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Lecture 1 The modern view of spacetime

A fundamental question

Q. What do you know about spacetime?
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Lecture 1 The modern view of spacetime

What do we know about spacetime?

Q1. How does it look like ?

Q2. How did it begin?

Q3. what’s the fate? fate of universe =fate of ST?

Q4. How many dimensions?
...

Q137. What’s the role of spacetime in collider physics?
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Lecture 1 The modern view of spacetime

The modern view of spacetime (1/3)

In the SM, spacetime is assumed to be D = 1 + 3 with one temporal
and three spatial dimensions

Lorentz metric: ds2 = ηµνdx
µdxν = dt2 − d~x2

Lorentz symmetric : V µ → V µ′ = Lµ
′
ν V ν with ηµ′ν′ = Lµµ′L

ν
ν′ηµν

Gravity neglected since it effect is suppressed as ∼ (GNE
2) ∼

(
E
MP

)2
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Lecture 1 The modern view of spacetime

The modern view of spacetime (2/3)

With gravity, in GR, ηµν → gµν(xµ) thus non-trivial curvature
R ∼ ∂2g − (∂g)2 following the Einstein equations
Rµν − 1

2Rgµν = 8πGTµν

Spacetime is dynamical!

It can expand as we know the universe has been expanding for 13.7b
years. The universe expanded even exponentially during inflation

It can shrink as a big energy density makes the spacetime even
singular in a black hole
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Lecture 1 The modern view of spacetime

The modern view of spacetime (3/3)

In pure gravity, D is free parameter. In string/M theory, D = 10 or 11.

It could happen (at least theoretically possible) that only our 1 + 3
dimensions remains large (or expanded a lot) but other dimensions
stay small .. There could be extra dimensions!

From the beginning of 21st century, many models with extra
dimensions have been suggested to address phonomenological
problems of particle physics: hierarchy problem (m2

h), flavor structure,
Dark matter, grand unification..

Model building to avoid difficulties : large flavor violation
(K 0 − K 0, µ→ eγ), proton decay (/B), precision electroweak
measurements, compactification..
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Lecture 1 The modern view of spacetime

(Ex-1) A real scalar field in curved spacetime

S =
∫
d4x 1

2

(
ηab∂aφ∂bφ−m2φ2

)
When curved, S =

∫
d4x
√
−g 1

2

(
gµν∂µφ∂νφ−m2φ2

)
with

g = det(gµν)

SD =
∫
dDx
√
−g 1

2

(
gµν∂µφ∂νφ−m2φ2

)
, [φ] = M−1+D/2

(Note) d4x
√
−g is covariant volume element.
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Lecture 1 The modern view of spacetime

(Ex-2) A Dirac field in curved spacetime

S =
∫
d4x ψ̄(iγa∂a −m)ψ, {γa, γb} = 2ηab

When curved, with vierbeins, γµ(x) = Eµa γa where a is index for
flat-coordinate then {γµ, γν} = 2Eµa E νb η

ab = 2gµν

S =
∫
d4xE ψ̄(iEµa γa∂µ −m)ψ since

√
−g =

√
det(Eµa E νb η

ab) = E

SD =
∫
dDxE ψ̄(iEµa γa∂µ −m)ψ, [ψ] = M(D−1)/2

[Fermion] = M(D−1)/2 Q.for s = 3/2?
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Lecture 1 The modern view of spacetime

(Ex-3) Maxwell field in curved spacetime

S =
∫
d4x − 1

4FµνF
µν , Fµν = ∂µAν − ∂νAµ

S =
∫
d4x
√
g − 1

4FµνF
µν

SD =
∫
dDx
√
g − 1

4FµνF
µν , [Aµ] = M(D−2)/2

[Boson] = M(D−2)/2 why?
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Lecture 1 The modern view of spacetime

How does XD look like?
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Lecture 1 The modern view of spacetime

A quantum particle in D = 2 box

Find the energy spectrum for a massive particle in 2D potential box

:V (x , y) =

{
0 if 0 ≤ x ≤ L1, 0 ≤ y ≤ L2

∞ otherwise

Inside the box: − ~2

2m (∂2
x + ∂2

y )ψ(x , y) = Eψ(x , y)

The solution is ψ(x , y) ∼ sin(n1πx
L1

) sin(n2πy
L2

) satisfying Dirichlet B.C.s
ψ(0, y) = 0 = ψ(L1, y) and ψ(x , 0) = 0 = ψ(x , L2).

En1,n2 = ~2π2

2m (
n2

1

L2
1

+
n2

2

L2
2
)

If L1 � L2, there are many excitations satisfying En,1 < E1,2

In a sense, the presence of y -direction is hardly seen below E1,2 thus
effectively we find D = 1 theory with En ≡ En,1 well below a cutoff
scale Λ ∼ E1,2.
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Lecture 1 The modern view of spacetime

Quiz: A particle on the surface of thin cylinder

1 Find the energy spectrum of
a particle on a infinite
cylinder with a radius r by
solving the Schrödinger
equation:

− ~2

2m
(∂2

z +
∂2

r2∂φ2
)ψ(z , φ) = Eψ(z , φ) (1)

2 If r � 1/E , what’s the
effective description of the
theory?
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Lecture 1 The modern view of spacetime

Sol: A particle on the surface of thin cylinder

1 Ansatz: ψ(z , φ) ∼ e ikzze ikφrφ gives

− ~2

2m
(∂2

z +
∂2

r2∂φ2
)ψ(z , φ) =

~2

2m
(k2

z + k2
φ)ψ

⇒ E =
~2

2m
(k2

z + k2
φ) (2)

2 Periodic B.C.
ψ(φ) = ψ(φ+ 2π)⇒ kφ = nπ

r with
n = 0,±1,±2, · · · .

3 kz is continuous Q. Why?

4 If 1/r � E , E ≈ ~2k2
z

2m and ψ ∼ e ikzz .
Excitation along φ calls for extremely high
energy so that at low energy, irrelevant.
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Lecture 1 A Toy model

A toy model: A complex scalar in 5D (1/5)

Φ(xµ)→ Φ(xµ, x5)

xµ = (t, x1, x2, x3) : ”ordinary dimensions”
x5 ≡ y : extra coordinate.
”Φ can go into the extra dimensions”, ”Φ can propagate through the
bulk” (it is really not shocking that an extra dimension can capture
other theories with internal dynamics such as compositeness!)

Assume that y is a circle compactified. How?

0 ≤ y ≤ 2πR and Φ(xµ, y) = Φ(xµ, y + 2πR).

Gravity neglected as E � Mp.
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Lecture 1 A Toy model

A toy model: A complex scalar in 5D(2/5)

Z [J] =
∫
DΦDΦ∗Exp(iS5)

S5 =
∫
d5xL5

L5 = ∂MΦ∗∂MΦ + · · ·+ J · Φ∫
d5x =

∫
d4x

∫
dy

M = 0, 1, 2, 3, 5

ηMN = diag(1,−1,−1,−1,−1)

Φ(xµ, y) =
∑

n φn(xµ)fn(y)

fn: wave functions
φn(xµ): Kaluza-Klein (KK) modes
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Lecture 1 A Toy model

A toy model: A complex scalar in 5D(3/5)

S5 =

∫
d5x∂MΦ∗∂MΦ

=

∫
d4x

∫ 2πR

0
dy [∂µΦ∗∂µΦ− ∂5Φ∗∂5Φ]

=
∑
n

∑
`

∫
d4xdy

[
∂µφn∂

µφ`f
∗
n (y)f`(y)− φ∗nφ`f ∗

′
nf
′
`

]

δn` =
∫
dyf ∗n f`: orthonormal choice of wave functions∫

dy(∂y f
∗
n )(∂y f`) = m2

nδn` : diagonal mass matrix

S5 =
∫
d4x

∑
n

(
∂µφ

∗
n∂

µφn −m2
nφ
∗
nφn
)

=
∫
dy
∑

n L
(n)
4

DΦ∗DΦ = ΠnDφ∗nDφn.
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Lecture 1 A Toy model

A toy model: A complex scalar in 5D(4/5)

∫
dy(∂y f

∗
n )(∂y f`) = m2

n

∫
dyf ∗n f`

L.H.S . =
∫
dy∂y (f ∗n ∂y fn)− f ∗n ∂

2
y fn = −

∫
dyf ∗n ∂

2
y fn

R.H.S .− L.H.S . = 0 =
∫
dyfn(∂2

y + m2
n)fn

or (∂2
y + m2

n)fn = 0.

Sol: fn(y) = Nne
imny Q. Show Nn = 1/

√
2πR

fn(y) = fn(y + 2πR) implies mn = n
R with n = 0,±1,±2, ...
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Lecture 1 A Toy model

A toy model: A different approach(5/5)

Euler-Lagrange equation reads:

∂M
∂L

∂∂MΦ
= ∂L/∂Φ = 0

∂2
MΦ = ∂2

µΦ− ∂2
5Φ = 0∑

n[(∂2
µφn)fn(y)− φn(xµ)∂2

5 fn(y)] = 0

Use ∂2
µφn = −m2

nφn then
∑

n(∂2
5 + m2

n)fn = 0 which coincide the
previous result

One can arrive the same results by PMPM = p2
µ − p2

5 = 0 for massless
scalar in 5D. As p5 = n/R (quantized), p2

µ = m2
n = p2

5 = n2/R2 or
mn = n/R with n = 0,±1,±2, ... (left-mover and right-mover)

Below 1/R, only zero mode is relevant..we are made of zero mode
particles!
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Lecture 1 A Toy model

Quiz-2: A massive complex scalar field in 5D

1 Find the Kaluza-Klein spectrum of the action

S5 =

∫
d5x

[
∂MΦ∗∂MΦ−M2Φ∗Φ

]
2 Add quartic coupling term ∆L = −λ5

4 (Φ∗Φ)2 then answer the
following questions:

Find the mass dimensions of Φ, L5, λ5 and M
Show that the Feynman rules for the quartic couplings among
KK-states are given by 1

4λnmpq = 1
4
λ5

2πR δn+m,p+q
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Lecture 1 A Toy model

Sol-2: A massive complex scalar field in 5D

1 Sol: By varying δΦ∗, one gets

∂2
MΦ = −M2Φ

∂2
µΦ− ∂2

5Φ + M2Φ = 0

⇒
∑
n

φn
[
−m2

n − ∂2
5 + M2

]
fn = 0

⇒ m2
n = M2 + n2/R2, n = 0,±1,±2, ...

2 [Φ] = M3/2, [L5] = M5, [λ5] = M−1, [M] = M1

L →
∑

nmpq −
λ5

4 φ
∗
nφmφ

∗
pφq

∫
dyf ∗n fmf

∗
p fq

Put fn(y) = 1√
2πR

e iny/R and use δnm =
∫ 2πR

0
dy 1

2πR e
i(n−m)y/R .
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Lecture 1 Large Extra Dimensions

Large Extra Dimensions: ADD model (1/6)

The first potentially realistic model
of extra dimension by
Arkani-Hamed, Dimopoulos and
Dvali (ADD in short)

The entire SM sector is confined to
a 3-brane, a hyper surface in higher
dimensional volume Q. How to
confine?

Only graviton can go into extra
dimensions Q. Why not graviton?
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Lecture 1 Large Extra Dimensions

Large Extra Dimensions: ADD model (2/6)

Pure gravity theory of Einstein in
higher dimensions D = 4 + n

S4 =
∫
d4x
√
g
M2

4
2 R

⇒ SD = −
∫
dDx
√
g
M2+n

D
2 R

If the extra dimension is flat (i.e.
n-torus) Q. if not?,

SD = −
∫
d4√g4

∫
dy

M2+n
D
2 R + · · ·

⇒ M2
4 = M2+n

D Vn where the volume
of n-torus is Vn = (2πR)n

M2
4 = M2

D(2πRMD)n or the
hierarchy M4/MD is given by the
volume in unit of MD .
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Lecture 1 Large Extra Dimensions

Large Extra Dimensions: ADD model (3/6)

ADD provides a cute way of
understanding why gravity is so
weak!

Assuming that MD ∼ mW , there is
no hierarchy between the gravity
scale and the week scale

ADD= a low scale strong gravity
theory = TeV gravity theory = low
scale string model (?)...

When r < R, gravitational potential
looks V (r) = G4m

r →
GDm
r1+n

The LHC may be able to see
gravitational interactions ∼ 1/MD

instead of ∼ 1/MP

S =
−
∫
dDx

M2+n
D
2

√
gR+δ(y−y0)LSM
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Lecture 1 Large Extra Dimensions

Large Extra Dimensions: ADD model (4/6)

How to test this model?

KK-mass spacing ∆m ∼ 1/R which
is given by M2

4/M
2
D = (2πRMD)n or

(1019GeV/103GeV)2/n = 2πRTeV

or 1/RTeV ∼ 2π × 10−32/n

n = 1, 2, · · · , 6→ R ∼
9km, 0.5mm, · · · 0.1MeV−1 Note:
~c ≈ 200MeV · fm
A joke(?) by J. Hewett, if n ∼ 32,
1/R ∼ mW ∼ MD ... no hierarchy
at all! [Phys.Rev.Lett. 95 (2005)
261603]

V (r) = −GNm1m2
r

(
1 + αe−r/λ

)
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Lecture 1 Large Extra Dimensions

Large Extra Dimensions: ADD model (5/6)

If the LHC energy jumps to energies past MD ,
we can produce microscopic black
holes. Park[arXiv:1203.4683]

If two partons are close enough
(b < bmax = f (D)rs(E )) , they feel strong
gravity and eventually forms a black hole
(Hoop conjecture)

σ ' πrs(E )2

Once produced, bh decays through Hawking
process nearly thermal with large multiplicity

BlackMax, Charybdis used and a new MC is
under development

29 / 60



Lecture 1 Large Extra Dimensions

Large Extra Dimensions: ADD model (6/6)

γ +GKK , jet +GKK is interpreted as
photon(j)+MET (MD ≥ 2.7TeV )

qq̄ → GKK → µ+µ−..
(MD ≥ 4TeV )
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Lecture 1 Large Extra Dimensions

Today’s summary

Extra dimensions

d4x → d4+nx , Φ(xµ)→ Φ(xµ, y)

KK-picture

Φ(x , y) =
∑

n φn(x)fn(y) :A higher dimensional field = many 4D fields

Large Extra Dimension

M2
4 = M2+n

D Vn, strong gravity at MD ∼ TeV, rich-phenomenology
(KK-graviton, mini blackhole)
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Lecture 2

Lecture #2
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Lecture 2

Quiz

1 Why a small dimension invisible at low energy?

2 How does the presence of large extra dimension explain the weakness
of gravity?
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Lecture 2

A particle on the surface of thin cylinder

1 Ansatz: ψ(z , φ) ∼ e ikzze ikφrφ gives

− ~2

2m
(∂2

z +
∂2

r2∂φ2
)ψ(z , φ) =

~2

2m
(k2

z + k2
φ)ψ

⇒ E =
~2

2m
(k2

z + k2
φ) (3)

2 Periodic B.C.
ψ(φ) = ψ(φ+ 2π)⇒ kφ = nπ

r with
n = 0,±1,±2, · · · .

3 kz is continuous Q. Why?

4 If 1/r � E , E ≈ ~2k2
z

2m and ψ ∼ e ikzz .
Excitation along φ calls for extremely high
energy so that at low energy, irrelevant.

34 / 60



Lecture 2

Why gravity looks weak?

S = −
∫
dDx

M2+n
D
2

√
gR + δ(y − y0)LSM

1 Only gravity can see XD! (thus XD can be large mm to MeV−1)
M2

4 = M2+n
D Rn ⇒ RTeV ∼ (M4/TeV)2/n

2 Phenomena of TeV gravity (KK graviton, blackhole) are expected
(thus get tested at the LHC)

Q. What’s the mass of KK gravitons? Where are they?
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Lecture 2

Starter of Lecture #2: Questions

ADD looks cute ..

..but is not general enough

What happens if others also can go into XD?

Flavor? Neutrino mass? Dark matter?

Any other problem?

New models (UED, RS..)!
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Lecture 2

Starter of Lecture #2: Models

Figure : Ponton’s TASI lecture 37 / 60



Lecture 2 RS

RS (1) Warp factor

The most general higher dimensional geometry containing 4D Lorentz
symmetry: ds2 = A(y)ηµνdx

µdxν − B(y)dy2

dz2 = B(y)dy2 leads ds2 = e−2C(z)ηµνdx
µdxν − dz2

e−C(z) = W (z) is called “warp factor”
Flat: C (z) = 0 without CC for ADD
RS(=warped XD): C (z) = kz a slice of AdS5 with CC
Randall+Sundrum, [Phys. Rev. Lett. 83, 3370 (1999)], [Phys. Rev. Lett. 83, 4690 (1999)]
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Lecture 2 RS

RS (2) Hierarchy

Due to the “warp factor” W (z) = e−kz , the standard measure of
energy varies with respect to z as M(z) = M0e

−kz

SHiggs =
∫
d5x
√
gδ(z − z0)

[
|DµH|2 − λ(|H|2 − v2

0 )2
]

√
g =

√
Det(gMN) = e−4kz√g4

gµν(z)(DµH)†DνH = e2kzηµν(DµH)†DνH

H → Ĥ = ekzH is canonically normalized

V (H) = e−4kzλ
(
|H|2 − v2

0

)2
= λ

(
|Ĥ|2 − (v0e

−kz)2
)2

The physical VEV is red-shifted v̂ = e−kzv0 � v0.
As a result, we can understand why the scale of Higgs is much smaller
than fundamental scale M5 ∼ v0. (The hierarchy problem solved)

39 / 60



Lecture 2 RS

RS (3) Gravity

SG =
∫
d5x
√
g

M3
5

2 R

R = e2kzηµνR
(4)
µν = e2kzR(4)

√
g = e−4kz√g4

M2
4 = M3

5

∫ L

−L dz e−2kz =
M3

5

k (1− e−2kL) ∼ M3
5

k
M4 ∼ M5 ∼ k but still solves hierarchy problem!
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Lecture 2 RS

RS (4) Pictorial

Q. Where do we live in extra dimensions?
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Lecture 2 RS

RS (5) Flavor

The location of the Higgs is at
IR thus v̂ = e−kLv ∼ TeV

If a fermion’s wave function is
localized toward the IR, it can
efficiently interact with the
Higgs..leading a large Yukawa
coupling

It is attempting to consider the
RS as a theory of flavor physics!

See e.g. Randall [0710.1869],
Neubert et al [0807.4937],
[0912.1625]

y eff
ij = y5

∫
dyf

(0)
i (z)f

(0)
j (z)δ(z − z0)
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Lecture 2 RS

RS (6) Fermions in 5D

SΨ =
∫
d5x
√
g
(
iΨEM

a Γa←→∂MΨ−MΨΨ
)

a
←→
∂ b = 1

2 (a∂b − (∂a)b)

ΓM = (γµ, iγ5) satisfying {ΓM , ΓN} = 2ηMN (cf) (γµ,−iγ5)

Eµa = eC(z)δµa , Eµ5 = 1 and
√
g = e−4C

(Check! EM
a EN

b η
ab = gMN)

SΨ =
∫
d5x e−4CΨ(ieCγµ∂µ − γ5(∂5 − 1

2C
′)−m)Ψ

δΨ⇒ (ieCγµ∂µ − γ5(∂5 − 1
2C
′)−m)Ψ = 0

BC: δS |bdy = δΨLΨR − δΨRΨL|z=L
z=0 = 0

⇒ ΨL| = 0 or ΨR | = 0.

Four choices of BC’s (+,+), (+,−), (−,+), (−,−)
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Lecture 2 RS

RS (7) KK decomposition Fermions in 5D

ΨL/R(xµ, y) =
∑

n
e3C(z)/2
√
L
ψ

(n)
L/R(xµ)f

(n)
L/R(y)(

∂z ±M − 1
2C
′) f (n)

L/R = ±mne
C f

(n)
R/L

1
L

∫ L
0 dz f

(n)
L/R f

(m)
L/R = δnm

M(y) ≈ ±cC ′(z) ⇒ f
(0)
L/R = N0e

−(c−1/2)C(z)

.. L/R for (+,+) and (−,−).

KK modes are Bessel functions for C = kz ..localized toward IR

Similarly for gauge bosons
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Lecture 2 RS

RS (7) KK states

Differently from the zero modes,
KK excitations are all localized
toward the IR

Naturally, KK mass gap
δm ∼ ke−kL ∼ TeV thus subject
to get tested by the LHC

RS-GIM mechanism

Figure : Ponton’s TASI lecture note
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Lecture 2 RS

RS (8) LHC phenomenology

WKK ,ZKK , gKK ,GKK in
resonances all in TeV range

Only third generation fermions
(and Higgs) would couple
rather strongly to these KK
gauge bosons and KK graviton

Gauge boson’s have flat profile
thus less suppressed couplings
with KK bosons

Snowmass 2013 benchmark [1309.7847]
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Lecture 2 RS

RS (9) LHC phenomenology-2

Snowmass 2013 benchmark [1309.7847]
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Lecture 2 UED

Universal Extra Dimensions (1)

UED = Effective theory of RSKK−parity
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Lecture 2 UED

Universal Extra Dimensions(2)

UED = Effective theory of RSKK−parity

Figure : Csaki, Heinonen, Hubisz, SCP, Shu [JHEP 1101 (2011) 089]
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Lecture 2 UED

Universal Extra Dimensions(3)

Nearly flat geometry

KK-parity = Inversion about the middle point of XD

n = even modes are KK-even. The SM particles are KK-even (why?)

n = odd modes are KK-odd. The 1st excited KK modes are odd

An KK-odd particle cannot decay into KK-even particles

The lightest KK-odd particle (LKP) is stable

A perfect DM candidate if neutral!
Servant, Tait [Nucl.Phys. B650 (2003) 391-419]

Kong, Matchev [JHEP 0601 (2006) 038]
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Lecture 2 UED

Universal Extra Dimensions(4)

In minimal realization of UED

M5 = R3,1 × S1/Z2

{Q, u, d , L, e} ⇒ Ψ(xµ, y)
{g ,W ,Z} ⇒ VM(xµ, y)
all bulk =0
fn(y) ∼ sin or cos

γ1 turned out to be LKP
Appelquist, Cheng, Dobrescu [Phys.Rev. D64

(2001) 035002]

Figure : Backovı́c, Kong, McCaskey [1308.4955]

MadDM1.0
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Lecture 2 UED

Universal Extra Dimensions(5)

In non-minimal UED

M5 = R3,1 × S1/Z2

{Q, u, d , L, e} ⇒
Ψ(xµ, y)
{g ,W ,Z} ⇒ VM(xµ, y)
with bulk masses and
boundary localized terms
SCP,Shu ’09, Kong, SCP, Rizzo ’10,

Csaki, Heinonen, Hubisz, SCP, Shu

’11, Flacke, Kong, SCP 13’

fn(y) ∼ sin′ or cos′

γ1,Z1, ν1 can be LKP .. rich
phenomenology

Figure : Flacke, Kong, SCP [JHEP 1305 (2013) 111]
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Lecture 2 UED

Universal Extra Dimensions(6)

Collider phenomenology of UED

Single KK-odd production is
forbidden due to KK-parity

Resonance e.g.
pp → γ2,Z2 → `+`−

W ′ search pp →W2 → `ν`

pp → f1f̄1,V1V1 then
cascade decay down to
LKP + SMs Figure : Kong, SCP, Rizzo [JHEP 1004 (2010) 081]
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Lecture 2 AdS/CFT

AdS/CFT(1) Introduction

So far we have seen XD models in terms of KK decomposition

..which is good, as KK-states are mass eigenstates which are subject
to get measured at the LHC

...however, which is not the only way to study XD

According to AdS/CFT, XD can be understood by a dual 4D theory

..and also new intuition

..provides new computing methods
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Lecture 2 AdS/CFT

AdS/CFT(2)

AdS/CFT dictionary
memorize!

AdS 5D CFT 4D

Type IIB String on AdS5 × S5 4D N = 4 SU(N) super YM
UV localization mostly elementary
IR localization mostly composite
flat profile partially composite and elementary
5D gauge symmetry (weakly gauged) Global symmetry

Table : see e.g. T. Gherghetta TASI ’10
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Lecture 2 AdS/CFT

AdS/CFT (3)

Figure : T. Gherghetta’s TASI lecture ’10

1 Composite : 3rd gen fermions, Higgs, KK-states
2 Elementary : 1,2nd gen fermions
3 Mixed : gauge boson
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Lecture 2 AdS/CFT

AdS/CFT (4)

Holographic interpretation of 5D physics

1 Higgs is a CFT composite state. Its mass is generated at CFT
breaking scale ∼ ke−kL ∼ TeV

2 Gauge bosons are admixture of elementary and composite states.
Gets corrections from strong interaction at IR

3 Top is mostly composite and gets large mass from the strong
dynamics

4 KK modes are ‘excitations’ of strong dynamics

5 Custodial symmetry can be realized by imposing
[SU(2)L × SU(2)R × U(1)X ]local in the bulk
⇒ [SU(2)L × SU(2)R × U(1)X ]global ⊃ [SU(2)L × U(1)Y ]local by BC
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Conclusion

Conclusion (1)
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Conclusion

Conclusion(2)
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Conclusion

Conclusion(3)

XD opens new era of model building

á la theoretically deep and phenomenologically interesting

Within relatively short time (∼ 10+years), XD have provided a
powerful framework to address long-lasting hard problems in particle
physics

Several realistic models are already under the LHC test especially the
models with TeV scale KK-particles for hierarchy problem

Flavor problems (why top is heavy!) may be best understood by XD
so far ...

...but we should not think they are the last models!
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