂tvk(t)− ∂tv(t)∥2 dt

≤ C(u)

∫ T

0

∥∂tvk(t)− ∂tv(t)∥2 dt

and ∫ T

0

|(u(t) · ∇)u(t), vk(t))− (u(t) · ∇)u(t), v(t))| dt

≤ C(u)

(∫ T

0

∥vk(t)− v(t)∥41,2 dt

)1/4

,

where C(u) is a constant depending only on the norm of u. Therefore, passing

to the limit as k → ∞, we easily obtain (8). This proves (iii) ⇒ (ii). The proof

is complete.

We provide another equivalent definition of weak solutions of (NS), which

indeed establishes the important regularity property of weak solutions - the

weak continuity in H.

Lemma 2.2. Let u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ). Then u is a weak solution of

(NS) if and only if u can be redefined on a subset of [0, T ] with measure zero so

that

(i) u(t) ∈ H for all t ∈ [0, T ];

(ii) u satisfies the identity

(u(t),Φ) +

∫ t

0

[(∇u(s),∇Φ) + ((u(s) · ∇)u(s),Φ)] ds

= (u0,Φ) +

∫ t

0

(f(s),Φ) ds

(11)
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for all Φ ∈ V and all t ∈ [0, T ];

(ii) u is weakly continuous in L2(Ω)3 on [0, T ), that is,

lim
t→t0

(u(t),Φ) = (u(t0),Φ) (Φ ∈ L2(Ω)3)

for all t0 ∈ [0, T ].

Proof. Let u be a weak solution of (NS). For each t ∈ [0, T ], let us define

F (t) :W 1,2
0 (Ω)3 → R by

< F (t),Φ > = (f(t),Φ)− (∇u(t),∇Φ)− ((u(t) · ∇)u(t),Φ) .

Then it follows from (9) that

F ∈ L4/3(0, T ;W−1,2(Ω)3). (12)

By Lemma 2.1, we have

−
∫ T

0

η′(t) (u(t),Φ) dt = η(0) (u0,Φ) +

∫ T

0

η(t) < F (t),Φ > dt (13)

for all Φ ∈ V and η ∈ W 1,1([0, T ]) with η(T ) = 0. Given 0 ≤ t < T and

0 < h < T − t, we take η = ηt,h in (13), where

ηt,h(s) =

 1 if 0 ≤ s ≤ t
1− s−t

h if t ≤ s ≤ t+ h
0 if t+ h ≤ s ≤ T.

Then since F ∈ L4/3(0, T ;V ′), we deduce that

lim
h→0+

1

h

∫ t+h

t

(u(s),Φ) ds = (u0,Φ) +

∫ t

0

< F (s),Φ > ds (14)

for all Φ ∈ V and t ∈ [0, T ). Taking η = ηT,h in (13), where

ηT,h(s) =

{
1 if 0 ≤ s ≤ T − h

T−s
h if T − h ≤ s ≤ T,

we also deduce that

lim
h→0+

1

h

∫ T

T−h

(u(s),Φ) ds = (u0,Φ) +

∫ T

0

< F (s),Φ > ds (15)

for all Φ ∈ V .

Given t ∈ [0, T ], let gt : V → R be defined by

< gt,Φ > = (u0,Φ) +

∫ t

0

< F (s),Φ > ds
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for all Φ ∈ V . Then by (14) and (15), we have

|< gt,Φ >| ≤ ∥u∥L∞(0,T ;H)∥Φ∥2

for all Φ ∈ V . Since V is dense in H, gt can be extended uniquely to a bounded

linear functional on H. Hence by the Riesz representation theorem, there exists

a unique u∗(t) ∈ H such that

∥u∗(t)∥2 ≤ ∥u∥L∞(0,T ;H) (16)

and

(u∗(t),Φ) = (u0,Φ) +

∫ t

0

< F (s),Φ > ds for all Φ ∈ V. (17)

We now show that u∗ is weakly continuous in L2(Ω)3 on [0, T ]. Let t0 ∈ [0, T ]

and Φ ∈ H be fixed. Given ε > 0, we choose Ψ ∈ V such that

2∥u∥L∞(0,T ;H)∥Ψ− Φ∥2 ≤ ε.

Then by (16) and (17), we have

|(u∗(t)− u∗(t0),Φ)| ≤ |(u∗(t)− u∗(t0),Ψ)|+ |(u∗(t)− u∗(t0),Φ−Ψ)|

≤
∣∣∣∣∫ t

t0

< F (s),Ψ > ds

∣∣∣∣+ ∥u∗(t)− u∗(t0)∥2∥Φ−Ψ∥2

≤
∣∣∣∣∫ t

t0

∥F (s)∥V ′ ds

∣∣∣∣ ∥Ψ∥V + ε.

for all t ∈ [0, T ]. Since F ∈ L4/3(0, T ;V ′), we deduce that

lim
t→t0

(u∗(t),Φ) = (u∗(t0),Φ) .

More generally, using the Helmholtz projection P , we have

lim
t→t0

(u∗(t),Φ) = lim
t→t0

(u∗(t), PΦ) = (u∗(t0), PΦ) = (u∗(t0),Φ)

for all Φ ∈ L2(Ω)3.

Finally, to show that u = u∗ a.e. on [0, T ], observe that u ∈ L1(0, T ;H).

Hence by the Lebesgue differentiation theorem (see [4, Section II.2] for a simple

proof), there is a subset N ⊂ (0, T ) with measure zero such that

lim
h→0+

1

2h

∫ t+h

t−h

∥u(s)− u(t)∥2 ds = 0

for all t ∈ (0, T ) \N . Let t ∈ (0, T ) \N be fixed. Then by (14), (15), and (17),

we obtain

(u(t),Φ) = (u∗(t),Φ) for all Φ ∈ V, (18)
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which implies that u(t) = u∗(t). This completes the proof of (i), (ii), and (iii).

Suppose conversely that u satisfies (i), (ii), and (iii). Given Φ ∈ V , let

ϕ : [0, T ] → R be defined by

ϕ(t) = (u(t),Φ) .

Then since

ϕ(t) = (u0,Φ) +

∫ t

0

< F (s),Φ > ds for all t ∈ [0, T ],

it follows that

ϕ ∈W 1,4/3([0, T ]), ϕ(0) = (u0,Φ) , and ϕ′(t) = < F (t),Φ > .

Hence using the integration by parts, we deduce that

−
∫ T

0

η′(t) (u(t),Φ) dt = η(0) (u0,Φ) +

∫ T

0

η(t) < F (t),Φ > dt

for all η ∈W 1,1([0, T ]) with η(T ) = 0. Since Φ ∈ V is arbitrary, it follows from

Lemma 2.1 that u is a weak solution of (NS). The proof is complete.

Remark 2.3 (the time-derivative and pressure). Let u be a weak solution of

(NS). Then it follows from (12) and (13) that

u ∈W 1,4/3 (0, T ;V ′) and u′ = F
∣∣
V
.

But this does not imply the better regularity of u:

u ∈W 1,4/3
(
0, T ;W−1,2(Ω)3

)
,

which is in fact wrong! It should be noted here that

V =W 1,2
0,σ (Ω)  W 1,2

0 (Ω)3 and W−1,2(Ω)3  V ′.

Next, for each t ∈ [0, T ], we define lt :W
1,2
0 (Ω)3 → R by

< lt,Φ > = (u(t)− u0,Φ)−
∫ t

0

< F (s),Φ > ds

for all Φ ∈W 1,2
0 (Ω)3. Then lt belongs to W−1,2(Ω)3 and satisfies

< lt,Φ > = 0 for all Φ ∈ C∞
0,σ(Ω).

Hence by Theorem 1.5, there exists a unique Q(t) ∈ L2(Ω) with
∫
Ω
Q(t) dx = 0

such that

(Q(t),div Φ) = (u(t)− u0,Φ)−
∫ t

0

< F (s),Φ > ds (19)
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for all Φ ∈W 1,2
0 (Ω)3. We shall show that the function

Q : [0, T ] → L2(Ω)

is weakly continuous and bounded. For all t, t0 ∈ [0, T ], we have

(Q(t)−Q(t0), div Φ) = (u(t)− u(t0),Φ)−
∫ t

t0

< F (s),Φ > ds

for all Φ ∈W 1,2
0 (Ω)3. Given g ∈ L2(Ω), we take Φ = BΩ [g], where

g = g − 1

|Ω|

∫
Ω

g dx.

Then since
∫
Ω
(Q(t)−Q(t0)) dx = 0, we have

(Q(t)−Q(t0), g) = (u(t)− u(t0),BΩ [g])−
∫ t

t0

< F (s),BΩ [g] > ds,

which proves the weak continuity of Q. The boundedness of Q is proved in the

same way. Hence using the integration by parts, we deduce from (19) that

−
∫ T

0

η′(t) (u(t),Φ) dt+

∫ T

0

η′(t) (Q(t), div Φ) dt

= η(0) (u0,Φ) +

∫ T

0

η(t) < F (t),Φ > dt

(20)

for all Φ ∈W 1,2
0 (Ω)3 and η ∈W 1,1([0, T ]) with η(T ) = 0. Adapting the proof of

Lemma 2.1, we also obtain∫ T

0

[− (u, vt) + (∇u,∇v) + ((u · ∇)u, v) + (Q,div vt)] dt

= (u0, v(0)) +

∫ T

0

(f, v) dt

(21)

for all v ∈ W 1,1(0, T ;W 1,2
0 (Ω)) with v(T ) = 0. This proves the existence of an

pressure p = −dQ/dt which is the distributional derivative of Q with respect to

time. Moreover, given w ∈W 1,1
0 ((0, T );L2(Ω)), we can take v = BΩ [w] in (21)

to obtain

< p,w > =

∫ T

0

(Q,wt) dt

=

∫ T

0

[(u, vt)− (∇u,∇v)− ((u · ∇)u, v)] dt+

∫ T

0

(f, v) dt.

Hence it follows that

p ∈W−1,∞(0, T ;L2(Ω)).
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2.2 Compactness results in Lr(0, T ;X)

Existence questions for nonlinear problems can be very often resolved by means

of suitable compactness results. In this subsection, we prove the so-called Aubin-

Lions lemma, which is one of the simplest but still useful compactness results

for nonlinear evolution problems.

Let us first recall some definitions and facts from Functional Analysis. For

two Banach spaces X and Y , the intersection X∩Y is a Banach space equipped

with the norm ∥u∥X∩Y = ∥u∥X +∥u∥Y . Suppose further that X ⊂ Y . Then we

say that X is continuously embedded into Y and write X ↪→ Y if the embedding

u 7→ u is bounded, that is, there is a constant C > 0 such that ∥u∥Y ≤ C∥u∥X
for all u ∈ X. In addition, if the embedding u 7→ u is compact, that is, every

bounded sequence {uk} in X has a subsequence which converges in Y , then

we say that X is compactly embedded into Y and write X ↪→↪→ Y . Recall the

following familiar results for weak/weak-star convergence and compactness (see

[11] e.g.):

(i) Every weakly convergent sequence in X is bounded.

(ii) Every weakly-star convergent sequence in X ′ is bounded.

(iii) Every bounded sequence in X ′ has a weakly-star convergent subse-

quence.

(iv) Every bounded sequence in X has a weakly convergent sequence if X is

reflexive.5

Hence X ↪→↪→ Y holds for a reflexive space X if and only if uk → u weakly in

X implies uk → u strongly in Y ; we may assume further that u = 0.

Next, we briefly review the theory of Bochner integrals. Let X be a Banach

space with norm ∥·∥ = ∥·∥X , X ′ its dual space, and T > 0 a finite number. The

dual pairing of f ∈ X ′ and u ∈ X is denoted by ⟨f, u⟩X′,X or simply ⟨f, u⟩. We

say that a function u : [0, T ] → X is (Bochner-) integrable if there is a sequence

{uk} of simple functions on [0, T ] such that

lim
k→∞

∥uk(t)− u(t)∥ = 0 for a.e. t ∈ [0, T ]

and

lim
k→∞

∫ T

0

∥uk(t)− u(t)∥ dt = 0.

In this case, the (Bochner) integral of u is defined by∫ T

0

u(t) dt = lim
k→∞

∫ T

0

uk(t) dt.

5X is reflexive if for every F ∈ X′′ there is u ∈ X such that ⟨F, f⟩ = ⟨f, u⟩ for all f ∈ X′.
Typical examples are Hilbert spaces and Lebesgue spaces Lq for 1 < q < ∞.
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It is quite standard to check that the limit indeed exists in X and is independent

of the sequence {uk}. It is also easy to show that∥∥∥∥∥
∫ T

0

u(t) dt

∥∥∥∥∥ ≤
∫ T

0

∥u(t)∥ dt.

and ⟨
f,

∫ T

0

u(t) dt

⟩
=

∫ T

0

⟨f, u(t)⟩ dt for all f ∈ X ′.

For 1 ≤ r ≤ ∞, let Lr(0, T ;X) be the Banach space of all integrable functions

u : [0, T ] → X such that

∥u∥Lr(0,T ;X) =


(∫ T

0
∥u(t)∥r dt

)1/r
if 1 ≤ r <∞

sup
0≤t≤T

∥u(t)∥ if r = ∞

is finite. Obviously there holds the duality inequality∫ T

0

⟨f(t), u(t)⟩ dt ≤ ∥u∥Lr(0,T ;X)∥f∥Lr′ (0,T ;X′)

for all u ∈ Lr(0, T ;X) and f ∈ Lr′(0, T ;X ′). However, the familiar equality

[Lr(0, T ;X)]
′
= Lr′(0, T ;X ′) (1 ≤ r <∞)

holds only if X has some additional property, for instance, the reflexivity. Hence

Lr(0, T ;X) is reflexive if X is reflexive and 1 < r <∞; see [4, Chapter IV]) for

more details. Given u, v ∈ L1(0, T ;X), we say that v is the weak derivative of

u and write v = u′ or v = du/dt, if∫ T

0

η′(t)u(t) dt = −
∫ T

0

η(t)v(t) dt for all η ∈ C∞
0 (0, T ),

or equivalently∫ T

0

η′(t) < f, u(t) > dt = −
∫ T

0

η(t) < f, v(t) > dt

for all η ∈ C∞
0 (0, T ) and all f ∈ X ′. For 1 ≤ r ≤ ∞, W 1,r(0, T ;X) denotes

the Banach space of all u ∈ Lr(0, T ;X) such that u′ exists and belongs to

Lr(0, T ;X). By a standard method of mollification, we easily prove the con-

tinuous embedding W 1,r(0, T ;X) ↪→ C([0, T ];X) (see [5] e.g.). Note also that

W 1,r(0, T ;X) is reflexive if X is reflexive and 1 < r <∞.

We are now ready to state and prove the Aubin-Lions compactness lemma.

We first prove a preliminary result.
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Lemma 2.4. Let X0, X and X1 be three Banach spaces with

X0 ↪→↪→ X ↪→ X1.

Then for each ε > 0 there is a constant Cε > 0 such that

∥u∥X ≤ ε∥u∥X0 + Cε∥u∥X1 for all u ∈ X0.

Proof. We argue by contradiction. If the statement were not true, then there

would be a number ε > 0 and a sequence {uk} in X0 such that

∥uk∥X > ε∥uk∥X0 + k∥uk∥X1 for all k ∈ N.

Note that uk ̸= 0 for each k. Defining vk = uk/∥uk∥X0 , we have

∥vk∥X0
= 1 and ∥vk∥X > ε+ k∥vk∥X1

for all k ∈ N.

Since X0 ↪→↪→ X, we may assume that vk → v in X for some v ∈ X. Moreover,

since X ↪→ X1, it follows that vk → v in X1. Note however that

∥vk∥X > ε and
1

k
∥vk∥X > ∥vk∥X1 for all k ∈ N.

Hence letting k → ∞, we obtain

∥v∥X ≥ ε and ∥v∥X1
= 0,

which is a contradiction.

Theorem 2.5 (Aubin-Lions). Let X0, X and X1 be three Banach spaces with

X0 ↪→↪→ X ↪→ X1.

Suppose that X0, X1 are reflexive. Then for 0 < T < ∞ and 1 < r, s < ∞, we

have

Lr(0, T ;X0) ∩W 1,s(0, T ;X1) ↪→↪→ Lr(0, T ;X).

Proof. Since Lr(0, T ;X0) and W 1,s(0, T ;X1) are reflexive, it suffices to show

that if uk → 0 weakly both in Lr(0, T ;X0) and in W 1,s(0, T ;X1), then uk → 0

strongly in Lr(0, T ;X). By Lemma 2.4, it suffices to show that uk → 0 strongly

in Lr(0, T ;X1).
6

6Indeed, if uk → 0 strongly in Lr(0, T ;X1), then for each ε > 0, we have∫ T

0
∥uk(t)∥rX dt ≤ ε

∫ T

0
∥uk(t)∥rX0

dt+ Cε

∫ T

0
∥uk(t)∥rX1

dt

and so

lim sup
k→∞

∫ T

0
∥uk(t)∥rX dt ≤ εM,

where M = supk
∫ T
0 ∥uk(t)∥rX0

dt is finite due to the weak convergence of {uk}.
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Suppose thus that

uk → 0 weakly both in Lr(0, T ;X0) and in W 1,s(0, T ;X1).

Then since uk → 0 weakly inW 1,s(0, T ;X1), {uk} is bounded inW 1,s(0, T ;X1):

M ≡ sup
k

∥uk∥W 1,s(0,T ;X1) <∞. (22)

By the continuous embedding W 1,s(0, T ;X1) ↪→ C([0, T ];X1), we thus deduce

that {uk} is bounded in C([0, T ];X1). Hence to prove that∫ T

0

∥uk(t)∥rX1
dt→ 0,

it suffices, by the dominated convergence theorem, to prove that

lim
k→∞

∥uk(t)∥X1 = 0 for a.a. t ∈ [0, T ].

Let 0 < t0 < T be fixed. Then for all t ∈ [t0, T ], we have

uk(t0) = uk(t)−
∫ t

t0

u′k(τ) dτ.

Integrating this over [t0, t1], we also have

(t1 − t0)uk(t0) =

∫ t1

t0

uk(t) dt−
∫ t1

t0

∫ t

t0

u′k(τ) dτ dt

and so

uk(t0) =
1

t1 − t0

∫ t1

t0

uk(t) dt−
1

t1 − t0

∫ t1

t0

(t1 − τ)u′k(τ) dτ (23)

for all t1 ∈ (t0, T ). By (22), we obtain∥∥∥∥∫ t1

t0

(t1 − τ)u′k(τ) dτ

∥∥∥∥
X1

≤
(∫ t1

t0

(t1 − τ)s
′
dτ

)1/s′

∥u′k∥Ls(0,T ;X1)

≤M(t1 − t0)
1+1/s′ .

Hence given ε > 0, we can choose t1 ∈ (t0, T ) such that

sup
k

∥∥∥∥ 1

t1 − t0

∫ t1

t0

(t1 − τ)u′k(τ) dτ

∥∥∥∥
X1

< ε.

For each k, define

Φk =
1

t1 − t0

∫ t1

t0

uk(t) dt.
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Then since uk → 0 weakly in Lr(0, T ;X0), it follows that Φk → 0 weakly in

X0. By the compact embedding of X0 into X1, we thus deduce that Φk → 0

strongly in X1. Therefore, letting k → ∞ in (23), we obtain

lim sup
k→∞

∥uk(t0)∥X1 ≤ ε.

The proof is complete.

2.3 Global existence of weak solutions

We are now ready to state and prove the fundamental existence result due to

Leray [12] and Hopf [10].

Theorem 2.6. Suppose that f ∈ L2(0, T ;L2(Ω)3) and u0 ∈ H. Then there ex-

ists at least one weak solution u of (NS) which satisfies the following additional

properties:

(i) u is weakly continuous in L2(Ω)3 on [0, T ];

(ii) u satisfies the energy inequality

1

2
∥u(t)∥22 +

∫ t

0

∥∇u(s)∥22 ds ≤
1

2
∥u0∥22 +

∫ t

0

(f(s), u(s)) ds

for all t ∈ [0, T ];

(iii) u satisfies even the strong energy inequality, that is, there is a subset N

of (0, T ] with measure zero such that

1

2
∥u(t)∥22 +

∫ t

t0

∥∇u(s)∥22 ds ≤
1

2
∥u(t0)∥22 +

∫ t

t0

(f(s), u(s)) ds

for all t0 ∈ [0, T ] \N and t ∈ [t0, T ];

(iv) finally, u is strongly right-continuous in L2(Ω)3 on [0, T ] \N :

lim
t→t+0

∥u(t)− u(t0)∥2 = 0 for all t0 ∈ [0, T ] \N.

Such a weak solution u will be called a Leray-Hopf weak solution of (NS).

We first prove a simple lemma.

Lemma 2.7. For all u ∈ L3
σ(Ω) and v, w ∈W 1,2

0 (Ω)3, we have

((u · ∇)v, w) = − ((u · ∇)w, v) .

In particular, taking v = w, we have

((u · ∇)v, v) = 0.
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Proof. If u ∈ C∞
0,σ(Ω) and v, w ∈ C∞

0 (Ω)3, then

((u · ∇)v, w) =
3∑

i,j=1

∫
Ω

ui
∂vj

∂xi
wj dx

= −
3∑

i,j=1

∫
Ω

(
∂ui

∂xi
vjwj + uivj

∂wj

∂xi

)
dx

= − ((u · ∇)w, v) .

The general case is proved by a simple density argument, because

((u · ∇)v, w) ≤ C∥u∥3∥∇v∥2∥∇w∥2.

Proof. We prove the theorem, by applying the so-called Faedo-Galerkin method.

Step 1. Let {wk} be an orthonormal basis of H consisting of eigenvectors

of the Stokes operator A in H. Recall from Subsection 1.3 that

wk ∈ V and (∇wk,∇Φ) = λk (wk,Φ) for all Φ ∈ V,

where λk is the eigenvalue of S corresponding to wk. For each k ∈ N, let Hk

be the k-dimensional subspace of H spanned by {w1, ..., wk} and let Pk be the

projection of H onto Hk defined by

PkΦ =

k∑
j=1

Φ̂jwj , where Φ̂j = (Φ, wj) for j = 1, ..., k.

Then it follows from the results in Subsection 1.3 that

∥PkΦ∥2 ≤ ∥Φ∥2, lim
k→∞

∥PkΦ− Φ∥2 = 0 for all Φ ∈ H (24)

and

∥∇PkΦ∥2 ≤ ∥∇Φ∥2, lim
k→∞

∥∇PkΦ−∇Φ∥2 = 0 for all Φ ∈ V. (25)

Step 2. For a fixed k ∈ N, the Faedo-Galerkin scheme seeks for a function

uk ∈ C([0, T ];Hk)

satisfying the identity

(uk(t),Φ) +

∫ t

0

[(∇uk(s),∇Φ) + ((uk(s) · ∇)uk(s),Φ)] ds

= (u0,Φ) +

∫ t

0

(f(s),Φ) ds

(26)
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for all Φ ∈ Hk and all t ∈ [0, T ]. Such a function uk, if it exists, should satisfy

uk ∈W 1,2(0, T ;Hk), uk(0) = Pku0,

and

(u′k(t),Φ) + (∇uk(t),∇Φ) + ((uk(t) · ∇)uk(t),Φ) = (f(t),Φ) (27)

for all Φ ∈ Hk and almost all t ∈ [0, T ]. Furthermore, taking Φ = wj for each

j, we derive the ODE system

ûk
′
j(t) + λj ûkj(t) +

k∑
i,l=1

((wi · ∇)wl, wj) ûkiûkl = P̂ f j(t) (1 ≤ j ≤ k) (28)

for a.a. t ∈ [0, T ], where the coefficients ûkj and P̂ f j are defined, as usual, by

uk(t) =
k∑

j=1

ûkj(t)wj and Pfk(t) := Pk[Pf(t)] =
k∑

j=1

P̂ f j(t)wj .

Since the system (28) has a smooth but quadratic nonlinearity, it follows from

the standard ODE theory that there exist a time 0 < T∗ ≤ T and a unique

function uk ∈W 1,2(0, T∗;Hk) with uk(0) = Pku0 satisfying the identity (27) for

all Φ ∈ Hk and a.a. t ∈ [0, T∗]. In fact, the solution uk exists globally up to T .

To show this, we take Φ = uk(t) in (27). Then by Lemma 2.7, we obtain the

energy equality

1

2

d

dt
∥uk(t)∥22 + ∥∇uk(t)∥22 = (f(t), uk(t)) for a.a. t ∈ [0, T∗]. (29)

Hence by the method of integrating factors, we derive the estimate

∥uk(t)∥22 + 2

∫ t

0

∥∇uk(s)∥22 ds ≤ eT ∥uk(0)∥22 + eT
∫ t

0

∥f(s)∥22 ds (30)

for all t ∈ [0, T ], which is independent of T∗. By the standard ODE theory, the

solution uk of (28) exists globally up to time T , i.e., T∗ = T .

Step 3. Since uk(0) = Pku0, it follows from (24) and (30) that the sequence

{uk} is bounded in L∞(0, T ;H) ∩ L2(0, T ;V ). We can show that {uk} is also

bounded in W 1,4/3(0, T ;V ′). Let Φ ∈ V be given. Then since u′k(t) ∈ Hk for

a.a. t, it follows from (27), (25), and (24) that

(u′k(t),Φ) = (u′k(t), PkΦ)

= (f(t), PkΦ)− (∇uk(t),∇PkΦ)− ((uk(t) · ∇)uk(t), PkΦ)

≤ C
(
∥f(t)∥2 + ∥∇uk∥2 + ∥uk(t)∥1/22 ∥∇uk∥3/22

)
∥Φ∥1,2.
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Hence {uk} is bounded inW 1,4/3(0, T ;V ′). Therefore, by the Aubin-Lions com-

pactness lemma, we may assume that uk → u strongly in L2(0, T ;H). Moreover,

it follows form the weak/weak-star compactness results that uk → u weakly in

L2(0, T ;V ) and uk → u weakly-star in L∞(0, T ;H). To perform the limiting

process, we observe that uk also satisfies

−
∫ T

0

η′(t) (uk(t),Φ) dt+

∫ T

0

η(t) [(∇uk(t),∇Φ) + ((uk(t) · ∇)uk(t),Φ)] dt

= η(0) (Pku0,Φ) +

∫ T

0

η(t) (f(t),Φ) dt

for all Φ ∈ Hk and all η ∈ W 1,1([0, T ]) with η(T ) = 0. Then by viture of the

weak and strong convergence uk → u, we easily show that for each k ∈ N, the
limit u satisfies (10) for all Φ ∈ Hk and all η ∈ W 1,1([0, T ]) with η(T ) = 0.

Then the regularity of u allows us to prove that (10) holds even for all Φ ∈ V .

By Lemmas 2.1 and 2.2, we conclude that u is a weak solution of (NS) and

weakly continuous in L2(Ω)3 on [0, T ]. On the other hand, by (29), we obtain

1

2
∥uk(t)∥22 +

∫ t

t0

∥∇uk(s)∥22 ds =
1

2
∥uk(t0)∥22 +

∫ t

t0

(f(s), uk(s)) ds

for all 0 ≤ s ≤ t ≤ T . Since uk → u strongly in L2(0, T ;H) and uk(0) = Pku0 →
u0 in H, there is a subset N of (0, T ] with measure zero such that uk(t) → u(t)

in H for all t ∈ [0, T ] \ N . Moreover, since uk → u weakly in L2(0, T ;V ), we

obtain

1

2
∥u(t)∥22 +

∫ t

t0

∥∇u(s)∥22 ds ≤
1

2
∥u(t0)∥22 +

∫ t

t0

(f(s), u(s)) ds

for all t0 ∈ [0, T ] \ N and for a.a. t ∈ [t0, T ]. This inequality indeed holds for

all t ∈ [t0, T ], due to the weak continuity of u in L2(Ω)3. Finally, since

∥u(t)− u(t0)∥22 = ∥u(t)∥22 − 2 (u(t), u(t0)) + ∥u(t0)∥22,

it follows from the strong energy inequality and weak continuity of u that

lim sup
t→t+0

∥u(t)− u(t0)∥22 = 0.

The proof is complete.
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3 Uniqueness and regularity of weak solutions

One of the main results in this section is the famous structure theorem due to

Leray and Scheffer for Leray-Hope weak solutions of (NS). We shall first show

that every weak solution of (NS) should coincide with a strong solution if the

latter exists. We shall also prove local and global existence results for strong

solutions.

3.1 Weak-strong uniqueness results

In this subsection, by a weak solution of (NS), we always mean a weak solution

of (NS) that is weakly continuous in L2(Ω)3.

Lemma 3.1. Let u be a weak solution of (NS). Then∫ t

0

[− (u(s), vt(s)) + (∇u(s),∇v(s)) + ((u(s) · ∇)u(s), v(s))] ds

= − (u(t), v(t)) + (u0, v(0)) +

∫ t

0

(f(s), v(s)) ds.

for all t ∈ [0, T ] and all v ∈ L4(0, T ;V ) ∩W 1,1(0, T ;H) with v(T ) = 0.

Proof. Fix t ∈ [0, T ) and all v ∈ L4(0, T ;V ) ∩W 1,1(0, T ;H) with v(T ) = 0.

Then taking ηt,h(s)v(s, x) as a test function in (8), where

ηt,h(s) =

 1 if 0 ≤ s ≤ t
1− s−t

h if t ≤ s ≤ t+ h
0 if t+ h ≤ s ≤ T,

we obtain∫ t+h

0

ηt,h(s) [− (u(s), vt(s)) + (∇u(s),∇v(s)) + ((u(s) · ∇)u(s), v(s))] ds

= − 1

h

∫ t+h

t

(u(s), v(s)) ds+ (u0, v(0)) +

∫ t+h

0

ηt,h(s) (f(s), v(s)) ds.

The lemma follows by letting h → 0+, due to the strong regularity of v and

weak continuity of u.

Theorem 3.2 (Energy equality). Assume that f ∈ L2(0, T ;L2(Ω)3) and u0 ∈
H. Let u be a weak solution of (NS) satisfying the additional property

u ∈ L4(0, T ;L4(Ω)3).

Then u satisfies the energy equality

1

2
∥u(t)∥22 +

∫ t

0

∥∇u(s)∥22 ds =
1

2
∥u0∥22 +

∫ t

0

(f(s), u(s)) ds

for all t ∈ [0, T ]. Moreover, u is strongly continuous in L2(Ω)3 on [0, T ].
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Proof. Let t ∈ (0, T ] be fixed.

Step 1. Let ρ ∈ C∞
0 ((−1, 1); [0, 1]) be an even function with

∫ 1

−1
ρ(s) ds = 1.

For 0 < ε < t, we define

uε(s) =

∫ t

0

1

ε
ρ

(
s− τ

ε

)
u(τ) dτ (−∞ < s <∞).

Then by a standard argument(see [5] e.g.), we can deduce that

uε ∈ C∞([0, t];V ) and uε → u in L2(0, t;V ).

Moreover, by the weak continuity of u on [0, T ],

(uε(t),Φ) =

∫ t/ε

0

ρ(τ) (u(t− ετ),Φ) dτ → 1

2
(u(t),Φ)

and

(uε(0),Φ) =

∫ t/ε

0

ρ(τ) (u(ετ),Φ) dτ → 1

2
(u0,Φ)

as ε→ 0+, for all Φ ∈ L2(Ω)3.

Step 2. Then by Step 1 and Lemma 3.1, we have∫ t

0

[− (u(s), (uε)
′(s)) + (∇u(s),∇uε(s)) + ((u(s) · ∇)u(s), uε(s))] ds

= − (u(t), uε(t)) + (u0, uε(0)) +

∫ t

0

(f(s), uε(s)) ds.

Since η is even, it follows by a change of variables that∫ t

0

(u(s), (uε)
′(s)) ds =

∫ t

0

∫ t

0

η′ε(s− s′) (u(s), u(s′)) ds′ds = 0.

Hence using the results in Step 1, we obtain a general identity∫ t

0

∥∇u(s)∥22 ds+ lim
ε→0+

∫ t

0

((u(s) · ∇)u(s), uε(s)) ds

= −1

2
∥u(t)∥22 +

1

2
∥u0∥22 +

∫ t

0

(f(s), u(s)) ds

Moreover, by Lemma 2.7 and Step 1 again,∣∣∣∣∫ t

0

((u(s) · ∇)u(s), uε(s)) ds

∣∣∣∣
=

∣∣∣∣− ∫ t

0

((u(s) · ∇)uε(s), u(s)) ds+

∫ t

0

((u(s) · ∇)u(s), u(s)) ds

∣∣∣∣
≤
∫ t

0

∥u(s)∥4∥∇uε(s)−∇u(s)∥2∥u(s)∥4 ds→ 0 as ε→ 0+.

This completes the proof.
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Theorem 3.3 (Weak-strong uniqueness). Assume that f ∈ L2(0, T ;L2(Ω)3)

and u0 ∈ H. Let u and v be weak solutions of (NS) satisfying the energy

inequality. Suppose in addition that

v ∈ Lr(0, T ;Lq(Ω)3)

for some q and r satisfying

2

r
+

3

q
= 1, 3 < q ≤ ∞, and 2 ≤ r <∞.

Then

u(t) = v(t) a.e. in Ω for all t ∈ [0, T ].

Proof. Let 0 < t ≤ T be fixed. Then by the hypotheses,

1

2
∥u(t)∥22 +

∫ t

0

∥∇u(s)∥22 ds ≤
1

2
∥u0∥22 +

∫ t

0

(f(s), u(s)) ds (31)

and
1

2
∥v(t)∥22 +

∫ t

0

∥∇v(s)∥22 ds ≤
1

2
∥u0∥22 +

∫ t

0

(f(s), v(s)) ds. (32)

In fact, the second inequality becomes equality because v ∈ L4(0, T ;L4(Ω)3) by

the additional condition v. Adapting the proof of Theorem 3.2, we deduce from

Lemma 3.1 that∫ t

0

[− (u(s), v′ε(s)) + (∇u(s),∇vε(s)) + ((u(s) · ∇)u(s), vε(s))] ds

= − (u(t), vε(t)) + (u0, vε(0)) +

∫ t

0

(f(s), vε(s)) ds

and ∫ t

0

[− (v(s), u′ε(s)) + (∇v(s),∇uε(s)) + ((v(s) · ∇)v(s), uε(s))] ds

= − (v(t), uε(t)) + (u0, uε(0)) +

∫ t

0

(f(s), uε(s)) ds.

By the symmetry of ρ again,∫ t

0

(u(s), v′ε(s)) ds+

∫ t

0

(v(s), u′ε(s)) ds = 0.

Hence summing the last two equalities and letting ε→ 0, we obtain

2

∫ t

0

(∇u(s),∇v(s)) dt+
∫ t

0

[((u(s) · ∇)u(s), v(s)) + ((v(s) · ∇)v(s), u(s))] ds

= − (u(t), v(t)) + ∥u0∥22 +
∫ t

0

(f(s), u(s)) ds+

∫ t

0

(f(s), v(s)) ds.
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Combining this with (31) and (32), we have

1

2
∥u(t)− v(t)∥22 +

∫ t

0

∥∇u(s)−∇v(s)∥22 ds

≤
∫ t

0

[((u(s) · ∇)u(s), v(s)) + ((v(s) · ∇)v(s), u(s))] ds.

Let w = u− v. Then using Lemma 2.7 several times, we obtain

1

2
∥w(t)∥22 +

∫ t

0

∥∇w(s)∥22 ds ≤
∫ t

0

((w(s) · ∇)w(s), v(s)) ds. (33)

On the other hand, by the Hölder and Sobolev inequalities, one can show that∫ t

0

((w(s) · ∇)w(s), v(s))

≤ C

(∫ t

0

∥∇w(s)∥22 ds
)1−1/r (∫ t

0

∥v(s)∥rq|w(s)∥22 ds
)r

≤ 1

2

∫ t

0

∥∇w(s)∥22 ds+ C

∫ t

0

∥v(s)∥rq|w(s)∥22 ds.

Substituting this into (33) and using Gronwall’s inequlaity, we deduce

∥w(t)∥22 ≤ ∥w(0)∥22 exp
(
C

∫ t

0

∥v(s)∥rq ds
)

for all t ∈ [0, T ]. This complete the proof.

Remark 3.4. Let u be a weak solution of (NS). Then since

∥u(t)∥4 ≤ ∥u(t)∥1/42 ∥u(t)∥3/46 ≤ C∥u(t)∥1/42 ∥∇u(t)∥3/42 ,

we have ∫ T

0

∥u(t)∥8/34 dt ≤ C∥u∥2/3L∞(0,T ;H)∥u∥
3/4
L2(0,T ;V ) <∞.

Hence u does not satisfy the additional integrability for the energy equality and

uniqueness. In fact, it remains still open to prove the energy equality and unique-

ness of weak solutions of (NS), which are closed related to the famous Navier-

Stokes global regularity problem.

3.2 Existence of strong solutions

Throughout this subsection, let Ω be a bounded domain in R3 with smooth (say

C2-) boundary.
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Theorem 3.5 (Local existence). Suppose that f ∈ L2(0, T ;L2(Ω)3) and u0 ∈
V . Then there exist a time T∗ ∈ (0, T ] and a unique vector field u : [0, T∗]×Ω →
R3 such that

u ∈ C([0, T∗];V ) ∩ L2(0, T∗;W
2,2(Ω)3) ∩W 1,2(0, T∗;H)

and

ut + (u · ∇)u−∆u+∇p = f a.e. in (0, T∗)× Ω

for some p ∈ L2(0, T∗;W
1,2(Ω)). Moreover, the time T∗ is bounded from below

as follows:

T∗ ≥ min

T, c(Ω)
(
∥∇u0∥22 +

∫ T

0

∥f(t)∥22 dt

)−2
 ,

where c(Ω) > 0 is a constant depending only on the domain Ω. The vector field

u or pair (u, p) will be called a strong solution of (NS) in [0, T∗]× Ω.

Proof. Step 1. For each k ∈ N, let uk ∈ W 1,2(0, T ;Hk) be the unique solution

of (27) with uk(0) = Pku0. Recall from the results in Subsection 1.3 that

D(A) = V ∩W 2,2(Ω)3, Av = −P∆v for all v ∈ D(A),

c(Ω)∥∇2v∥2 ≤ ∥Av∥2 ≤ ∥∇2v∥2 for all v ∈ D(A), (34)

and

wk ∈ D(A), Awk = λkwk, A : Hk → Hk.

This enables us to deduce from (27) that

(u′k(t),Φ) + (Auk(t),Φ) + ((uk(t) · ∇)uk(t),Φ) = (f(t),Φ) (35)

for all Φ ∈ Hk and a.a. t ∈ [0, T ]. Taking Φ = Auk(t), we thus obtain

1

2

d

dt
∥∇uk(t)∥22 + ∥Auk(t)∥22

≤ ∥f(t)∥2∥Auk(t)∥2 + ∥(uk(t) · ∇)uk(t)∥2∥Auk(t)∥2

and so

d

dt
∥∇uk(t)∥22 + ∥Auk(t)∥22 ≤ 2∥f(t)∥22 + 2∥(uk(t) · ∇)uk(t)∥22 (36)

for a.a. t ∈ [0, T ]. Using the Hölder and Sobolev inequalities together with (34),

we can estimate the nonlinear term as follows:

2∥(uk(t) · ∇)uk(t)∥22 ≤ 2∥uk(t)∥26∥∇uk(t)∥23
≤ 2∥uk(t)∥26∥∇uk(t)∥2∥∇uk(t)∥6
≤ C(Ω)∥∇uk(t)∥32∥Auk(t)∥2.
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Substituting this into (36), we obtain

d

dt
∥∇uk(t)∥22 + ∥Auk(t)∥22 ≤ 6∥f(t)∥22 + C(Ω)∥∇uk(t)∥62

and so

∥∇uk(t)∥22 +
∫ t

0

∥Auk(s)∥22 ds

≤ ∥∇u0∥22 + 6

∫ t

0

∥f(s)∥22 ds+ C(Ω)

∫ t

0

∥∇uk(s)∥62 ds
(37)

for all t ∈ [0, T ].

Step 2. Now, we prove the (local) uniform bound

max
0≤t≤T∗

∥∇uk(t)∥22 < M := 2∥∇u0∥22 + 12

∫ T

0

∥f(t)∥22 dt

for all k ≥ 1, where 0 < T∗ ≤ T is any time such that

C(Ω)M3T∗ ≤ 1

2
M. (38)

Suppose that the bound were not true. Then by the continuity of ∥∇uk(·)∥2,
there should be a time t0 ∈ (0, T∗] such that

∥∇uk(t0)∥22 =M and ∥∇uk(t)∥22 < M for all t ∈ [0, t0).

But this would imply∫ t0

0

∥∇uk(t)∥62 dt <
∫ t0

0

M3 dt ≤M3T∗.

Hence by (37) and (38), we would obtain

∥∇uk(t0)∥22 < ∥∇u0∥22 + 6

∫ T

0

∥f(t)∥22 dt+ C(Ω)M3T∗ ≤M,

which is a contradiction. This proves the uniform bound. Using this bound, we

deduce from (37) that

max
0≤t≤T∗

∥∇uk(t)∥22 +
∫ T∗

0

∥Auk(t)∥22 dt ≤M (39)

for all k ≥ 1. Furthermore, taking Φ = u′k(t) in (35), we easily obtain∫ T∗

0

∥u′k(t)∥22 dt ≤ CM (40)
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for all k ≥ 1. Therefore, by the Aubin-Lions lemma, we may assume that uk → u

strongly in L2(0, T∗;V ) and weakly in L2(0, T ∗;W 2,2(Ω)3), and u′k → u′ weakly

in L2(0, T∗;L
2(Ω)3). Using this convergence, we easily deduce from (35) that

u′(t) + P [(u(t) · ∇)u(t)] +Au(t) = Pf(t) ∈ H

for a.a. t ∈ [0, T ]. Hence by Theorem 1.9, there is p(t) ∈W 1,2(Ω) such that

u′(t) + (u(t) · ∇)u(t)−∆u(t)− f(t) = −∇p(t) ∈ L2(Ω)3

for a.a. t ∈ [0, T ]. From the regularity of u, it follows immediately that p ∈
L2(0, T ;W 1,2(Ω)). Finally, since

u′ −∆u = f −∇p− (u · ∇)u ∈ L2(0, T∗;L
2(Ω)3),

it follows from the regularity theory of the heat equation that

u ∈ C([0, T∗];V ).

This proves the existence part of the theorem. The uniqueness proof is quite

standard and omitted.

Theorem 3.6 (Global existence when f = 0). Assume that f = 0. Then there

is a constant c(Ω) > 0, depending only on Ω, such that if u0 ∈ V satisfies

∥u0∥2∥∇u0∥2 ≤ c(Ω),

then there exists a unique strong solution u of (NS) in [0,∞) × Ω. Moreover,

we have

∥∇u(t)∥2 ≤ ∥∇u0∥2 exp (−Mt) for all 0 < t <∞,

where M > 0 is a constant depending only on Ω.

Proof. Since f = 0, it follows from (29) that

uk ∈W 1,2(0, T ;Hk) for any 0 < T <∞

and

∥uk(t)∥22 + 2

∫ t

0

∥∇uk(s)∥22 ds ≤ ∥uk(0)∥22 ≤ ∥u0∥22 (41)

for all 0 ≤ t <∞. Hence the nonlinear term in (36) can be estimated as follows:

2∥(uk(t) · ∇)uk(t)∥22 ≤ 2∥uk(t)∥23∥∇uk(t)∥26
≤ 2∥uk(t)∥2∥uk(t)∥6∥∇uk(t)∥26
≤ C(Ω)∥u0∥2∥∇uk(t)∥2∥Auk(t)∥22.
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Substituting this into (36), we obtain

d

dt
∥∇uk(t)∥22 + (1− C(Ω)∥u0∥2∥∇uk(t)∥2) ∥Auk(t)∥22 ≤ 0

and so

∥∇uk(t)∥22 +
∫ t

t0

(1− C(Ω)∥u0∥2∥∇uk(s)∥2) ∥Auk(s)∥22 ds ≤ ∥∇uk(t0)∥22 (42)

for all 0 ≤ t0 < t <∞.

Now, assuming that the initial data u0 satisfies

C(Ω)∥u0∥2∥∇u0∥2 <
1

2
, (43)

we prove the global uniform bound

C(Ω)∥u0∥2∥∇uk(t)∥2 <
1

2
(0 < t <∞, k ∈ N).

Suppose that this bound were not true. Then by the continuity of ∥∇uk(·)∥2,
there should be a time t1 ∈ (0,∞) such that

C(Ω)∥u0∥2∥∇uk(t1)∥2 =
1

2

and

C(Ω)∥u0∥2∥∇uk(t)∥2 <
1

2
for all t ∈ [0, t1).

But this would imply, by virtue of (42) and (25), that

∥∇uk(t1)∥22 +
1

2

∫ t1

0

∥Auk(t)∥22 ds ≤ ∥∇uk(0)∥22 ≤ ∥∇u0∥22,

which is a contradiction. This proves the uniform bound. Hence from (42), we

derive

∥∇uk(t)∥22 +
1

2

∫ t

t0

∥Auk(s)∥22 ds ≤ ∥∇uk(t0)∥22

for all 0 ≤ t0 < t < ∞. Therefore, passing to the limit as k → ∞, we deduce

the existence of a global strong solution of (NS) satisfying

∥∇u(t)∥22 +
1

2

∫ t

t0

∥Au(s)∥22 dt ≤ ∥∇u(t0)∥22

for all 0 ≤ t0 < t < ∞. The exponential decay of u follows easily from these

inequalities, by using the Poincaré inequality. The proof is complete.
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3.3 The structure theorem

Throughout this subsection, let Ω be a bounded domain in R3 with smooth (say

C2-) boundary. Assume further that f = 0 and 0 ̸= u0 ∈ H.

Let u be a Leray-Hopf weak solution of (NS) in (0,∞)×Ω. Then u satisfies

the strong energy inequality:

(SEI)t0
1

2
∥u(t)∥22 +

∫ t

t0

∥∇u(s)∥22 ds ≤
1

2
∥u(t0)∥22 (t ≥ t0)

for all t0 ∈ [0,∞) \N , where N is a subset of (0,∞) with measure zero.

Denote by R = R(u) the set of all times t0 ∈ (0,∞) such that

u ∈ C((t0 − ε, t1 + ε);V ) for some ε > 0.

Then R is obviously open. The structure of the set R of regular times of a

Leray-Hopf weak solution u has been studied by Leray [12] and Scheffer [14].

Theorem 3.7 (The Leray structure theorem). The complement (0,∞)\R of R
has Lebesgue measure zero and there is a positive time T ∗ such that (T ∗,∞) ⊂
R. Moreover, if u0 ∈ V in addition, then there is a positive time T∗ such that

(0, T∗) ⊂ R.

Proof. Denote by R+ = R+(u) the set of all times t0 ∈ (0,∞) such that

u(t0) ∈ V and (SEI)t0 holds.

The complement (0,∞) \ R+ has Lebesgue measure zero. Moreover, it is quite

obvious that R ⊂ R+. On the other hand, recalling the energy inequality

1

2
∥u(t)∥22 +

∫ t

0

∥∇u(s)∥22 ds ≤
1

2
∥u0∥22 (t > 0),

we deduce that

inf
t∈R+

∥∇u(t)∥2 = 0

and there exists T ∗ ∈ R+ such that

∥u(T ∗)∥2∥∇u(T ∗)∥2 ≤ c(Ω).

By Theorem 3.6, there exists a strong solution u∗ of (NS) in [T ∗,∞)×Ω with

the initial data u(T ∗). Then by the weak-strong uniqueness theorem, Theorem

3.3, we deduce that u(t) = u∗(t) for all t ∈ [T ∗,∞). This implies that

u ∈ C([T ∗,∞);V ) and so (T ∗,∞) ⊂ R ⊂ R+.
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We next show that (0,∞) \R has Lebesgue measure zero. To show this, we

write the open set R ∩ (0, T ∗) as the union of an at most countable collection

of disjoint open intervals:

R∩ (0, T ∗) =
∪
k∈Λ

(sk, τk) ,

where Λ is some subset of N. Let t0 ∈ R+ ∩ (0, T ∗) be fixed. Then by Theorem

3.5, there exists a strong solution u of (NS) in [t0, t1]× Ω with the initial data

u(t0), where t1 is a time with t0 < t1 < T ∗. Moreover, since (SEI)t0 holds, it

follows from the weak-strong uniqueness theorem, Theorem 3.3, that

u(t) = u(t) for all t ∈ [t0, t1].

This implies that

u ∈ C([t0, t1];V ) and (t0, t1) ⊂ R ∩ (0, T ∗).

Hence there is one and only one k ∈ Λ such that (t0, t1) ⊂ (sk, τk), that is,

sk ≤ t0 < t1 ≤ τk. Note that if sk < t0, then t0 ∈ R. Therefore, if t0 /∈ R, then

we must have t0 = sk. This proves that

(0, T ∗) ∩ (R+ \ R) ⊂ {sk : k ∈ Λ} .

Recalling that Λ ⊂ N, we deduce that

R+ \ R = (0, T ∗] ∩ (R+ \ R)

is at most countable. Moreover, since (0,∞) \ R+ has Lebesgue measure zero

and R ⊂ R+, it follows that (0,∞) \ R has Lebesgue measure zero too.

To complete the proof, suppose that u0 ∈ V . Then by Theorems 3.5 and

3.3, there exists a time T∗ > 0 such that u ∈ C([0, T∗];V ); hence it follows that

(0, T∗) ⊂ R. The proof is complete.

To analyze R further, we need an important result for blow-up times of u,

due to Leray as well. Following Leray [12], we call a finite time t1 > 0 an epoch

of irregularity of u if

(i) there is t0 ∈ (0, t1) such that u ∈ C((t0, t1);V ), but

(ii) there is no t2 > t1 such that u ∈ C((t0, t2);V ).

Theorem 3.8 (Leray). Let t1 be an epoch of irregularity of u such that

u ∈ C((t0, t1);V )
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for some t0 ∈ (0, t1). Then

∥∇u(t)∥42 ≥ c(Ω)

t1 − t
for all t ∈ (t0, t1).

Consequently,

lim
t→t−1

∥∇u(t)∥2 =

∫ t1

t0

∥∇u(t)∥42 dt = ∞

and

(t1 − t0)
1/2 ≤ C(Ω)

∫ t1

t0

∥∇u(t)∥22 dt.

Proof. Suppose to the contrary that

∥∇u(t∗)∥42 <
c(Ω)

t1 − t∗

for some t∗ ∈ (t0, t1). Then by Theorem 3.5, there is a time T∗ with

T∗ ≥ c(Ω)

∥∇u(t∗)∥42
> t1 − t∗

such that there exists a strong solution u of (NS) in [t∗, t∗ + T∗] × Ω with the

initial data u(t∗). By the continuity of ∇u on [t0, t1), we may assume that u

satisfies the strong energy inequality at time t∗, that is, (SEI)t∗ holds. Hence

by the weak-strong uniqueness theorem, Theorem 3.3, we deduce that u = u on

[t∗, t∗ + T∗]. This contradicts that t1 is an epoch of irregularity of u. We have

thus shown that
c(Ω)

t1 − t
≤ ∥∇u(t)∥42

for all t ∈ (t0, t1). Integrating over (t0, t1), we have

∞ =

∫ t1

t0

c(Ω)

t1 − t
dt ≤

∫ ∞

0

∥∇u(t)∥42 dt.

Taking the square-root and integrating over (t0, t1), we also have

2c(Ω)1/2(t1 − t0)
1/2 =

∫ t1

t0

c(Ω)1/2

(t1 − t)1/2
dt ≤

∫ t1

t0

∥∇u(t)∥22 dt.

This completes the proof.

The Leray structure theorem was refined by a partial regularity theorem due

to Scheffer (1976) in terms of the Hausdorff measure. Let E be a subset of Rn

and α a positive number. The α-dimensional Hausdorff measure Hα(E) of E is

defined by

Hα(E) = lim
δ→0

Hα
δ (E),
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where

Hα
δ (E) = inf

∑
i

(diamBi)
α
,

the infimum being taken over all at most countable coverings {Bi} of E con-

stituted by closed balls Bi with diamBi < δ. Note that if Hα(E) < ∞, then

Hβ(E) = 0 for all β > α. The number

inf
{
β > 0 : Hβ(E) = 0

}
= inf {α > 0 : Hα(E) <∞}

is called the Hausdorff dimension of E.

Theorem 3.9. The 1/2-dimensional Hausdorff measure of (0,∞) \ R is equal

to zero. Therefore, the Hausdorff dimension of (0,∞) \ R is less than or equal

to one half.

Proof. From the proof of Theorem 3.7, we recall that

(0,∞) \ R = (0, T ∗] \ R

and

R∩ (0, T∗) =
∪
k∈Λ

(sk, τk) (disjoint union),

where Λ is some subset of N. By the definition of R, we have

u ∈ C((sk, τk);V ) for each k.

Moreover, since τk /∈ R, there can not be τ ′k > τk such that u ∈ C((sk, τ
′
k);V ).

Hence each τk is an epoch of irregularity of u. Hence by Theorem 3.8, we have∑
k∈Λ

(τk − sk)
1/2 ≤ C(Ω)

∑
k∈Λ

∫ τk

sk

∥∇u(t)∥22 dt

≤ C(Ω)

∫ ∞

0

∥∇u(t)∥22 dt ≤ C(Ω)∥u0∥22.

Given δ > 0, let Λδ be a finite subset of Λ such that∑
k/∈Λδ

(τk − sk) < δ and
∑
k/∈Λδ

(τk − sk)
1/2 < δ

Then the closed set

[0, T ∗] \
∪

k∈Λδ

(sk, τk)

consists of a finite number of disjoint closed intervals B1, ..., BN . Note that

[0, T ∗] \ R ⊂ ([0, T ∗] \ R)
∪ ∪

k/∈Λδ

(sk, τk)

 =

N∪
j=1

Bj
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and for each k /∈ Λδ there is one and only one j such that (sk, τk) ⊂ Bj . For

each j, let Λj be the set of all k ∈ Λ such that (sk, τk) ⊂ Bj . Then

Λ \ Λδ =

N∪
j=1

Λj (disjoint union)

and

Bj =
[
([0, T ∗] \ R)

∩
Bj

]∪ ∪
k∈Λj

(sk, τk)


Since (0, T ∗) \ R has Lebesgue measure zero, we have

diamBj =
∑
k∈Λj

(τk − sk) for each j.

Note finally that

diamBj ≤
∑
k/∈Λδ

(τk − sk) < δ

and
N∑
j=1

(diamBj)
1/2 ≤

N∑
j=1

∑
k∈Λj

(τk − sk)

1/2

<

N∑
j=1

∑
k∈Λj

(τk − sk)
1/2

=
∑
k/∈Λδ

(τk − sk)
1/2 < δ.

This completes the proof.

3.4 Further regularity of weak solutions

Further regularity of Leray-Hopf solutions of (NS) can be deduced from the

classical maximal regularity results for the linear Stokes equations. Let Ω be a

bounded smooth domain of R3 and T > 0 a finite time.

The following fundamental result was established by Giga and Sohr [8] ap-

plying an abstract perturbation theorem (see Maremonti and Solonnikov [13]

for a more elementary approach).

Theorem 3.10. Let 1 < q, s < ∞. Then for each f ∈ Ls(0, T ;Lq(Ω)3) there

exists a unique pair (u, p) such that

u ∈ Ls(0, T ;W 1,q
0,σ (Ω) ∩W 2,q(Ω)3) ∩W 1,s(0, T ;Lq

σ(Ω)), u(0) = 0,
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p ∈ L2(0, T ;W 1,q(Ω)),

∫
Ω

p(t, x) dx = 0 for a.a. t ∈ (0, T ),

and

ut −∆u+∇p = f a.e. in (0, T )× Ω.

Moreover, we have

∥u∥Ls(0,T ;W 2,q(Ω)3) + ∥ut∥L2(0,T ;Lq(Ω)3) + ∥∇p∥Ls(0,T ;Lq(Ω)3)

≤ C(q, s,Ω)∥f∥Ls(0,T ;Lq(Ω)3).

As a consequence of Theorem 3.10, we can obtain further regularity results

for weak solutions of (NS). To do this, we need to prove two preliminary lem-

mas. The first one is easily proved by using the Hölder and Sobolev inequalities;

we omit its details.

Lemma 3.11. Let u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ).

(i) For all (s, q) satisfying

2

s
+

3

q
=

3

2
, 2 ≤ s ≤ ∞, and 2 ≤ q ≤ 6,

we have

u ∈ Ls(0, T ;Lq(Ω)3).

(ii) For all (s, q) satisfying

2

s
+

3

q
= 4, 1 < s < 2, and 1 < q <

3

2
,

we have

(u · ∇)u ∈ Ls(0, T ;Lq(Ω)3).

Secondly, following Seregin [15], we prove a uniqueness result.

Lemma 3.12. Suppose that u ∈ L1(0, T ;L2
σ(Ω)) satisfies∫ T

0

∫
Ω

u · (vt +∆v) dxdt = 0

for all v ∈ C∞
0 ([0, T )× Ω)3 with div v = 0. Then

u = 0 in (0, T )× Ω.

Proof. By a simple density argument, we have∫ T

0

[η′(t) (u(t),Φ)− η(t) (u(t), AΦ)] dt = 0 (44)
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for all Φ ∈ V ∩W 2,2(Ω)3 and η ∈ W 1,1([0, T ]) with η(T ) = 0, where A is the

Stokes operator in H. Let {wk} be an orthonormal basis of H consisting of

eigenvectors of A. Then

u(t) =

∞∑
k=1

ûkwk in H,

where

ûk(t) = (u(t), wk) .

Let k ∈ N be fixed. Then taking Φ = wk in (44), we have∫ T

0

(η′(t)ûk(t)− λkûk(t)η(t)) dt = 0

for all η ∈W 1,1([0, T ]) with η(T ) = 0. Hence it follows that

ûk ∈W 1,1([0, T ]), ûk(0) = 0 and û′k(t) + λkûk(t) = 0 (0 < t < T ).

Multiplying the ODE by eλkt, we derive

d

dt

[
eλktûk(t)

]
= 0

and so

ûk(t) = ûk(0)e
−λkt = 0 for all t ∈ [0, T ].

This completes the proof.

Theorem 3.13. Suppose that f ∈ L2(0, T ;L2(Ω)3) and u0 ∈ H. Let u be

a weak solution of (NS) with p being an associated pressure. Then for every

0 < δ < T , we have

u ∈ Ls(δ, T ;W 1,q
0,σ (Ω) ∩W 2,q(Ω)3) ∩W 1,s(δ, T ;Lq

σ(Ω))

and

p ∈ Ls(δ, T ;W 1,q(Ω)) ∩ Ls(δ, T ;L3q/(3−q)(Ω))

for all (s, q) satisfying

2

s
+

3

q
= 4, 1 < s < 2, and 1 < q <

3

2
.

Proof. Fixing η = η(t) ∈ C∞
0 ((0, T ]), we define

u(t, x) = η(t)u(t, x).
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Then from the weak formulation (8) of (NS), we easily deduce that

−
∫ T

0

(u(t), vt(t) + ∆v(t)) dt =

∫ T

0

(
f(t), v(t)

)
dt

for all v ∈ C∞
0 ([0, T )× Ω)3 with div v = 0, where

f(t) = η(t)f(t) + η′(t)u(t)− η(t)(u(t) · ∇)u(t).

Let (s, q) be any pair satisfying

2

s
+

3

q
= 4, 1 < s < 2, and 1 < q <

3

2
.

Then by Lemma 3.11,

f(t) ∈ Ls(0, T ;Lq(Ω)3).

Hence it follows from Theorem 3.10 that there exists a pair (u∗, p∗) such that

u∗ ∈ Ls(0, T ;W 1,q
0,σ (Ω) ∩W 2,q(Ω)3) ∩W 1,s(0, T ;Lq

σ(Ω)),

p∗ ∈ L2(0, T ;W 1,q(Ω)),

and

−
∫ T

0

(u∗(t), vt(t) + ∆v(t)) dt−
∫ T

0

(p∗(t), div v(t)) dt =

∫ T

0

(
f(t), v(t)

)
dt

for all v ∈ C∞
0 ([0, T )× Ω)3. Note that

u− u∗ ∈ L1(0, T ;L2
σ(Ω)).

Hence by Lemma 3.12, we conclude that

u = u∗ in (0, T )× Ω.

This competes the proof.
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